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Navier–Stokes–Fourier system

Mass conservation
∂t%+ divx(%u) = 0

Momentum balance (Newton’ s second law)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(Dxu) + %∇xG

Internal energy balance (First law of thermodynamics)

∂t%e(%, ϑ)+divx(%e(%, ϑ)u)+divxq(∇xϑ) = S(Dxu) : Dxu−p(%, ϑ)divxu

Newton’s rheological law

S(Dxu) = µ

(
∇xu +∇t

xu− 2

d
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0

Fourier’s law

q(∇xϑ) = −κ∇xϑ, κ > 0



Thermodynamics

Gibbs’ law, Second law of thermodynamics

ϑDs = De + pD

(
1

%

)
Entropy balance equation (Second law of thermodynamics)

∂t(%s(%, ϑ))+divx(%s(%, ϑ)u)+divx

(q

ϑ

)
=

1

ϑ

(
S(Dxu) : Dxu− q · ∇xϑ

ϑ

)

Thermodynamic stability

(%,S ,m) 7→
[

1

2

|m|2

%
+ %e(%,S)

]
strictly convex, S = %s, m = %u

Boyle-Mariotte equation of state

p(%, ϑ) = %ϑ, e(%, ϑ) = cvϑ, cv > 0, s(%, ϑ) = cv log ϑ− log %



Data

Physical space

Q ⊂ Rd , d = 1, 2, 3 (bounded) domain

Impermeable boundary
u · n|∂Q = 0

Kinematic boundary condition, complete slip

[S(Dxu) · n]× n|∂Q = 0

Kinematic boundary condition, tangential velocity

u× n|∂Q = uB × n

Boundary temperature
ϑ|∂Q = ϑB

Thermal insulation – zero heat flux

q · n|∂Q = 0



Initial/boundary value problem

Initial state of the system

%(0, ·) = %0, ϑ(0, ·) = ϑ0, %0 > 0, ϑ0 > 0, u(0, ·) = u0

+ compatibility conditions

Existence of local–in–time strong solutions

Valli, Valli–Zajaczkowski [1986], Kawashima–Shizuta [1988]

%0 ∈W k,2(Q), ϑ0 ∈W k,2(Q), u0 ∈W k,2(Q;Rd), k ≥ 3

Cho–Kim [2006]

%0 ∈W 1,p(Q), ϑ0 ∈W 2,2(Q), u0 ∈W 2,2(Q;Rd), 3 < p ≤ 6

uB = 0, q · n|∂Q = 0

Kotschote [2015]

%0 ∈W 1,p(Q), ϑ0 ∈W 2− 1
p
,p(Q), u0 ∈W 2− 1

p
,p(Q;Rd), p > 3



Conditional regularity

John F. Nash
[1928-2015]

Nash’s conjecture: Probably one should first try to prove a con-
ditional existence and uniqueness theorem for flow equations. This
should give existence, smoothness, and unique continuation (in
time) of flows, conditional on the non-appearance of certain gross
types of singularity, such as infinities of temperature or density.

EF, Wen, Zhu [2022]

uB = 0, q · n|∂Q = 0

sup
t∈[0,T )

(
sup
Q
%(t, ·) + sup

Q
ϑ(t, ·)

)
<∞ ⇒ Tmax > T

Basarić, EF, Mizerová [2023]

uB · n = 0, ϑ|∂Q = ϑB

sup
t∈[0,T )

(
sup
Q
%(t, ·) + sup

Q
ϑ(t, ·) + sup

Q
|u(t, ·)|

)
<∞ ⇒ Tmax > T



Data space

ϑD ∈ Lp(0,∞;W 2,p(Q)), ∂tϑD ∈ Lp(0,∞; Lp(Q)), ϑD > 0,

ϑD(0, ·) = ϑ0, ϑD |∂Q = ϑB

uD ∈ Lp(0,∞;W 2,p(Q;Rd)), ∂tuD ∈ Lp(0,∞; Lp(Q;Rd))

uD(0, ·) = u0, uD |∂Q = uB

Data space

XD =
{

(%D , ϑD , uD)
∣∣∣ %D = %0, inf

Q
%D > 0 + compatibility conditions

}

Topology on the data space

‖D‖XD = ‖%−1
D ‖W 1,p(Q) + ‖ϑ−1

D ‖W 1,p(Q)

+ ‖%D‖W 1,p(Q) + ‖ϑD‖Lp(0,∞;W 1,p(Q))∩W 1,p(0,∞;Lp(Q)) (1)

+ ‖uD‖Lp(0,∞;W 1,p(Q;Rd ))∩W 1,p(0,∞;Lp(Q;Rd )), p > 3



Solution space (trajectory space)

Solutions (trajectories)

U = (%, ϑ, u) ∈ XT , T < Tmax, Tmax = Tmax[D]

Trajectory space

% ∈ C 1([0,T ];W 1,p(Q))

ϑ ∈ Lp(0,T ;W 2,p(Q)) ∩W 1,p(0,T ; Lp(Q))

u ∈ Lp(0,T ;W 2,p(Q;Rd)) ∩W 1,p(0,T ; Lp(Q;Rd))

Stability with respect to the data

Dn = [%D,n, ϑD,n, uD,n]→ D = [%D , ϑD , uD ] in XD

⇒

lim inf
n→∞

Tmax[Dn] ≥ Tmax[D] > 0

(%, ϑ, u)[Dn]→ (%, ϑ, u)[D] in XT for any 0 < T < Tmax



Analytical results, summary

Existence and uniqueness
For any data D = (%D , ϑD , uD) ∈ XD , there exists a unique solution
(%, ϑ, u) on a maximal time interval [0,Tmax), Tmax > 0.
Stability
The mapping D ∈ XD 7→ Tmax[D] is lower semi–continuous. If

Dn → D in XD ,

then
(%, ϑ, u)[Dn]→ (%, ϑ, u)[D] in XT for any T < Tmax

Conditional regularity

‖%(t, ·)‖W 1,p(Ω) + ‖ϑ(t, ·)‖
W

2− 1
p
,p

(Ω)
+ ‖u(t, ·)‖

W
2− 1

p
,p

(Ω;Rd )

≤ C(T , ‖D‖XD , sup
t∈[0,T ]

(
sup
Q
%(t, ·) + sup

Q
ϑ(t, ·) + sup

Q
|u(t, ·)|

)
for any 0 ≤ t ≤ T < Tmax, C bounded for bounded arguments



Problems with uncertain data

Probability space

{Ω;B,P}, Ω measurable space

B σ − algebra of measurable sets, P− complete probability measure

Random data

ω ∈ Ω 7→ D ∈ XD Borel measurable mapping

Solutions as random variables

Tmax = Tmax[D]− random variable

D 7→ (%, ϑ, u)[D] random variable

Statistical solution

strong sense: ω ∈ Ω 7→ (%, ϑ, u)(t, ·)[D]

weak sense: L[(%, ϑ, u)(t, ·)[D]]

L - law (distribution) of (%, ϑ, u)(t, ·) in W 1,p ×W 2− 1
p
,p ×W 2− 1

p
,p



Strong stability problem I

Data convergence

Dn = [%D,n, ϑD,n, uD,n]→ D = [%D , ϑD , uD ] in XD

P− a.s.

Solution convergence

(%, ϑ, u)[Dn]→ (%, ϑ, u)[D] in XT

T < Tmax[D]

P− a.s.



Weak stability problem I

Data convergence in law (in distribution)

L[Dn] = L[%D,n, ϑD,n, uD,n]→ L

narrowly in P[XD ]



Tools from probability theory I

Skorokhod (representation) theorem
Let (Ln)∞n=1 be a sequence of probability measures on a Polish space X .
Suppose that the sequence is tight in X , meaning for any ε > 0, there
exists a compact set K(ε) ⊂ X such that

Ln[X \ K(ε)] ≤ ε for all n = 1, 2, . . . .

Then there is a subsequence nk →∞ as k →∞ and a sequence of random
variables (D̃nk )∞k=1 defined on the standard probability space(

Ω̃ = [0, 1],B[0, 1],dy
)

satisfying:

law[D̃nk ] = Lnk ,

D̃k → D̃ in X for every y ∈ [0, 1].



Convergence in weak stability problem I

Skorokhod representation theorem

Dn ≈XD D̃nk

Strong convergence in the new probability space

(%̃k , ϑ̃k , ũk) ≡ (%, ϑ, u)[D̃nk ]→ (%, ϑ, u)[D̃]

in XT surely dy

Equivalence in law (Borel measurability of the solution mapping)

(%̃n, ϑ̃n, ũn) ≈ (%, ϑ, u)[Dn]

Conclusion

L[(%, ϑ, u)[Dn]]→ L[(%, ϑ, u)[D̃]]

narrowly



Strong stability problem II - global in time convergence

Data convergence

Dn = [%D,n, ϑD,n, uD,n]→ D = [%D , ϑD , uD ] in XD

P− a.s.

Hypothesis of boundedness in probability
For any ε > 0, there exists M > 0 such that

lim sup
n→∞

P

{
sup

(0,T )×Q

%[Dn] + sup
(0,T )×Q

ϑ[Dn] + sup
(0,T )×Q

|u[Dn]| > M

}
< ε

Conclusion (to be shown below)

(%, ϑ, u)[Dn]→ (%, ϑ, u)[D] in XT

in probability



Strong stability problem II - proof of convergence

Skorokhod representation theorem

augmented sequence of random variables (Dn, (%, ϑ, u)[Dn], Λn)∞n=1

Λn = sup
(0,T )×Q

%[Dn] + sup
(0,T )×Q

ϑ[Dn] + sup
(0,T )×Q

|u[Dn]|

Skorokhod representation

(D̃n, (%, ϑ, u)[D̃n], Λ̃n)∞n=1

Λ̃n = sup
(0,T )×Q

%[D̃n] + sup
(0,T )×Q

ϑ[D̃n] + sup
(0,T )×Q

|u[D̃n]| → Λ̃

dy surely

Conclusion by conditional regularity

D̃n → D̃ in XD

(%, ϑ, u)[D̃n]→ (%, ϑ, u)[D̃]

in XT , dy surely



Tools from probability theory II

Gyöngy–Krylov theorem
Let X be a Polish space and (UM)M≥1 a sequence of X−valued random
variables.
Then (UM)∞M=1 converges in probability if and only if for any sequence of
joint laws of

(UMk ,UNk )∞k=1

there exists further subsequence that converge weakly to a probability mea-
sure µ on X × X such that

µ [(x , y) ∈ X × X , x = y ] = 1.



Approximate solutions

Approximate solutions

(%, u, ϑ)h[D], D ∈ XD , h > 0 discretization parameter

D ∈ XD 7→ (%, u, ϑ)h ∈ L1((0,T )× Q;Rd+2) Borel measurable for any h > 0.



Consistent approximation
Conservative boundary conditions (for simplicity)

u|∂Q = 0, q · n|∂Ω = 0

Approximate field equations

∂t%n + divx(%nun) = e1
n in D′((0,T )× Q),

Consistent approximation

%n = %hn [D], ϑn = ϑhn [D], un = uhn [D]

∂t(%nun) + divx(%nun ⊗ un) +∇xp(%n, ϑn)

= divxS(Dxun) + %n∇xG + e2
n in D′((0,T )× Q;Rd)

∂t(%ns(%n, ϑn)) + divx(%ns(%n, ϑn)u) + divx

(
qn

ϑn

)
≥ 1

ϑn

(
S(Dxun) : Dxun −

qn · ∇xϑn

ϑn

)
+ e3

n in D′((0,T )× Q)

d

dt

∫
Q

[
%n|un|2 + %ne(%n, ϑn)− %nG

]
dx ≤ e4

n in D′(0,T )

e1
n , e

2
n , e

3
n , e

4
n → 0 as n→∞ in a “weak” sense



Convergence of consistent approximations, I

Strong data convergence

Dn = [%D,n, ϑD,n, uD,n]→ D = [%D , ϑD , uD ] in XD

P− a.s.

Hypothesis of boundedness in probability
For any ε > 0, there exists M > 0 such that

lim sup
n→∞

P

{
sup

(0,T )×Q

%n[Dn] + sup
(0,T )×Q

ϑn[Dn] + sup
(0,T )×Q

|un[Dn]| > M

}
< ε

Consistent approximation

[%, ϑ, u]n[Dn] a sequence of consistent approximations



Convergence of consistent approximations, II

1 Apply Skorokhod representation theorem to the sequence
(Dn, %n, ϑnun,Λn)∞n=1,

Λn = sup
(0,T )×Q

%n[Dn] + sup
(0,T )×Q

ϑn[Dn] + sup
(0,T )×Q

|un[Dn]|

2 New sequence of data D̃n with the same law on the standard
probability space,

D̃n → D̃ in Xd , dy surely.

Λ̃n = sup
(0,T )×Q

%n[D̃n] + sup
(0,T )×Q

ϑn[D̃n] + sup
(0,T )×Q

|un[D̃n]| → Λ̃

dy surely

%nk [D̃nk ]→ %̃ weakly-(*) in L∞((0,T )× Q)

ϑnk [D̃nk ]→ ϑ̃ weakly-(*) in L∞((0,T )× Q)

unk [D̃nk ]→ ũ weakly-(*) in L∞((0,T )× Q;Rd)

dy surely



Convergence of consistent approximations, III

4 Show the limit is a measure–valued solution with the data D̃ in the
sense of Březina, EF, Novotný [2020], see also Chaudhuri [2022]

5 Apply the weak–strong uniqueness principle to conclude the (%̃, ϑ̃, ũ)

is the unique strong solution associated to the data D̃,

(%̃, ϑ̃, ũ) = (%, ϑ, u)[D̃].

Conclude there is no need of subsequence, Tmax[D̃] > T , and
convergence is strong for in Lq for any finite q.

6 Pass to the original space using Gyöngy–Krylov theorem

Conclusion

(%n, ϑn, un)[Dn]→ (%, ϑ, u)[D]

in Lq((0,T )× Q;Rd+2) for any 1 ≤ q <∞

in probability


