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Equations of continuum mechanics

0= 0(t, X ) e mass density
U = U( X)) ot fluid velocity
P Cauchy stress
F o external (driving) force
= internal energy
L TP internal energy flux
e N

Mass conservation
Oro + divi(pu) =0

Momentum conservation
Ot(ou) + divy(ou ® u) = div,T + of

Energy conservation

O: (%g|u|2 + ge> +divy {(%QMZ + ge) u} —dive(T-u)+divyq = of -u




Fluid mechanics .
S viscous stress

o2 pressure

Stokes law
T=S-pl

Thermodynamics, entropy

S e entropy
e (absolute) temperature
e )

Gibbs’ law

¥Ds = De + pD (é)

Entropy balance equation

1
(S : Vyu — Eq . Vxﬂ)

S

Ot(0s) + divy(gsu) + divx (%) —




Second law of thermod¥namlcs transport coefficients

Second law of thermodynamics

=

(S:qu—%mvxﬂ) >0

Sl

entropy production rate

................................................ shear viscousity coefficient
.................................................. bulk viscosity coefficient

~\
1
Deu = 5 (Viu+ Viu)
Newton'’s rheological law
S(Dxu) = p (qu + Viu— %divxuﬂ) + ndiveul, p >0, n >0
J

.............................................. heat conductivity coefficient

Fourier’s law

q=—-krVxd, k>0

~




Navier—Stokes—Fourier system

Mass conservation
Oro + divi(ou) =0

Momentum balance
O¢(ou) + divi(ou ® u) + Vip = div,S(Dxu) + of

Entropy balance

. . Vx9N 1 ) K 5
Ot (0s) + divy(osu) — divy ( 3 ) =3 (S :Dyu+ 5|VX19| )

Equation(s) of state

p = p(o,V)
s =s(p, V)




Equation of state (EOS) examples

Monoatomic gas

2
P—3Q

s, (e
,9)=92P
p(o,9) (19%)

P linear = Boyle-Mariotte EOS p = p¢

Radiation pressure (atrophysics)

PR = 3194




Initial /boundary conditions

' )
Initial conditions
Q(Ov ) = Qo, (QU)(O, ) = Mo, 95(07 ) = 50
\ J
Q C RY domain
s )
Boundary conditions
In/out flow
u|3Q = up
Q|rin = 0B, Mnyx € 0Q ‘ ug-n< 0}
Prescribed boundary temperature
19|9Q = 193
Boundary heat flux
Vx19 . I'I|3Q =F
4 J




Examples of boundary value problems

Rayleigh—Bénard problem [cf. Davidson]
Q C R? infinite slab Q = R* x [a, b]
ulogg =0
Y=1,if x3=a
V=0 if x3=0>b
Gravitational force

f=V,G, G=—xs

Taylor—Couette flow [cf. Davidson]

Q = O\ U;B; B;i (rotating) balls
U|aB,- =ug;, ug,;-n=20

ulpo =0




Examples of “data”

Rheological /material properties

transport coefficients u, 7, K
parameters in EOS (equation of state)

External forcing

f=V.G=ge

Initial state

0o, Mg, 50

Boundary data
ug, 08, Vg ...




Uncertain data

D € D — data space

D Polish — metrizable, separable, complete

Probability bases
{o.2.7}
Q (topological) space, B o—field of measurable sets (containing Borel sets)
P complete (Borel) probability measure

Random data

D = D(w) : Q — D Borel measurable mapping
Distribution (law) of D

L[D] — Borel probability measure on the data space D
L[D){B} = P{D"(B)}




Basic problems

Strong formulation
Given D : Q — D a family of random data, identify the corresponding
solution of the problem as a random variable

Associated numerical methods are the stochastic Galerkin method, stochas-
tic collocation method ...

Weak formulation
Given a law £[D] a family of random data, identify the law of the corre-
sponding solution

Associated numerical methods are Monte Carlo and related methods ...

\

Principal difficulties

m Solvability of the problem for a given family of data
m Uniqueness of solutions for given data

m Dependence of solutions on the data



Basic tools of stochastic analysis, |

Prokhorov’s theorem
Let (vn)p=y be a family of probability measures on a Polish space X.
The following is equivalent:

m (vn)je: is weakly precompact, meaning there is a subsequence such
vy, — v weakly in PB(X).

m (vn){Z; is tight, meaning for any € > 0, there is a compact set
K(e) C X such that

un(K)>1—eforall N=1,2,....




Basic tools of stochastic analysis, Il

Skorokhod (representation) theorem

Let (U)$5_; be a sequence of random variables ranging in a Polish space
X. Suppose that their laws are tight in X, meaning for any € > 0, there
exists a compact set K(g) C X such that

PlUM € X\ K(e)] <eforal M=1,2,....

Then there is a subsequence M, — oo and a sequence of random variables
(UMn)22, defined on the standard probability space

(fz = [0, 1], B0, 1],dy)

satisfying:

UM~y UM (they are equally distributed random variables),

UM — U in X for every y € [0,1].




Basic tools of stochastic analysis, Il

Gyongy—Krylov theorem
Let X be a Polish space and (U)y>1 a sequence of X—valued random

variables.
Then (UM)%_, converges in probability if and only if for any sequence of

joint laws of
(U, UM,

there exists further subsequence that converge weakly to a probability mea-
sure 1 on X x X such that

pllxy) € X x X, x=y]=1




Barotropic Navier—Stokes system

Field equations
Oro + divx(pu) =0

O¢(ou) + divi(ou @ u) + Vip(0) = div<S(Dxu)

No-slip boundary condition

Q C R?, d = 2,3 bounded, smooth

ulog =0

Initial data

Q(Oy ) = Qo, inf Q0 > 07 (‘QU)(O, ) = Mo = QoUo

p(o) =ag", a>0, y>1




Navier—Stokes system — weak solutions

Equation of continuity

/ / [98r<p+ ou - chp] dxdt = —/ 00(0, ) dx
0 Q Q

for any ¢ € C2([0,00) x Q)
Momentum equation

/ / [gu -Orp+ou@u: Vi + p(g)divxgo} dxdt
0 Q

= / / S(Dyu : Vi dxdt —/ ooug - (0, ) dx
0 Q Q

for any ¢ € C2([0,0) x @; RY)
Energy inequality

_/0°° aa/»/Q (%g|u|2+P(g)> dxdt+/ooo¢/QS(Dxu):lD)xu dxdt

< ¢(0)/C? (%Qo|uo|2 + P(Qo)) dx

for any ¢ € C}[0,00), ¥ >0, P'(0)o — P(0) = p(0)




Solvability of the Navier—Stokes system
m Local existence of smooth solutions [Valli, Zajaczkowski [1986]]

00 € W3(Q), inf oo >0, up € W*(Q; RY), k>3

+
compatibility conditions
=
There exists a regular (classical) solution
0 € C([0, Tomax): W**(Q)), u € C([0, Trmax); W**(Q; RY)), Tax >0

m Global existence of weak solutions [Lions [1998], EF [2000]]

1 d
00 >0, / {590|U0|2+P(90) dx < oo, 7> >
Q

=

There exists global in time weak solution
0 € C([0, T]; L(@)) N Cuear([0, TI; L(Q)),

ou € Cyeax([0, TT; L%(Q; RY)), u e L>(0, T; W,*(Q; RY)) for any T > 0



Conditional regularity, weak—strong uniqueness

A priori bounds [Sun, Wang, and Zhang [2011]]

llo(t; Mwraigy + lu(t; Nwrz(o)

< A (T lloollweay, inf 00, lluollwezqays [ lellis=o.71x s lulli=o. 1<) |)

te [0, T]

Weak—strong uniqueness [EF, Jin, Novotny [2012]]
Any weak solutions emanating from sufficiently regular initial data coin-
cides with the unique strong solutions as long as the latter exists

Corollary
Any weak solution emanating from sufficiently regular initial data that
remain uniformly bounded is a classical solution




Consistent approximation

/ / [Qsé’tso + o-u. - chp} dxdt = 7/ 00¢(0,-) dx + ec(¢p, €)
0 Q Q
for any ¢ € C}([0,0) x Q)
/ / [qus -0t + 0cu: @ ue Vi + p(gg)divxga} dxdt
0 Q

= / / S(Dxue) : Vi dxdt —/ ooug - p(0,-) dx + en(p, €)
0 Q Q

for any ¢ € C}([0,0) x Q; RY)

/ (lgg\usfw(ge)) () axt [ [ i) Do axae
Q 2 0 Q

1
S / (EQO‘UO‘2 + P(QO)) dx + 66(7—76)
Q

Vanishing consistency error: e., en, ee - 0ase — 0




Limit of consistent approximation

Weak convergence
0= — 0 weak-(*) in L*°(0, T; L"(Q))
u. — u weakly in L2((0, T; Wy ?(Q; R))

o-u. — 71 weak-(*) in L°(0, T; L31(Q; R%))

Lions—Aubin argument (under some extra hypotheses)

ou = pu




Limit system — dissipative solutions

/ / [Q@tap + ou - anp] dxdt = f/ 00p(0, ) dx
0 Q Q
for any ¢ € C2([0,0) x Q)

/ / [Qu c0rp+ou®u: Vip + p(g)divxgo] dxdt
0 Q

= / / S(Dxu) : Ve dxdt—/ oouo - (0, ) dx—/ / R Vipdt
0 Q Q 0 Q

for any ¢ € C2([0, ) x @; RY)

/Q (%Qlu\2 + P(Q)) (r,-) dx + /Q &(r, ) + /OT/QS(DXU) - Dyu dxdt

1
S/ (§QO|U0|2+P(QO)) dx
Q




Reynolds stress and energy defect

Energy defect

i [LIme 1o B
e = tim |3+ p(o)] - [ Jelul + (@) m. =
Reynolds defect

1m.@m.

=ty [ 32 4 0.~ lowo ut p(o)]

®m 1|m-¢f

loml > |35 4 o] s e = |5

=

+ p(0)/€[1| convex

Compatibility

0 <M, 0< trace[R] < c€




Relative energy

Relative energy
_ 1 2 /
r,U) = Selu—UP + P(o) = P()(e — r) — P(r)

E(g,u

Relative energy as Bregman distance
|2

LimE 1 P(o) if 0> 0,
E(o,m)=4 0ifop=0,m=0,

oo otherwise

convex l.s.c. function

E (g, mlr, M) = E(0,m) — pmE(r, M) — E(r,M)

Decomposition
" 1

/E(g,u‘r,U) dx:/ Zolul + P(o) dx
Q Q 2

+/Qg<%|U|Z—P’(r)) dxf/qu-deJr/op(r) dx



Relative energy inequality

% (/QE(g,u ’ r,U) dx—|—/QQS>

+/Q (S(]D)xu) fS(ID)XU)) : (]D)Xu fDXU) dx
sf/ng—u)‘(ufu)«Dxu dx

- [ [pte) = () = 1) = pr)] v ax

Q

+/Q (£-1) (U= - divS(DU) dx

+ /Q %(U —u)- [&(rU) + dive(rU ® U) 4+ Vip(r) — diVxS(DxU)] dx

* /Q (%(u —U)-U+p(r) (1 - %)) [atr + divx(rU)} dx

—/]D)XU:ER
Q



Compatibility, weak strong uniqueness

Compatibility
If a dissipative solution g, u belongs to the class C? and gy > 0, then g, u
is a classical solutions

Weak—strong uniqueness
A dissipative solution coincides with the (unique) classical solution ema-
nating from the same initial data as long as the latter solution exists

[EF, Lukatova-Medvidova, Mizerovd, She [2022]]




Data dependence, measurable selection
Background, weak solutions
m p(o)=ag", v> %
B 09, Mg = Qoo initial data

m U[oo, mo] — the set of all weak solutions to the Navier—Stokes system on
the time interval [0, co) emanating from the initial data [go, mo]

Existence (E)
The set U[oo, mo] is non—empty for any

0 >0, /[”'“0'2 (go)] dx < oo

2 oo
Compactness, closed graph (C)

I 00.n — 00 weakly in L7(Q), mo., — mo weakly in L371(Q; RY)

/ {;|2O"|2+P(go,,)} dx—>/ {”"“"2 P(go)} dx

and [QI'H m”] € u[QO,n» moy"]

Then, for a suitable subsequence,

[0nks Mnk] — [0,m] in Cueatcioe ([0, 00; L x L3971 (@; R)), where [0, m] € U[oo, ).



Semigroup (semiflow) selection
Set of data
2
D= g,m,E\ /Lm' +P(o) dx < E
a2 0
Set of trajectories

7 = {olt, ), m(t, ), E(t=,)|t € (0,00) }

Solution set
Andrej Markov
U[go, mo, Eo] = {[Q, m, E] ‘[g, m, E] dissipative solution (1856-1933)
0(0,2) = oo, m(0,") = mo, E(0+) < Fo

Semiflow selection — semigroup

Uloo, mo, Eo] € Uoo, mo, Eo], [00, Mo, Eo] € D N. V. Krylov

U(ti+12)[00, mo, Eo] = U(t1)o | U(t2)[c0, mo, EO]}, ti,t2 >0




Abstract setting

Phase space

(o,m E)e X =W Q) x W “*(Q;R")x R

Data space

1 2
D:{[Qoymo,Eo]GX’QoZO,/{*m+i94 dXSEo}.
al2 oo v—1

Trajectory space

Q = Goe([0, 00); W 2(Q)) X Gioe([0, 00); W52(Q; RY)) x Liyc(0, 00)




Method by Krylov adapted by Cardona and Kapitanski

Multi—valued solution mapping

U : [0, mo, Eo] — [0, m, E] € 2?

Time shift

Srof, STOf(t) :f(T+t‘), t>0.
Continuation
&(r) for0 <7< T,

& Ur &(r) = {
&(r—T) forT>T.




Basic axioms

(A1) Compactness: For any [0, mo, Eo] € D, the set U[go, mo, Eo] is a
non—empty compact subset of Q
(A2) The mapping

D > [0, mo, Eo] ~ U[oo, Mo, Eo] € 27

is Borel measurable, where the range of U/ is endowed with the Hausdorff
metric on the subspace of compact sets in 2%
(A3) Shift invariance: For any

[o, m, E] € U[go, Mo, Eo),
we have
Stolo,m,El € U[o(T),m(t), E(T-)] for any T > 0.
(A4) Continuation: If T >0, and
[, m", E'] € Uloo, mo, Eo], [0®,m*, E?] € U[o"(T),m*(T), E(T-)],

then
[917 m17 El] UT [927m27 E2] S U[QO7 mo, EO]




Induction argument

System of functionals
Irrlo,m, E] = / exp(—At)F(o,m,E) dt, A >0
0

where
F:X=W"2Q) xW“Q;R')XR—=R

is a bounded and continuous functional

Semiflow reduction

I)\,F OZ/[[QQ, mo, Eo]
= {[Q,"L E] € U[oo, mo, Eo]

hrle.m, E] < b 2., E] for all [2, i, E] € Uloo, mo, Eo] |

Induction argument

U satisfies (A1) - (A4) = I\ r oU satisfies (Al) - (A4)




Maximal dissipation

Comparison of energy dissipation

[01, m1, E1] < [02,m2, B3] & Ei(t£) < Ex(tt) for any t

Admissible solutions
Dissipative solution is admissible if it is minimal with respect to <

Admissibility of semigroup selection

The choice of the testinf functionals can be arranged in the way that the
chosen solution is admissible




Semiflow selection (energy excluded)

Borel measurable mapping
2 2
U te [O’OO)X(QO’mO) € LA/XL?:I — (va) € Cweak,loc([07 OO); L’YXLTII)

U(+; 00, mo) € U[go, mo]

Semigroup property

U(t + s; 00, mo) = U(t; U(s; 0o, mo))
for any t > 0 and a.a. s > 0 including s = 0.

[Basari¢ [2021], Cardona and Kapitanski [2020] ]



Statistical solutions — framework

Data (phase) space
2
D= {[Qo,mo] ’Qo € L(Q), mo € LTL(Q; Rd))/ E(0,mg) dx < oo}
Jq

C Xp = W *(Q) x W *(Q; RY) — Polish space

Probability measures

PB[D] — the set of probability measures on Xp supported by D




Statistical solution

m Family of Markov operators

M: - B[D] — P[D]

(]
Mo(v) = v for any v € B[D]
(]
N N N
M, (Z om/,) = Zath(Vi)7 a; >0, Za; =1
i=1 i=1 i=1
(]
Mits = My o M for any t > 0 and a.a. s > 0
(]
t — M, continuous with respect to the weak topology on 3[D]
(]

M (109,mo1) = S(o(t,),m(t,))
[Q(t7 ')> m(t, )] = U(t, 00, mO)




Statistical solution — pushforward measure

Semiflow selection

U:[0,00) xD —D

Pushforward measure

vy € P[D] given
Me(0)[B] = ro[U~'(t, B)]

/X F(o.m) dMq(vo) = /D FU(t; 00, mo)) dvo(go, mo)

for any
F € BC(Xp)

[Fanelli and EF [2020]]



Summary of the theoretical part, Navier—-Stokes system

~\
Field equations
Oro + divx(pu) =0
O¢(ou) + divi(ou @ u) + Vip(0) = div<S(Dxu)
~\
No-slip boundary condition
QC Rd7 d = 2,3 bounded, smooth
ulog =0
~\
Initial data
Q(Oy ) = 0o, inf Qo > 07 (‘QU)(O, ) = Mo = PolUo
Y,

p(o) =ag", a>0, y>1



Summary of the theoretical part, concepts of solutions

strong (classical) solutions C weak solutions C dissipative solutions

Strong solutions

Local in time existence for smooth data., global in time existence for the
data close to equilibrium, uniqueness and continuous dependence on the
data

Weak solutions

Global in time existence for v > g, uniqueness — open problem, possibility
to select a solution semigroup, measurable dependence of solutions on the
data

Dissipative solutions
Limits of consistent approximations — numerical schemes.




Summary of the theoretical part, fundamenal results, |

Weak (dissipative) — strong uniqueness principles
A dissipative solution coincides with the strong solutions emanating from
the same (smooth) initial data as long as the strong solution exists

Conditional regularity
A strong solution exists as long as the density and the momentum remain
bounded (in the L norm)

Corollary

Any bounded dissipative solution emanating from smooth initial data is a
strong (classical) solution. In addition, if the dissipative solution is a limit
of a sequence of consistent approximations, then the convergnce is strong
a.a. pointwise




Summary of the theoretical part, fundamenal results, Il

Semiflow selection
The set of families of (global in time) weak solutions admits a measurable
semiflow selection

Statistical (random) data — Markov semigroup

There exists a semigroup of Markov operators on the space of probability
measures on the (initial) data space — a statistical solution to the barotropic
Navier—Stokes system
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Summary of the theoretical part, Navier—-Stokes system

Field equations
Oro + divx(pu) =0

O¢(ou) + divi(ou ®@ u) + Vip(p) = div<S(Dxu)

Periodic boundary conditions

Q=T"= ([-1,1]|{_11;)’, d=2,3

Initial data

9(07 ) = 0o, inf 00 > 07 (Qu)(07 ) = Mo = PoUop

p(o) =ao”, a>0, v>1




Summary of the theoretical part, concepts of solutions

strong (classical) solutions C weak solutions C dissipative solutions

Strong solutions

Local in time existence for smooth data., global in time existence for the
data close to equilibrium, uniqueness and continuous dependence on the
data

Weak solutions

Global in time existence for v > g, uniqueness — open problem, possibility
to select a solution semigroup, measurable dependence of solutions on the
data

Dissipative solutions
Limits of consistent approximations — numerical schemes.




Summary of the theoretical part, fundamenal results, |

Weak (dissipative) — strong uniqueness principles
A dissipative solution coincides with the strong solutions emanating from
the same (smooth) initial data as long as the strong solution exists

Conditional regularity
A strong solution exists as long as the density and the momentum remain
bounded (in the L norm)

Corollary

Any bounded dissipative solution emanating from smooth initial data is a
strong (classical) solution. In addition, if the dissipative solution is a limit
of a sequence of consistent approximations, then the convergnce is strong
a.a. pointwise




Summary of the theoretical part, fundamenal results, Il

Semiflow selection
The set of families of (global in time) weak solutions admits a measurable
semiflow selection

Statistical (random) data — Markov semigroup

There exists a semigroup of Markov operators on the space of probability
measures on the (initial) data space — a statistical solution to the barotropic
Navier—Stokes system




Tools from probability theory |

Skorokhod (representation) theorem

Let (U)$5_; be a sequence of random variables ranging in a Polish space
X. Suppose that their laws are tight in X, meaning for any € > 0, there
exists a compact set K(g) C X such that

PlUM € X\ K(e)] <eforal M=1,2,....

Then there is a subsequence M, — oo and a sequence of random variables
(UMn)22, defined on the standard probability space

(fz = [0, 1], B0, 1],dy)

satisfying:

UM~y UM (they are equally distributed random variables),

UM — U in X for every y € [0,1].




Tools from probability theory Il

Gyongy—Krylov theorem
Let X be a Polish space and (U)y>1 a sequence of X—valued random

variables.
Then (UM)%_, converges in probability if and only if for any sequence of

joint laws of
(U, UM,

there exists further subsequence that converge weakly to a probability mea-
sure 1 on X x X such that

pllxy) € X x X, x=y]=1




Regularity criterion for the Navier—Stokes system

Theorem (Regularity criterion)

Let k > 5. Let (p,u) be a local solution of the Navier-Stokes system.
Then

T
2
sup (||Q(t> ')Hwk»Z(ﬂ‘d) + [Ju(t, ')HWM(Td;Rd)) +/ HuHWk“(Td;Rd)dt
0

tel0,T]
SC(T, [ (€0, uo)lwx.2, inf oo, || (o, U)”LOO((O,T)de;RdH))

for any 0 < T < Tmax, where C is a bounded function of bounded
arguments. In particular,

Tmax < 00 = limsup [[(o,u)(t, )| oo (ra;ge+1) — 00.
t— Tmax




Numerical approximation

(Initial) data

00, Mo = goup € D C Xp

Numerical approximation

0", u", h=ht) > 0as l — oo

Numerical scheme
(0",u") € Vi, where Vi, € L>((0, T) x T%); R™) is a finite dimensional
space,

inf Qh > 0 for any h,

A (h, [0, uo, ], Qh,uh) =0,

where
A:(0,00) x Dx Vi = R™, m= m(h)

is a Borel measurable (typically continuous) mapping representing a finite
system of algebraic equations called numerical scheme




Convergent numerical approximation

We say that a numerical approximation is convergent if for any sequence
of data
[0, ud] € D — [0, u0] in Xp as N — oo,

the numerical approximation (o™",u"") satisfies:
]
" >0
]

o = oin L'((0, T) x T,
u™ = uin L0, T) x T R%) as N — oo, h — 0,

for any 0 < T < Tmax, where (o, u) is the unique classical solution
of the problem with the data [0o, uo] defined on the maximal time
interval [0, Tmax)-




Bounded graph property

If N=N(¢) /oo, h=h(£)\,0,

o8] i

00,Uy | € D — [00,u0] in Xp as N — oo,
and the associated numerical approximation satisfies

N N
su ,u’ < 00
,,,,\',) H(g ’ )HLOO((O,T)XTd;Rd“) ’

then
o™ — oin L'((0, T) x T),

"V S uin L1((0, T) x T% T% as h — 0, N — oo,

where (g, u) is the unique classical solution of the Navier—Stokes system
with the initial the data [0, uo].

Corollary
Any convergent numerical scheme possesses the bounded graph property




Random data, weak approach
oo,up € D C Xp

weak approach <« determining distribution (law) of solutions

Generating sequences of random data

[00,ug] € D

N
1 n n
NZF[QmUo] — E[F[oo,uo]] as N — oo

n=1

for any F € BC(Xp)
Expected value

E [F[o0, uo]] :/ F (6,0) dL[go, uo]

Xp

Distribution of the initial data

L[go, uo] € P[D] — probability measure on the space of data




Weak approach, main goal |

h,n

[05,uf] € D — [0"",u™"] numerical approximation

Sequence of empirical measures

1 N
N Z O ghun yhin
n=1

Convergence in law

N
1 n n
Nle[gh’ ,u""] > E[F[o,u]] as h— 0, N — oo
for any F € BC(W*"”’Q((O, T) x T9) x W="2((0, T) x T Rd))
Limit solution

B(Floall = [ F o). al] dLlen, wo

Xp
(0,u) - smooth (whence unique) statistical solution of the Navier-Stokes
system




Weak approach, main goal Il

Convergence of empirical means
NZ(th ") = E[o,u] as N =00, h—0

in L9((0, T) x T%; R, ¢ > 1
Expected value

E[Q> U] :/ (Q,U)[@ ﬁ] dﬁ[Qmuo]

Xp

Bochner integral in a suitable Banach space

§
Neither the approximate sequence [gg, ug] nor the associated numerical
solutions (o™",u™") are uniquely determined by the data [go, uo]. Practical
implementations deal with a large number of samples — sequences [gg, ug] —
generated independently mimicking the Strong law of large numbers

[ Mishra, Schwab et al.]



Random data, strong approach

Data as random variable

[go,UQ] : {Q,B,P} — XD.

Main goal
Identify the exact solution (g,u) as a random variable on the same proba-
bility space

Stochastic collocation method
Q=U),Q), QY P — measurable, QY N QY =0 for i # j, UN,QF =Q

Approximate random data

N
[oo,n; uon] = Zﬂnyv(w)[go,uo](wn), wn € Q.

n=1
N
Z]lgx/(w)[go,uO](wn) — [Qo, uo] in Xp P—a.s.

n=1




Collocation method - convergence of data approximation

Probability space, class R
Q — compact metric space

R(Q,P) = {f Q=R ) f bounded, P{w € Q | f is not continuous at w} = 0}

s )
Unconditional convergence of data approximation
Suppose the (initial data) belong to the class R (in a weak sense - Fourier

modes).

Then
N

3 Loy (@)[20, o] (wn) = [e0, uo] in Xp P — as.

n=1
independently of the choice of the collocation points provided diameters
of the partition tend to zero

[EF, Lukatova-Medvidova [2021] ]



Boundedness in probability, weak approach

Approximate solutions

h=h(£), N=N(£), h(£) \,0, N({) oo as l— oo.

N
1
Z 6[9"’",11”'"]
n=1

=|

Boundedness in probability (weak)
For any € > 0, there is M = M(g) such that

# {HQh’n’Uh’nHLOO((o,T)de;RdH) >M, n< N}
N

<egforany £=1,2,...




Boundedness in probability, strong approach

Approximate solutions

h=h(£), N=N(£), h(£) \ 0, N({) oo asl— oo.

N
> Lag (@)l "]
n=1

Boundedness in probability (strong)
For any € > 0, there is M = M(g) such that

Z Q)| <efort=1,2,...

<N {1 oo (0.7 wrd e 1) > M }




Weak to strong

Weak (statistical data)

1 N
N 2 L]

Application of Skorokhod representation theorem

L[oo,n,uon] = L

1 N
N 2 L]

[QO,N7 UO,N] — [507’60] in XD dP — a.s.

on a probability basis {Q, B, P}
[0, to] ~ [0, uo]

~ - equivalence in law




Convergence of approximate solutions, |

Approximate (numerical) solutions

h,N h,N h,N h,N
NNy N=12,... P H N H >Mb<e
(o™ ,u™™) { ¢ ,u L50((0, T)x Td;RI+1 — =€

Application of Skorokhod theorem

hN BN . hN BN
Yan = {[Qo,NalJo,N]i(Q Tu );/\h¢N}, with Apy = [l0"", u™ 7| ee,
a sequence of random variables ranging in the Polish space

X=Xpx W ™0, T)x T R™)x R, m>d+1.




Convergence of approximate solutions, |11

L[Yhn] tight in X

=

-~ b N ~hoN ) LT
{[Qo,/vk,uo,/vk]; (Q AT k) ;Ahk,Nk}

~ {[Qo,Nw uo,n, |; (Qhk’Nk7 Uhk’Nk) 7/\hk,Nk}7
[G0.n, » U, ] — [0, To] in Xp P —a.s.,
where [go, o] ~ [go, uo]
(@’”k”vk,ﬁhk’”k) 5 (8,T) in W™2((0, T) x T% R™™) P — ass.,
and B o
Ane, = [[(@" M, @) [0 — AP — as.

on a probability space {ﬁ B; ﬁ}




Convergence of approximate solutions, conclusion

Bounded graph property

<§hk’Nk,ﬁhk"N*> — (3,u) strongly in LY((0, T) x T?; R‘"") P —as.

forany 1 < g < oo

where (g, 1) is the unique (statistical) solution of the Navier-Stokes system

Gyongy—Krylov criterion

(gh’N, uh‘N) — (o,u) in LY((0, T) x T R’*') in P — probability

on the original probability basis




Convergence in expectations

Strong convergence in expectations [EF [2022] ]
Suppose that the energy of the numerical solutions is bounded in expecta-
tions, meaning

Z\Q |/ [1 o +P(Qh")](7' Jdx S 1forre(0,T), £=1,2,.)
Then

r

—+0as{— oo forany 1 <r <7,

N
h,
D 1w -0
n=1

LY((0, T)xTd)

s

haghn _ o —0asf— o0

2y
LYFL((0,T)xT9;RY)

2y
f 1<s< —H
or any s S+l




r-barycenter

r-barycenter
E[Y] of a random variable Y defined on a Polish space (X; dx):

E[Y] € X, Eldx (YiEY])] = minE[dx (¥ 2)], r>1,

meaning
E.(Y) = arg Zmelp(]E [dx (Y;2)7].
If X = L9(0, T) x T% R¥) and 1 < r < oo, then
m there exists a unique r—barycenter for any Y, E[||Y||74] < oo,

m E,[Y] depends only on the distribution (law) of Y




Convergence of barycenters

Strong convergence of barycenters [EF [2022]]
Suppose that the energy of the numerical solutions is bounded in expecta-
tions.

Then
| ]
1 N
N ;gh’" —E[g] in L7((0, T) x T%),
1 n n H 2
N D" = Efou] in L3TI((0, T) x T RY)
n=1
as / — oo
| ]
1 N
. ~ d
E, N;‘;W] — EJo] in LY(TY), 1< r<~,
1 o in [ 25 (T pY 2y
Es NZ(;WW — Esfou] in L3771 (T% RY), 1< s < poor
n=1

as / — oo.




Bibliography

@ E. Feireisl.
Compressible fluid motion with uncertain data.
Archive Preprint Series, 2022.
arxiv preprint No. 2203.15049.

@ E. Feireisl and M. Luk3€ova-Medvidova.
Convergence of a stochastic collocation finite volume method for the
compressible Navier-Stokes system.
Archive Preprint Series, 2021.
arxiv preprint No.2111.07435.

@ U. Koley, N.H. Risebro, C. Schwab, and F. Weber.
A multilevel Monte Carlo finite difference method for random scalar
degenerate convection-diffusion equations.
J. Hyperbolic Differ. Equ., 14(3):415-454, 2017.

@ F. Y. Kuo, R. Scheichl, C. Schwab, I. H. Sloan, and E. Ullmann.
Multilevel quasi-Monte Carlo methods for lognormal diffusion problems.
Math. Comp., 86(308):2827-2860, 2017.



Bibliography

@ F. Leonardi, S. Mishra, and C. Schwab.
Numerical approximation of statistical solutions of planar, incompressible

flows.
Math. Models Methods Appl. Sci., 26(13):2471-2523, 2016.

@ S. Mishra and Ch. Schwab.
Sparse tensor multi-level Monte Carlo finite volume methods for
hyperbolic conservation laws with random initial data.
Math. Comp., 81(280):1979-2018, 2012.



