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Euler system of gas dynamics

Leonhard Paul
Euler
1707–1783

Equation of continuity – Mass conservation

∂t%+ divx(%u) = 0

Momentum equation – Newton’s second law

∂t(%u) + divx (%u⊗ u) +∇xp(%) = 0, p(%) = a%γ

Impermeable boundary

u · n|∂Ω = 0, Ω ⊂ Rd , d = 2, 3

Initial state (data)

%(0, ·) = %0, (%u)(0, ·) = %0u0



Admissibility

Energy

E(%, u) =
1

2
%|u|2 + P(%)

Pressure potential

P ′(%)%− P(%) = p(%), P(%) =
a

γ − 1
%γ

Dissipative (weak) solutions

d

dt

∫
Ω

E(%, u) dx ≤ 0,

∫
Ω

E(%, u)(τ, ·) dx ≤
∫

Ω

E(%0, u0) dx

Admissible (weak) solutions

∂tE(%, u)+divx

(
E(%, u)u+p(%)u

)
≤ 0, E(%, u)(τ, ·)↗ E(%0, u0), τ → 0



Wild data

Initial state

%(0, ·) = %0, (%u)(0, ·) = %0u0

The initial data are wild if there exists T > 0
such that the Euler system admits infinitely many
(weak) admissible solutions on any time interval
[0, τ ], 0 < τ < T

E. Chiodaroli (Pisa)

Theorem (E. Chiodaroli, EF 2022) The set of
wild data is dense in L2 × L2

Related results for the incompressible Euler system by Székelyhidi–Wiedemann,
Daneri–Székelyhidy
Related results for the barotropic Euler system by Ming, Vasseur, and You∫

Ω

E(%, u)(τ) dx ≤
∫

Ω

E(%0, u0) dx , τ ≥ 0



Weak vs. strong continuity

U = [%,m], m = %u

Weak continuity

U ∈ Cweak([0,T ]; Lp(Ω;Rd)), t 7→
∫

Ω

U ·ϕ dx ∈ C [0,T ]

ϕ ∈ Lp′(Ω;Rd)

Strong continuity

τ ∈ [0,T ], ‖U(t, ·)−U(τ, ·)‖Lp(Ω;Rd ) whenever t → τ

Strong vs. weak

strong ⇒ weak, weak��ZZ⇒ strong



Strong discontinuity

Anna
Abbatiello
(Roma La
Sapienza)

Theorem (A.Abbatiello, EF 2021)

Let d = 2, 3. Let R denote the set of bounded Riemann
integrable functions. Let %0, m0 be given such that

%0 ∈ R, 0 ≤ % ≤ %0 ≤ %,

m0 ∈ R, divxm0 ∈ R, m0 · n|∂Ω = 0.

Let {τi}∞i=1 ⊂ (0,T ) be an arbitrary (countable dense) set
of times.
Then the Euler problem admits infinitely many weak so-
lutions %, m with a strictly decreasing total energy profile
such that

% ∈ Cweak([0,T ]; Lγ(Ω)), m ∈ Cweak([0,T ]; L
2γ
γ+1 (Ω;Rd))

but

t 7→ [%(t, ·),m(t, ·)] is not strongly continuous at any τi



Consistent approximation

Approximate equation of continuity∫ T

0

∫
Ω

[%n∂tϕ+ mn · ∇xϕ] dxdt = e1,n[ϕ]

Approximate momentum equation∫ T

0

∫
Ω

[
mn · ∂tϕ +

mn ⊗mn

%n
: ∇xϕ+ p(%n)divxϕ

]
dxdt = e2,n[ϕ]

Stability - approximate energy inequality∫
Ω

[
1

2

|mn|2

%n
+ P(%n)

]
dx ≤

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx + e3,n

Consistency

e1,n[ϕ]→ 0, e2,n[ϕ]→ 0, e3,n → 0 as n→∞



Dissipative solutions – limits of consistent approximations

Dominic Breit
(Edinburgh)

Martina
Hofmanová
(Bielefeld)

∂t%+ divxm = 0

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = −divxR

d

dt
E(t) ≤ 0, E(t) ≤ E0, E0 =

∫
Ω

[
1

2

|m0|2

%0
+ P(%0)

]
dx

E ≡
∫

Ω

[
1

2

|m|2

%
+ P(%)

]
dx + c(γ)

∫
Ω

d trace[R]

Reynolds stress

R ∈ L∞(0,T ;M+(Ω;Rd×d
sym ))



Basic properties of dissipative solutions

Well posedness, weak strong uniqueness

Existence. Dissipative solutions exist globally in time for any finite
energy initial data

Limits of consistent approximations Limits of consistent
approximations are dissipative solutions, in particular limits of
consistent numerical schemes.

Compatibility. Any C 1 dissipative solution [%,m], % > 0 is a
classical solution of the Euler system

Weak–strong uniqueness. If [%̃, m̃] is a classical solution and [%,m]
a dissipative solution starting from the same initial data, then R = 0
and % = %̃, m = m̃.



Semiflow selection

Set of data

D =

{
%,m,E

∣∣∣ ∫
Ω

1

2

|m|2

%
+ P(%) dx ≤ E

}
Set of trajectories

T =
{
%(t, ·),m(t, ·),E(t−, ·)

∣∣∣t ∈ (0,∞)
}

Solution set

U [%0,m0,E0] =
{

[%,m,E ]
∣∣∣[%,m,E ] dissipative solution

%(0, ·) = %0, m(0, ·) = m0, E(0+) ≤ E0

}
Semiflow selection – semigroup

U[%0,m0,E0] ∈ U [%0,m0,E0], [%0,m0,E0] ∈ D

U(t1+t2)[%0,m0,E0] = U(t1)◦
[
U(t2)[%0,m0,E0]

]
, t1, t2 > 0

Andrej Markov
(1856–1933)

N. V. Krylov



Adaptation of Krylov’s method by Cardona and Kapitanski

Jorge Cardona
(TU
Darmstadt)

Successive minimization of cost functionals

Iλ,F [%,m,E ] =

∫ ∞
0

exp(−λt)F (%,m,E) dt, λ > 0

where

F : X = W−`,2(Ω)×W−`,2(Ω;Rd)× R → R

is a bounded and continuous functional

Maximal dissipation principle

Ẽ(t) ≤ E(t) ⇒ E(t) = Ẽ(t)

whenever, %0 = %̃0, m0 = m̃0, E0 = Ẽ0
Lev
Kapitanskii
(Miami)



Euler system and turbulence

Fluid domain and obstacle

Q = Rd \ B, d = 2, 3

B compact, convex

Navier–Stokes system

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu)

p(%) ≈ a%γ , γ > 1, S = µ

(
∇xu +∇t

xu− 2

d
divxuI

)
+ λdivxuI,

Boundary and far field conditions

u|∂Q = 0, %→ %∞, u→ u∞ as |x | → ∞



High Reynolds number (vanishing viscosity) limit

Vanishing viscosity

εn ↘ 0, µn = εnµ, µ > 0, λn = εnλ, λ ≥ 0

Questions

Identify the limit of the corresponding solutions (%n, un) as n→∞
in the fluid domain Q

Yakhot and Orszak [1986]: “The effect of the boundary in the
turbulence regime can be modeled in a statistically equivalent way
by fluid equations driven by stochastic forcing”

Clarify the meaning of “statistically equivalent way”

Is the (compressible) Euler system driven by a general cylindrical
white noise force adequate to describe the limit of (%n, un)?



Statistical limit

Trajectory space

(%n,mn) ∈ T ≡ Cweak([0,T ]; Lγloc(Ω)× L
2γ
γ+1

loc (Ω;Rd))

VN =
1

N

N∑
n=1

δ(%n,mn), mn = %nun

Prokhorov theorem ⇒ VN → V narrowly in P[T ]

(%,m) ≈ V a random process with paths in T



Hypothetical limit system

Euler system with stochastic forcing

d%̃+ divxm̃dt = 0

dm̃ + divx

(
m̃⊗ m̃

%̃

)
dt +∇xp(%̃)dt = FdW

W = (Wk)k≥1 cylindrical Wiener process

F = (Fk)k≥1 − diffusion coefficient

E

∫ T

0

∑
k≥1

‖Fk‖2
W−`,2(Q;Rd )dt

 <∞
we allow F = F(%,m)



Statistical equivalence

statistical equivalence ⇔ identity in expectation of some quantities

(%,m) statistically equivalent to (%̃, m̃)

⇔
density and momentum

E
[∫

D

%

]
= E

[∫
D

%̃

]
, E

[∫
D

m

]
= E

[∫
D

m̃

]
kinetic and internal energy

E
[∫

D

|m|2

%

]
= E

[∫
D

|m̃|2

%̃

]
, E

[∫
D

p(%)

]
= E

[∫
D

p(%̃)

]
angular energy

E
[∫

D

1

%
(Jx0 ·m) ·m

]
= E

[∫
D

1

%̃
(Jx0 · m̃) · m̃

]
D ⊂ (0,T )× Q, x0 ∈ Rd , Jx0 (x) ≡ |x − x0|2I− (x − x0)⊗ (x − x0)



Results (EF, M. Hofmanová 2022)
Hypothesis:

(%,m) statistically equivalent to a solution of the stochastic Euler system (%̃, m̃)

Conclusion:

Noise inactive
(%,m) is a statistical solution to a deterministic Euler system

S-convergence (up to a subsequence) to the limit system

1

N

N∑
n=1

b(%n,mn)→ E [b(%,m)] strongly in L1
loc((0,T )× Q)

for any b ∈ Cc(Rd+1), ϕ ∈ C∞c ((0,T )× Q)

Conditional statistical convergence

barycenter (%,m) ≡ E [(%,m)] solves the Euler system

⇒
1

N
#

{
n ≤ N

∣∣∣‖%n − %‖Lγ (K) + ‖mn −m‖
L

2γ
γ+1 (K ;Rd )

> ε

}
→ 0

as N →∞ for any ε > 0, and any compact K ⊂ [0,T ]× Q



Conclusion

Stochastically driven Euler system irrelevant in the description of
compressible turbulence (slightly extrapolated statement)

Possible scenarios:

Oscillatory limit. The sequence (%n,mn) generates a Young
measure. Its barycenter (weak limit of (%n,mn)) is not a weak
solution of the Euler system. Statistically, however, the limit is a
single object. This scenario is compatible with the hypothesis that
the limit is independent of the choice of εn ↘ 0 ⇒ computable
numerically.

Statistical limit. The limit is a statistical solution of the Euler
system. In agreement with Kolmogorov hypothesis concerning
turbulent flow advocated in the compressible setting by Chen and
Glimm. This scenario is not compatible with the hypothesis that the
limit is independent of εn ↘ 0 (⇒ numerically problematic) unless
the limit is a monoatomic measure in which case the convergence
must be strong.


