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Introduction to Sobolev spaces for PDEs

Pavel Krejci

This is a third iteration of a text, which is intended to be an introduction to the theory of
Sobolev spaces, traces, embeddings, and interpolations which are useful in the theory of PDEs.
The goal is to show the main ideas of the proofs, so that the reader can derive himself/herself
particular formulas in cases that are not explicitly treated in textbooks. Hence, emphasis is
put on methods rather than on a collection of formulas. Additional information can be found
in [1, 2, 3, 11, 12].
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1 Some analytical tools

Let X be a real Banach space. For a set AC X we denote here and in the sequel by Int A
the interior of A, by A the closure of A, and by 0A := A\ Int A the boundary of A. The
symbol B,(z) denotes the open ball in X centered at z € X with radius r.

In this introductory section we recall for the reader’s convenience some basic properties of the
space RV starting from the following classical lemma.

Lemma 1.1 Let us consider two sets K and G, K C G C RN, K compact, G open. Then
there exists a function g € C®(RY) such that 0 < g(x) <1 for all z € RN, g(x) =1 for
r€K, glx)=0 for z e RN\ G.

Proof. The set K is compact, hence p := dist(K, RV \ G) is positive. Let U 1= J, o, Bp2().
Then U is open, U is compact, and dist(U, RN \ G) = dist(K, RV \ U) = p/2. Put f(z) =1
for x € U, f(z) =0 for z € R¥\U. We now choose a function ¢ € C*(RY) called a mollifier
such that

o(x) >0 Vo e RY, o(z)=0 for |z|>1, /RN o(x)dx = 1. (1.1)
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For a fixed value o € (0, p/2) put

oa) =0 [ o (x - y) fo)dy = [ ol6)fla = o) e (12)

Then g € C*°(RY), 0 < g(z) <1 forall z € RY. For z € K and |{| <1 we have z —cf € U
and similarly, for x € RV \ G and [¢| <1 we have x — 0& € RV \ U. Hence, g(z) =1 on K,
g(z) =0 on RY \ G, which we wanted to prove. |

Theorem 1.2 (Partition of unity) Let Gi,...,G,, be open subsets of RN, and let K C
U] 1G be a compact set. Then there exist functions 1y, ..., 0y, in C°(RY) such that for all
j=1,....,m and all v € RN we have 0 < ¢;(z) <1, ¢;(z) =0 for x e RN\ G;, and

> i(r)=1 VreK.
j=1

Proof. For each z € K we denote J(z) ={j € {1,...,m} : x € G}, and find r(x) > 0 such

that
c () G

JjeJ(z)

We have indeed K C |J, ¢ Br)/2(7). Using the compactness of K we select a finite subcov-
ering

M
K C | Braya(i)-

i=1
For j=1,...,m put

Rj={ie{l,...,M}: Byu)(x;) C G,},

= UBT(I)[E

iERj

= U By (a;)/2(i).

iERj
We have W; C V; C G, for each j =1,...,m, and
Kc|Jw;.
j=1

Using Lemma 1.1 we find functions g; € C*(RY) such that g;(z) =1 for z € W, g;(z) =0
for x € RV \ V;. We now construct a sequence for z € RY by the recurrent formula

Yo(x) =0, ¢j(x) =g,z <1—Z¢Z ) for j=1,....m

By construction, we have 1;(z) = 0 for all z € R¥\G; and for all j = 1,...,m. Furthermore,

> i(@) = gi(w) + (1 - gj(a Zm
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We easily prove the implications
Jj—1 J
D @) <1 = ) dhi(z) <1,
i=0 i=0

Jj—1 Jj—1 J J
D i) =1for ze|JWi = > i(w)=1for ze| W,
=0 =1 1=0

=1

and obtain in particular > " ¢;(z) =1 on |J*; W; D K which completes the proof. |

2 Spaces LP(9)

Let Q C RY be any open set, and let u: Q — R be a Lebesgue measurable function. We say
that the class of functions
{t:Q—R:4(z) =u(x) a.e}

belongs to LP(£2) for some 1 < p < oo if the expression

g = </Q u(x)p)dx> " if 1<p<oo, 1)

sup ess |u(z if p=o0.
xeQ)

is finite. In the case Q = R, we simply write |- |, instead of |- |, g~ . It is easy to see that
| |oo,0 18 @ norm on L>(€2). We shall see below in (2.8) that ||, is a norm on L?(2) for all
p > 1. Note that the spaces LP(2) with the above norms are Banach spaces, see [1].

Let us begin with some auxiliary inequalities that are needed in the sequel.

Proposition 2.1 (Young’s inequality) Let f :[0,00) — [0,00) be an absolutely continuous
increasing function, f(0) = 0. Then for every x,y > 0 we have (see Fig. 1)

xy < /Oxf(u)dujt/oyf_l(v)dv, (2.2)

where f~1 is the inverse function to f.

Proof. Substituting v = f(u) we have, with the convention f; =— [ if b<a, that

/Oxf(U)dqu/oyfl(v)dv = /Oz(f(u)+uf’(u))du+/xf_l(y)uf/(u)du

> zf(x)+z(y—flz) = zy.

For 1 < p < oo, we denote by p’ the conjugate exponent
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Reciprocally, p is the conjugate of p’ and we have

1 1 1
p P p—1
As an immediate consequence of Proposition 2.1 we obtain, putting f(z) = z?~!, that

1 1
zy < —a:p+—,yp (2'5)
p p

for every z,y >0 and 1 < p < o0.

v

Figure 1: Young’s inequality.

Proposition 2.2 (Hélder’s inequality) Let Q C RY be any open set and let 1 < p < oo
be arbitrary. Then for every f € LP(Q) and g € L¥ () we have

Lﬂ@mwmf;mmwmm (2.6)

with the convention 1' = oo, oo =1.

Proof. The cases f =0, 0r g =0, or p=1, or p = co are obvious. For 1 < p < oo and
|f|p,Q7é07 ‘g|p’,ﬂ7é0 we set

@) G = S

F(z) = , = :
|f|p,Q |g|p’,§2

By (2.5) we have

1 1 C_ f@P | le@)P
F G - F P _ G’ o 7 )
F@IC@I < JF@P+ JIG@Y = i+

hence
1 1

/QF(Q:)G(:c)da: < /Q|F(:U)]]G(x)]d:c < ]34—]? =1,

which we wanted to prove. [ |

Proposition 2.3 (Minkowski’s inequality) Let X C R", Y C R™ be open sets, and let
f: X xY —[0,00) be a measurable function. Then for every 1 < p < oo we have

(/Y (/X f(z,y) dx)p dy) " < /X(/Y fP(z,y) dy) " dr. (2.7)
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Proof. For y €Y and R > 0 set

szémWMmngﬂﬂw

where _ .
Falz,y) = min{ R, f(x,y)} if max{|z|, |y|} < R,
R Y 0 if max{|z|,|y|} > R.
Then
/F”<y)dy = /F(y)g( / (/ fr(z,9) g )dx
Y
Holder P , l/p/
/(/foy ) (/gp(y)dy) dz
Y
1/p 1/p'
J ([ frmar) o ([ mwa)
x \Jy Y
hence
1/p /p
(/Fp(y)dy> < / (/ f;’%(af,y)dy) dz < / (/fpxy dy) dz,
Y x \Jy
and we obtain the result from Fatou’s Lemma letting R tend to +oc0. [ |

Note that replacing X by a finite set {1,...,n}, f(z,y) by fe(y), k=1,...,n, and [, dz
by > 7_,, the Minkowski inequality appears in the form

Sl < Y iy (2.8)
k=1 k=1

which is nothing but the triangle inequality for the norm |- |,y .

p,Y

2

of the Minkowski inequality for p = oo, namely

supess/ flz,y)dr < /supessf(x,y) dx . (2.9)

yey yey

Let us also mention the trivial “varian

The following example shows that the Minkowski inequality cannot be reversed.

Example 2.4 Consider X =Y = (0,1), and f(z,y) = ((z —y)*)""/? for some p > 1. Then

(fY (fo(x,y)dx)p dy)l/p - (fo (fy 1/pd9€> dy>1/p - ﬁplfl/P,
Se Uy Payydy) P de = [F (=)o) dy = too.

Remark 2.5 In the same way we prove that for every 1 < ¢ < p < oo we have

(/Y (/qu(:c,y)dx)p/q dy>1/p < (/X (/Yfp(a;,y)dy>q/p da:)l/q. (2.10)

We set in this case

Z/Xf%(%wdw, gly) = FP/971(y),

and estimate [, F?/9(y)dy similarly as in the proof of Proposition 2.3.
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The proof of the Minkowski inequality is related to the so-called reverse Hélder inequality:
/f D)z < Clglya Yge L’ Q) — |fla < C. (2.11)

To prove this statement, it suffices to choose g(z) = sign(fr(x))|fr(x)[P~! with fr defined
analogously as in the proof of Proposition 2.3, use the fact that

/ fr(@)P dz < / F() (@) dw < Clglya = C|fal?%
and let R tend to oo.

Proposition 2.6 (Young’s inequality II for convolutions) Let 1 < p,q,r < oo be given

such that
1 1 1
S =14, (2.12)
p r q

For we LP(RYN), v e L"(RN), and x € RY set
wi@) = [ ul)ve-y)dy.
RN

Then w € LY(RY) and
jwlg < Julp vl (2.13)

Proof. The case ¢ = oo follows immediately from Hoélder’s inequality. Hence, assume that ¢ <
oo, and set a = r/q € (0,1]. To make the use of the Minkowski inequality more transparent,
we write [ dz, [, dy instead of [pn dz, [pn dy. Then, using the fact that 1 —a = r/p/

and that
/Y e =altdy = /Y [v(y)|" dy
1 dx) 1/q
( (/ u(y)] |o(z — y)|* [o(z —y)|' = dy)q dx) )
= < / lu(y)|P Jo(z — y) [P dy) " dl‘) ) (/Y u(y) [P0 dy) h
(

for a.e. x € X, we obtain

w = (f

U(y)v(ﬂf —y)dy

<

Mmkowskl

p/q 1/p
/ |u<y>\q\v<x—y>|qadx) dy> o1
1/p 1/q
[ tuty |de) ( / |v<x>|qadx) W= = Jul, o,

We devote the next section to the Hardy-Littlewood inequality, the proof of which is quite in-
volved and requires a certain number of auxiliary steps. The proof we give here is a modification
of the one from [2].
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3 Hardy-Littlewood-Sobolev inequality

In this section we prove the following statement.

Proposition 3.1 (Hardy-Littlewood-Sobolev inequality) Let 1 < p,q,r < oo be such
that %4— % + % = 2. Then there exists a constant H, > 0 such that for every f € LP(R),

g € LY(R) we have

[ f@ st le o dedy < Hy11)lol )

An explicit estimate for H, will be given in (3.16) below. There exist also interesting coun-
terparts in RY | see [6]. In R, the most elementary approach consists in rearrangements. We
recall here some basic facts about this technique.

We denote by L the space of functions g € L®(R)N LY(R) such that g(x) >0 a.e. For g € £
and r > 0 we define

Ar) ={z eR:g(z) >},
5(r) = %meas A(r),
A*(r) = (=6(r),0(r)).
We further put
A={(z,r) ERx [0,00) : z € A(r)},
A" ={(z,7) e Rx [0,00) : x € A*(r)},

g (x) = / Xa+(z,7)dr for x € R,
0
where x4+ is the characteristic function of the set A*.

A

Figure 2: Rearrangement.

The function ¢* is called the rearrangement of ¢, and admits the following characterization.
Lemma 3.2 Let g € L be given. Then for all x € R we have
g*(z) =sup{r > 0:46(r) > |x|}

with the convention sup( = 0.
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Proof. Put
p(x) :=sup{s > 0:9(s) > |z|}.

The function § is nonincreasing in [0,00). For r > p(z) we thus have 6(r) < |z|, hence
x ¢ A*(r) and xa«(z,7) = 0. On the other hand, for r < p(z) we have 6(r) > |z|, hence
x € A*(r) and xa«(x,r) = 1. This yields

p(x)
A*(r)y={z eR:g"(x) >r}, ¢ (z)= /0 dr = p(x), (3.2)

and the proof is complete. [ |

Let us list some further properties of the rearrangement.
Lemma 3.3 Let g € L be given. Then for all x € R and p > 1 we have

(i) ¢°(x) = / Xalw,r'/?)dr;

0
(i) (9°)(x) = (¢")*(x) = sup{r > 0: 6(r'/?) > |z} = / Xa- (z,71/P) dr ;
0
i) [ lo()Pds = [ lg"@)P da.
R R

Proof.

(i) We have for all z € R, p > 1, and r > 0 that

1 for r < gP(x),
xA(Jfarl/p) :{ 0 for r > g?°(x),

and the statement follows easily.

(ii) Let z € R and p > 1 be arbitrarily chosen. We use Lemma 3.2 to conclude that for
r > (¢*)P(x) we have §(r'/P) < |z|, hence x ¢ A*(r'/?) and x4-(z,7'/?) =0, for r < (g*)?(z)
we have 6(r'/P) > |z|, hence x € A*(r'/?) and ya-(z,7'/?) = 1. Consequently,

00 (9%)P(x)
/‘mmfwwz/ dr = (") (a).
0 0

We have indeed A,(r) := {z € R: gP(x) > r} = A(r'/?), and §,(r) := meas A,(r) = 5(r'/?).

Hence,
@r@ =[xl
0
and the assertion follows.

(iii) In view of (ii), it suffices to prove that

/Rg(x) dx:/Rg*(a:) dz. (3.3)
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This follows from the elementary computation based on (i) and on Fubini’s Theorem

/Rg(x)dx:/R/OOOXA(LT)dex:/OOO/RXA(x,r)dxdT:/OoomeasA(r)dr
—/OoomeasA*(r)dr—AAWXA*(x,T)drdx—Ag*(x)dm

and the proof is complete. [ |
We introduce the space

R={feL: f(x)=f(—x) a.e., f nondecreasing in (—o0,0), nonincreasing in (0, +00)}.

(3.4)
By construction, the function g* belongs to R, and we call the mapping
R:L—TR:g— Rlg]=4g" (3.5)
the rearrangement operator. It is an easy exercise to check that the identity
Rlug] = pRlg] (3.6)

holds for every g € £ and every pu > 0.

Let us mention one classical application of rearrangements.

Proposition 3.4 (Hardy-Littlewood inequality) For every f,g € L, f* = R[f], ¢* =
Rlg], we have
[ s@g@)as < [ £l @) d. (37)
R R

Proof. For f,g e L put Ay = {(z,r) € R x (0,00) : f(z) >r}, A; ={(z,r) € R x (0,00) :
g(w) >}, A} ={(z,7r) € R x (0,00) : f*(z) >r}, As = {(v,7) € R x (0,00) : g*(x) > 1}.

By Lemma 3.3, the Fubini Theorem, and by definition of the rearrangement we have

/Rf(x)g(x)dx:/OOO/OOO/RXAf(x,r)XAg(x,s)dmdrds:/Om/ooomeas(/lf(r)ﬂAg(s))drds

< / h / " min{meas A, (r), meas A, (s)} dr ds
/ / meas (A%(r) N A%(s)) dr ds

/ / /XA*erA*xsdxdes—/f

which we wanted to prove. [ |

Rearrangements of Lipschitz continuous functions preserve the Lipschitz continuity in the fol-
lowing sense.

Lemma 3.5 Let g € L be such that for all z,y € R we have |g(z) — g(y)| < |v —y|. Then
for g* = Rlg] we have |g*(z) — g*(y)| < |z —y| for every x,y € R.
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Proof. Let r > s >0 and x € A(r) be arbitrarily chosen. For y € (x —r+ s,z +71 —s) we
have g(x) — g(y) < r —s, hence g(y) > g(z) —r+s > s, so that y € A(s). We thus have
d(s) = smeas A(s) > tmeas A(r) +r — s, and we conclude that

d(s)—0d(r)>r—s for r>s. (3.8)
Assume now that there exist y > x > 0 and m > 0 such that
g () —g"(y) 2y —x+m. (3.9)

Put a = g*(z), b= ¢*(y). By Lemma 3.2 we have a = sup{s > 0:(s) >z}, b =sup{s > 0:
d(s) > y. Hence, 0(a —¢) >z and §(b+¢) <y for every € > 0. From (3.8)—(3.9) we obtain

a—b>m+0o(b+e)—dla—e)>m+a—b—2
which is a contradiction for € < m/2. Lemma 3.5 is proved. n

Rearrangements are invariant with respect to decompositions. We prove here the following
formula.

Lemma 3.6 Consider a function g € L and fix a number ¢ > 0. Let us denote for x € R
9-(x) = min{c, g(z)},
g+ () = max{c,g(z)} —c.

Then g = g+ +g- and R[g] = R[g4] + R[g-].

Proof. The identity g(z) = g+(z) + g_(z) for all € R is obvious. Put g% = R[g.], ¢* =
Rlg-], Ay(r)={ze€R:g (z)>r}, A(r)={z €R:g_(z) >r}, 6+(r) = smeas A (r) for
r > 0. By Lemma 3.2 we have

9" (x) =sup{s > 0:6_(s) > |z|},

g1() = supds > 0: 8, (s) > Jal}

with the convention sup() = 0. Note that

_f o(r) for r<eg,
5<T)_{ 0 for r>c,

di(r)=48(r+c) for r>0.

For |z| > 0(c) we thus have ¢*(x) = g*(x), gi(z) = 0. For |z| < é(c) we have g*(x) = c,
gi(x) = g*(x) — ¢, which we wanted to prove. ]

To illustrate the interaction between rearrangements and integral means, we consider a function
g € L and some v > 0, denote g* = R[g] as in (3.5), and define for z € R

amzfmaw@, m@:/”Ewm% G*(2) = RIG(x).

- -

We have the following result.
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Proposition 3.7 For every A > 0 we have

‘AAG%@dxfiékémjdu (3.10)

Proof. Tt is easy to see that both G* and G belong to the class R introduced in (3.4).
Moreover, they are Lipschitz continuous by virtue of Lemma 3.5 and identity (3.6). We split
he argument of the proof into four steps.

Step 1. Check that G*(0) < G(0).

To prove the assertion, we notice that G*(0) = max,er G(z), and

G(m):/ dy—/ /XAy, drdy—// r) dy dr

meas (A(r) N (x — v,z +7))dr < / min{meas A(r), 2y} dr
0

/ meas ((—0(r),5(r) N (—7,7) d?”—/ /XA* y,r)dydr = G(0).

Step 2. Check that [~ G*(x)dx = fo r)dz.

This easily follows from Lemma 3.3 (iii) for p =1 and from the Fubini Theorem:

/OOOG*(ﬁ)dx:%/R(;*(I)dx:%/RG(@dx:%A/ig(anz)dzdx:/omé(x)dx,

Step 3. Inequality (3.10) holds for characteristic functions g = xg of any bounded measurable
set S CR.
1

In this case we have ¢*(x) = X(—s0)(2), where o = jmeas.S. Then

0 if x<—-0Q),
A oty r+Q if —Q<z< —q,
G(z) :/ Xoo)(y)dy=q @—q if —g<z<g,
7 Q-z if g<z<Q,
0 it x> Q,

where ) = 0+, ¢ = |0 —~|. The function G is Lipschitz continuous with Lipschitz constant
1, and by Lemma 3.5 we have

G*(z) =G (W) < |z -yl Vo,yeR (3.11)
To check that (3.10) holds, we distinguish three cases:

(i) A < g: Then, by Step 1,

/ ' G(z) dz = AG(0) > X\G*(0) > / ' G*(x) d.
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(ii)) A > @: Then, by Step 2,

/OAG(‘”) dr = /OOO G(z) dz = /OOO G*(x) de > /0A G*(x) da.

(ili) ¢ <A< Q: Put H(\) = fo’\(@(x) — G*(x))dz. By (i), (ii), and (3.11) we have
H'(A\) =G'(\) — (G*)Y(\) <0 a.e,
hence H is concave, H(A\) > min{H(Q), H(q)} > 0, which completes Step 3.

Step 4. g € L is arbitrary.

By Lemma 3.6, (3.6), and Step 3, inequality (3.10) holds for every function g with finite range.
For a general function g € £, it suffices to find pointwise convergent approximations of g with
finite range and pass to the limit using the Lebesgue Dominated Convergence Theorem. [ |

The next step in the proof of the Hardy-Littlewood-Sobolev inequality is the following lemma.

Lemma 3.8 Let f,g € L and h € R be given, and let f* = R[f]|, ¢* = R[g]. Then

/ [ 1@ o) b = dy s < / [ r@ g W= ayds. (3.12)

Proof of Lemma 3.8. The function h can be uniformly approximated by piecewise constant
functions from R, and every piecewise constant function from R can be represented as a
sum of characteristic functions of symmetric intervals. Hence, it suffices to prove (3.12) for
h(z) = X(=~,7)(2) with an arbitrary v > 0.

Put
G(z) = /Rg(y)X(—w) (z—y)dy = / 9(y) dy.
Then by Lemma 3.4
L t@stxem@=navts = [ f@c@ar< [ pec@n 6

where G* = R[G]. The function f* belongs to R and can also be uniformly approximated by
piecewise constant functions from R, and every piecewise constant function from R can be
represented by a sum of characteristic functions of symmetric intervals. For f*(z) = x i) (2)
we have by Proposition 3.7

/Rf*(x)G*(:v) do = /A G*(z)dx < /_A O(a) do = //R2 N (@) 8 () Xy (& — 1) dy

-2 A
(3.14)
and (3.12) follows by approximating h and f* by piecewise constant functions. [ |

We are now ready to pass to the proof of Proposition 3.1.

Proof of Proposition 3.1. We restrict ourselves to the case that f,g € £ and replace h by a
truncation of the form h(z) = min{|z|~"/", K} with an arbitrary K which we let tend to oc.
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The general case then follows from the density argument. We estimate the right hand side of
(3.12) by introducing an auxiliary function F' by the formula

F(y):/Rf*(x)h(:r—y)dJ: for y e R.

The function f* belongs to R, hence, by Lemma 3.3 (iii),

||

=11 > / (FEPde > 2a/(f () vz eR. (3.15)

— ||

Choosing a = p/q’ and using again Lemma 3.3, we obtain for every y € R that

Fly) < / (F* () 22|02 fJe | — g7 de
R
L / P (@) 2] 7 o — ) da
R

= 2‘1“/7"!fl,lfp/q//(f*(yt))p/qllt!_”l/rIt—1|‘1/T dt .
R

We now use the Minkowski inequality (2.7) to estimate the L? norm of F. We have

q 1/¢
Fly < 2o (/ ( / (f*(yt))p/q/|t|_1+1/rlt—1|_1/’“dt> dy>
R R

Minkowski , .y , 1/q
2 T flyr/e / (/(f*(yt))pltl‘”q” It—1|“”rdy> dt
R R

1/q'
_ g e / R = 1 (/ (f*(yt)>”dy) at
R R

271+1/r ‘f‘p/ wfl/p |t . 1‘71/7‘ dt .
R

By Hoélder’s inequality, Lemma 3.8, and inequality (3.12), the left-hand side of (3.1) is estimated
from above by |g|,|#|, . Hence, (3.1) holds with

H, — 27141/ / e = 1Yt (3.16)
R

4 Approximation of L?-functions

Let us start with the following classical result, see also [5, Corollary 4.8.5].

Theorem 4.1 (Lusin) Let Q@ CRY be an open bounded set, and let u: Q) — R be a bounded
measurable function. Then for every d > 0 there exists a measurable set As, meas As < 0,

and a continuous function g : Q2 — R such that sup,cq |g(z)| < sup,eq |u(z)| and g(z) = u(x)
on Q\ As.
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Proof. We can assume that 0 < u(z) < 1 for all € Q, and define

) 1 : |
Ei():{xEQ:ZZ—ngu(x)<2l—n} for i=1,...,2", ne NN{0}.

Then Q = J*, E™ for cach n, and E™ n EJ(»n) =) for i # j. We now put

.
1—1
u™ (z) = Z 2—nXE(n)(:c) for z€Q,

i=1

where x4 denotes the characteristic function of a set A C Q, that is, ya(z) =1 if z € A,
xa(z) =0 if © ¢ A. We see that for all x € Q and n € NU {0} we have

0 < u(z) —u™(z) <27, (4.1)
hence u™ converge uniformly to u. We now define an auxiliary sequence {w™} by
w(z) =u®(z) =0, w"(z)=u"(z)—u" V() for neN, ze€Q.

We have
n—1 n n
Ez( )= Eézll U Eéi)a

which implies the representation

anl

- 2i — 2

=1

2n71

n 21—2 21—1
ul O Z (Q—nXE;QI(x) + “on Xg{ (90)) :

i=1

This yields in particular that
2n—1
w™ () =2 "\ g (2), E™ = EY.
i=1

We conclude from (4.1) that
u(@) =) wal)
n=1

and the series converges uniformly.

Let now 0 > 0 be given. We find for each n € N a compact set K, and an open set G, such
that K, C E™ C G, C Q and meas (G, \ K,) < §27". Put

o0

A6 = U(Gn \ Kn)

n=1

Then meas A; < §. By Lemma 1.1 there exist continuous functions g, on R such that
gn(z) =1 for v € K,,, g,(z) =0 for z € RV \ G,,. Put

ga) = 3279, ().
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This is a uniformly convergent series of continuous functions, hence ¢ is continuous, and
gn(z) = hp(z) for z€ (2\G,) UK
We thus have g(x) = u(x) for x € Q\ Ay, and the proof is complete. ]

As a first consequence of the Lusin Theorem we prove that continuous functions form a dense
subset of LP(Q2) for 1 <p < 0.

Corollary 4.2 Let Q C RY be an open bounded set, and let v € LP(Q2) with 1 < p < oo be

arbitrary. Then
1/p
Ve >0 39 € C(Q (/|u |pdx) <e.

Proof. We can assume that u(z) > 0 a.e., otherwise we prove the statement separately for
the positive and negative parts u™ and v~ . For n € N and z € Q put

Uy (x) = min{u(z),n}.

By virtue of Theorem 4.1 there exists for each n € N a set A,,, meas A, < n~? and a function
fn € C(Q) such that f,(z) = u,(x) on Q\ A,,. For x € Q and n € N put

fala) = min{f,(x),n}".
Then f}(z) = u,(xz) on 2\ A, and we have

[ )= g s = [ ) = g e < (%) (12)
Put M, = {x € Q:u(x) >n}. Then

1/p
U:= (/ |u(z) P d:v) > (measMn)l/p,
Q

hence meas M,, < (U/n)?.

Let now € > 0 be given. The absolute continuity of the Lebesgue integral (see, e. g., [7, Chapter
I1I, §2, Theorem 3]) yields

1/p
36 >0 VB C(), measB <4 : (/ |u(x)|pdm) <
Q

DO | ™

We choose n sufficiently large such that

Then

(/ fu(z )l dx) " < ( o [un () — fr ()P dx) " + (/Q lu(z) — w,(z)P dx) Hr
€
2
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and it suffices to put g = f. n

The next consequence of Theorem 4.1 describes an important property of LP-functions which
will be often referred to in the sequel.

Theorem 4.3 (Mean Continuity) Let Q, Q. be bounded open sets in RN such that Q C
QC Q. Let ue LP(Qy) be given, 1 <p < oo. Then

1/p
Ve>036€ (0,1) VE RN €] <6 : (/ |u(x)—u(w+§)|pdx) <e.
Q

Proof. Let € > 0 be given. Using Corollary 4.2 we find g € C(€) such that

(/wmu»—mmW¢QUp<

Let § € (0,1) be chosen such that Q + Bs(0) C Q. and

£ —
- f Do), |z —y| <.
e O 0 U (), L]

|

lg(z) — g(y)| <

Then for [¢] < 0 we have

and the proof is complete. [ |

The Mean Continuity Theorem 4.3 can be easily extended to the whole RY as follows.

Corollary 4.4 Let u € LP(RY) be given, 1 < p < co. Then

1/p
Ve>035€(0,1) V€ €RY, €] <6 (/ |u(m)—u(x+§)|pdx) <e.
RN

Proof. Let € > 0 be given. We find r > 0 sufficiently large such that |ul,gv\p, @) < £/4.
Using Theorem 4.3 we find § € (0,1) such that for |{] < we have |u—u(-+&)|p 5,0 <&/2.
We have

1/p
([, 1) = uto + P ae) < fu=ut- + o + 2o <

which we wanted to prove. |

We can now strengthen the result of Corollary 4.2 in the following sense.
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Corollary 4.5 Let Q C RY be an open bounded set, and let v € LP(Q2) with 1 < p < oo be
arbitrary. Then

Ve >0 3g € C°RY): (/Q lu(x) — g(x)|pdx) " <e.

Proof. We choose a mollifier ¢ as in (1.1). For u € L?(2) we consider its extension

i(z) = u(z) for x€Q,
10 for z € RV \ Q.

to the whole RY | and for a given z € RY and a parameter o € (0,1] we set

wia) = o [ (T it ay, (43)

For all ¢ € (0,1], the function u“ is of class C* and we have

[u” = ul’(z) dz 1/1” < N lu’ — @lP(z) dz p
’ R
p 1/p
- </]RN dx)

Minkowski ~ ~ P 1/p
< [ o[ -0 - awpar) - ac,

hence u? — w strongly in LP(Q)) as ¢ — 0+ as a consequence of the Mean Continuity Theorem
4.3, and it suffices to put ¢ = u” for ¢ sufficiently small. [ |

L*mﬂ@w@—ao—a@»%

The regularization formula (4.3) will often be used in the sequel. Note that Proposition 2.6
yields for u € LP(R”) the following relation between the L4 norm of u° and LP norm of u:

‘ua‘q < U_N(l/p_l/q)“p’r ’ulp Vg =>p, (4.4)

where r is as in (2.12).

5 Spaces W'?(Q)

We say that v € LP(Q) is a generalized partial derivative of u € LP(§) with respect to x;,
i€ {l,..., N}, if for every smooth function ¢ : Q@ — R with compact support in €, that is,

JK=KCcQ VreQ\K: p(x)=0, (5.1)

we have

/Qu(yc)g:;i(x) dz = —/Qv(:z:) o(x)dx. (5.2)

By [11, Chap. 2, Sect. 2.2], condition (5.2) is fulfilled if and only if u is absolutely continuous
along almost all lines parallel to the x;-axis and v coincides with du/0x; almost everywhere.
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The Sobolev space W'P(Q) is defined as the subspace of LP(€) of all functions w, which
together with all generalized partial derivatives du/dz; belong to LP(€2). With the norm

ou
813i

, (5.3)

N
[ullipe = |ulpo + Z
i=1 P,

W1P(Q) is also a Banach space.

Extensions and continuously differentiable approximations of functions from Sobolev spaces
outside their domain of definition are more delicate. We cannot simply extend the function by
zero as we did, for instance, in Theorem 4.3 for L”-functions, since we have to preserve the
absolute continuity along the lines parallel to the coordinate axes across the boundary. We
therefore have to assume some regularity of the boundary. This can be done in the following
way (see Fig. 3).

Definition 5.1 Let Q@ C RY be an open connected set. We say that € has Lipschitzian
boundary if the following condition holds

(L) There exist § > 0 and m € N, and for each k = 1,...,m there exists an open conver
set Ay, C RN a Lipschitz continuous function ay : A, — R, and a rotation A in
RN (represented by an N x N matriz, still denoted by Ay, such that A" = Al and
det Ay = 1), such that

(i) 90 c U™, Ax(Gy),

(i) Ge={yeRY;y=(y,yn). ¥ = (W1, yn-1) € A, yn € (ar(y) — 6, ar(y’) +0)},
(ili) Gy ={y € Gr;yn € (an(y) —0,ax(y'))},

(iv) GY ={y € Gr;yn = ar(¥/)},

(v) QN A(Gr) = Ar(Gy),

(vi) 09N Ax(Gy) = Ax(GY).

79\

Figure 3: A domain with Lipschitzian boundary.

The prolongation result reads as follows.

Theorem 5.2 Let Q C RY be an open bounded connected set with Lipschitzian boundary, and
let R >0 be such that Q C Br(0). Let WP be the set of all functions from WHP(RN) which
vanish outside Br(0), and let ||- |1, denote the norm in WHP(RYN). Then there exists a linear
prolongation operator E, : W'(Q) — Wg” such that for every u € WH(Q) we have
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(i) Eyu(z)=u(z) fora.e x€Q;
(ii) There exists a constant ¢, > 0 such that for every u € W'?(Q) we have

|Epuly < cplulpa,  [|Epullip < cpllullipe-
The proof of Theorem 5.2 requires several intermediate steps and we start with an easy lemma.

Lemma 5.3 Let Q C RY be an open bounded set, and let Qy C Qo C Q and u € WHP(Q) be
given. For o € (0,1] we define

wayi= o [ (222 utan, (5.4)

g

where ¢ is as in (1.1). Then we have

lim [[u” = ullip0, = 0.
o—0

Two things are worth mentioning. First, formula (5.4) is not the same as (4.3). Here, we
integrate only over . Second, the convergence takes place only on the subdomain Q4 C 2.

Proof of Lemma 5.3. Put p = dist(Qo, RV \ Q). For 0 < p and x € Q has the function
y — o((x —y)/o) compact support in 2. Hence, for ¢ = 1,..., N the partial derivatives
0; := 0/0x; of u” satisfy the identities

O’ (z) = —a—N—lfgai (“’;y) u(y)dy = U_N/ng (x;y) du(y) dy

_ / o) Oz — o) dé.
B1(0)

This yields
Oiu” () — Oiu(x) = / (&) (Oru(x — 0€) — dyu(x)) d¢. (5.5)

B1(0)

From the Minkowski inequality (2.7) it follows that

05u” — Djulp0, < / @(&) [Oiu(- — o) — aiu‘p,ﬂo de.

B1(0)

In the same way we obtain a similar estimate for |u” — ul,q,, and the assertion follows. [

Proposition 5.4 Let Q be as in Theorem 5.2 and let Qo D Q be an open set. Then for every
e > 0 there exists a function g € C°(RYN) with compact support in Qo such that

lg — ull1pa <e.
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Proof. We proceed in three steps.

Step 1. Let 9Q C UL, Ae(Gr) C Uj2; Ar(Gr) C Qo be the covering of 99 from Definition
5.1, and let Q¢ C Qy C © be such that

QcJnw Q=A4(Gk) for k=1,....m. (5.6)
k=0
Let 1y, ...,%,, be a partition of unity associated with this covering according to Theorem 1.2,

and for x € Qg put uk(z) = Yp(x)u(z), £k =0,...,m. It suffices to prove that for every ¢ > 0
and every k = 0,...,m there exists g, € C°°(R") with support in Q such that

13
lgr — urllip0. < - (5.7)

and put g = > 7" Vg -
Step 2. The case k =0 of (5.7) is treated in Lemma 5.3. For £ > 1 we denote by e, the unit
vector e, := Ap(0,...,0,1)T, and for ¢t € (0,5) and = € Qp —tep put ul(x) = up(x +tey). We
have indeed

Ol (z) = Oyuy(z + tey)

fora.e. x € Qp—tep and all  =1,..., N. Since the support Sy := supp(¢) of vy, is compact
in Q, we have dist(Sg, RY \ Q) =: pr > 0, hence, the function ut is defined on Qy for all
t < pi. Using Theorem 4.3 we can choose ), € (0, min{py,d}) such that

15
||u2 — uk||1;p79k < % for t e (O,tk) . (58)

Step 3. For 6, € (0, px — tx) we have Bs, (z) C ), — treg for all x € QN S,. We now set for
x€Qy, t€(0,t), and o € (0, )

i@ =o [ o ()

with ¢ asin (1.1). Then we have for i =1,..., N similarly as in (5.5) that

Ol (z) — Buul(x) = /B 0 (e = o)~ o) ay

and similarly as in the proof of Lemma 5.3 we obtain lim,_ ||u}” — u}||1,p.0, = 0. Combining
this result for o sufficiently small with (5.8) we thus have

€
¢
Jul — ukllipo, < o for k=1,....,m.
This is precisely (5.7) with g, = u',ff, which completes the proof. n

We are now ready to prove Theorem 5.2.

Proof. Let us consider the covering of € as in (5.6). Similarly as in the proof of Proposition
5.4, we consider the partition of unity {¢y : K =0,...,m} associated with the covering (5.6),
and set ug(x) = Yg(x)u(z) for k=0,...,m and x € Q, N Q. It is enough to prove that each
ur admits a bounded linear extension from W'?(Q, N Q) to WHP(Q,).
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There is nothing to prove for & = 0. Let us consider now some k € {1,...,m} and for
y=(y,yn) € G put

vk(y) = ur(Ary).
Then v, € W'P(G},), and we define

wi(y', 1) = v (v, a(y) +t) (5.9)

for ' € Ay and t € (—6,0). Let us check that w, € W'?(A;, x(—6,0)). Indeed, by Proposition
5.4 we find a sequence {v,‘j‘) :n € N} of smooth functions with support in Gy and such that
o = v, in WP(Gy), and set w\™ (i 1) == v (¢, ar(y’) + ). We have

aiw,@ = aiv,(j) + 8Nv,(€n) O;ar, for i=1,...,N —1,

an](fn) = 8]\]1}](;1)

almost everywhere in Ay x (—0,0), and there exists a constant C' > 0 such that for all n,l € N

00" = 00|y s (-50) < Cllo™ = v ||y 6 for i =1,...,N,

n ! " :
0l — Pl aux-s0) = o ~ 0], 6

It follows that {w\” : n € N} is a Cauchy sequence in WP(A x (—6,0)) and w™ converge
to wy almost everywhere in Ay, x (—6,0), hence wy, = lim, oo w” € WP(A, x (—6,0)).
We now extend the functions w,(cn) to Ag x (—0,9) by the formula

o W, =) for € Ayt € (—6,0) U (0,0),

wk (y 7t> - (n), 4 / o

w, ' (y,0—) for v € Ay, t=0.
This extension preserves the absolute continuity along the coordinate axes and
|8111~J,(€n) — ailb](j)|p7AkX(_5,5) S 21/p|8iw](€n) - 8Z-w,(€l)|p7AkX(_5,0) for = 1, ey N,
so that @\ converge in WP(Ay, x (=6,6)) to a limit @, which coincides with wy, on Ay x
(—9,0). We now put
Uk(y) = 0y yn — ar(y'))

for y = (v, yn) € Gi. We argue as above using Proposition 5.4 to check that o, € W'P(Gy),
U = v, on G, , and that the function

tg(z) == (Al z) for = € Qy

belongs to W'P(€Q,,) and @ = uy, on €, N Q. To complete the proof, it is enough to put

By construction, we have E,u(z) = u(z) on Q and Epu(z) = 0 on RV \ UL, Q2 C RV \ Bg(0)
for R > 0 sufficiently large. Since the mapping E, : W'?(Q) — W4” is linear and bounded,
it is continuous, which we wanted to prove. [ |
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6 Traces on the boundary

One important property of functions u € WP(Q) for domains Q with Lipschitzian boundary
is that the trace of u on 02 is well defined. In the situation of Definition 5.1, consider a
partition of unity {1} asin the proof of Theorem 5.2, and a function f : 92 — [0, 00), and put

fil@) == gy(@) f(x) for € 0N, fily) = fi(Ary) for y € G, and fi(y) = fu(y/, an(y))
for v € Ay, k= 1,...,m. Assuming that f; is integrable on Ay, we define the surface
integral

N 1/2
[ f@ase = [ siw) (1+z<aiak<y'>>2> ay'

[ s@ase =3 [ pimase)

k=1
We say that a function @ belongs to the space LP(02) for 1 < p < oo if

ahoni= (| \u(m)V’dS(x))l/p <o,

with an obvious modification for p = co as in (2.1). For functions in W1?(Q) we have the
following result.

Theorem 6.1 (The Trace Theorem) Let 0 C RY be as in Theorem 5.2 and let 1 < p < oo.
Then there exists a linear continuous mapping T, : WHP(Q) — LP(9Q) such that for every
u € CYQ) and every x € 0N we have Tyu(z) = u(x).

Proof. Let u € WP(Q) be given, and let ﬁ,(gn),tb,i”) be as in the proof of Theorem 5.2. By

construction, the functions ﬁ,(cn) have compact support in Gy, and we have for ¢y € A, and

n,l € N that

0y O E = 1500 o) — 500 an e = [ 5els® 0P ) d
@, (y') — @ ()P = 1078 ar () = 07 (¢ an(y)” = s [y =0 (Y yw) dyw
ap(y’)—

ety _(n) (D[

<p / 5 — 50y ) o (8 — 5O) | ) du,
ap(y')—4

hence, we have either

1/2

N
[t a1 (1 + Z(aiak@/»?) ay <c [ Joval” —oval’|dy
A i=1 -

k

if p=1 or, by Holder’s inequality if p > 1,

N 1/2
/A o — o P(y) (1+Z<aiak<y'>>2> dy’

i=1

1/p’ 1/p’
<C ( / @ — ol dy) ( / oy — oni|P dy)
G G,

k k
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with a constant C' > 0 independent of n,[. By definition of the surface integral, the functions

) form a Cauchy sequence on LP (Gg). There exists therefore a limit 7, = lim,,— T),gn) €
LP(GY), and we have

\T)k|p,Gg < CHUthp,G;'

It suffices to put @x(z) = vx(Afz) for x € INNQy,, and a(z) = Y, Yi(x)uk(z) for x € O,
and the assertion follows. For continuously differentiable functions u the convergence 17,5;") — Uk
is uniform, and we consequently have in this case that © = u on 0. [ |

Let us mention the following interesting relation between the values of a function in 2 and its
trace.

Proposition 6.2 (Gauss-Ostrogradsky) Let Q2 be as in Theorem 5.2 and let a function
u € WEHQ;RY) be given, u = (ul,...,u"). Let n(z) denote the unit outward normal vector
to 02 at the point x € 0), and let us denote divu = Zfil O;u’. Then we have

/Qdiv u(z)de = /89 (Thu(z),n(x)) dS(z), (6.2)

where we denote by (-,-) the canonical scalar product in RY .

Proof. Let Ay = (Ax)ij, 1,] = N, Gy, G%, ¢y, ug be as in Definition 5.1 and in the
proof of Proposition 5.4. It is enough to prove that for each £k =1,...,m we have

/ divup(e)de = / (Tyu(z), n(z)) dS(z) (6.3)
A(GY)

AR(GD)

and that

/ div ug(z) dx = 0. (6.4)

Qo

Indeed, the general statement then follows from the formula u = >} ui. The identity (6.4) is
easy. If necessary, we cover €}y with finitely many cubes @1, ..., Q, whose edges are parallel to
the coordinate axes and construct a partition of unity (i, ..., (. associated with this covering.
For each function u; = (jug, j =1,...,r we obtain (6.4) by a straightforward integration, the

result for ug follows from the formula 1y = Z;Zl (T
To prove (6.3) for £ > 1, we put vi(y) := ux(Agy) for y € G, . Then
oul, al

00l 47
5o () = (k) < (L), (65)

j=1

and
vl
8y]

N

P

N ak(y')

Z (A); /A / ) dyn dy/.

ar(y)— 53

(y) dy

/ div ug(z
AR(Gy)




sobo3.tex 24

As in (5.9), we define for ¢ € Ay and ¢ € (—6,0)

wi(y' ) == vy, ax(y') +1). (6.6)
Then
awi / av}c / / aUIZc / / aak / .
)= =—(,a +1)+ ,a +t)— for j=1,...,N—1,
2y, (¥, 1) 9, (v, ar(y’) +1) ayN(y r(Y) )ayj (%) j
awllc / av;{ ! !
, 1) = ,a +1).
8,yN(y ) 8yN(y KY') +1)
We have for all 7,k,t and 7 =1,..., N — 1 that
awl’; / /
(v, t)dy =0,
N ayj( )

hence,

ag(y')—9 YN
N
= Sy [ ) ),
k

where we denote nj(y') = —0;ar(y’) for j=1,...N =1 and ny(y') = 1.

We now introduce a unit vector n(y) = n1(y),...ny(y) for y € G, by the formula

N —1/2
(Y yn) = nj(y) (1 + Z(@-ak(y’))g) :

By definition (6.1) of the surface integral we obtain (6.3) with n(z) = Apn(Alx). ]
The subspace of W1?(Q) of functions with zero trace
Wy P(Q) = {u e WY(Q) : Tyu =0},

that is, the null-space of the operator T),, plays a particular role in the theory. It admits the
following characterization.

Proposition 6.3 Let Q2 be as in Theorem 5.2 and let 1 < p < oo. Then the space CF () of
infinitely differentiable functions with compact support in € is dense in VVO1 P(Q) with respect
to the norm || - ||1.p.0 -

Proof. Let u € WyP(Q) and & > 0 be given. The problem consists in finding g € C2(Q)
such that

lu = glhpo <e (6.7)
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We keep below the notation from the proof of Theorem 5.2 and define the functions wy :
A x (—0,0) — R as in (5.9). Since T,u = 0, we have wy(y,0—) =0 for a.e. ¢ € Ay, and
the function

0 for (y',t) € Ax x(0,9)
is an extension to WP(Ay x (=§,0) of wy. For n < 4§ and (y',t) € Ax x (—6,0) put

wk(y,,t> _ { wk(y 7t) for (y 7t) € Ak X (_57 0)7

U)Z(y/, t) = wk(yla L+ 77)'

Then w] € W'P(A; x (—6,0) and for n sufficiently small, the functions w; have compact
support in Ag x (—6,0). Let now x > 0 be arbitrary. By the Mean Continuity Theorem 4.3
we can choose n > 0 such that

[y — Wl 1p.a,x(—50) < K-

We now put v}(y',yn) = wl (v, yn — ax(vy')) and u}(z) = v](ATx). There exists a constant
C7 > 0 independent of k such that

[y, — well1p,a0G) < Cik.
We now put u” =3)";"  ¢ru; and find a constant Cy > 0 such that
lu” — ull1p0 < Cok.

The functions u” vanish outside a set Q7 C Q7 C Q, and it suffices to choose x > 0 sufficiently
small and apply Proposition 5.4 to obtain (6.7). u

7 Regularity

We start with an example motivated by mechanics, see [4, 10]. The state of a deformable body
Q C RY is described by the displacement vector wu : 2 — RY which indicates where is the point
x located with respect to its referential position. The local state of the body is characterized
by the strain tensor {e;; :4,j =1,..., N} defined by the formula

1 8u, 8Uj
= = . 7.1
i 2(axj+axi> (1)
This is indeed a symmetric tensor with N(N +1)/2 independent components. It can, however,
control all the N? components of Vu in the following sense.

Proposition 7.1 (Korn inequality) Let Q) be as in Theorem 5.2. Then there exists a con-
stant C' > 0 such that for all u € Wy*(Q;RY) we have

Vulpo <C  max |ejl2.0.
INIS N}

-----

Proof. By virtue of of Proposition 6.3, it is enough to prove (7.1) for u € CZ(;RY). For
such » and for all 4,5,k =1,..., N we have the identity

8i8kuj = 87;8]']@ + 8k5ij - 8j5ik. (72)
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Hence, for every j =1,...,N and every w € C(Q),

/(Vuj,Vw> dz = / (fj, Vw) dz, (7.3)
Q Q

where f; is the vector (fi;,..., fnj) with components fi; = 2g;; — ;5 Zgil err and d;; is the
Kronecker tensor ¢;; = 0 for i # j, ¢;; = 1 for i = j. Putting w = u; in (7.3) we obtain the
assertion. m

The concept of Sobolev spaces can be extended to higher derivatives. By induction, we can
define on 2 C RY the spaces

WhEP(Q) = {u € WFP(Q): Qu € WHP(Q) Vi€ {1,...,N}}

for k € N with the convention W°?(Q) = LP(Q). These are Banach spaces with the norm

[ullipe = ltlk-1p0 + Y 10atilpo
la|=k

where the sum is taken over all multiindices a = (a,...,ay), o; € N U {0}, such that
la| == Zi\;l a; =k, and 0, denotes the partial derivative of the k-th order

. A% AN
Oqu = 07" ... O3V u.

There are important particular cases in which the W#P?-regularity of a function is obtained
even if we do not control all partial derivatives of u of the k-th order. We show here one
typical example which frequently arises in the theory of PDEs.

We say that a bounded open domain € C RY is of class C'"! if there exists a covering of 99
as in Definition 5.1 and such that all functions a,, kK = 1,...,m, admit Lipschitz continuous
partial derivatives of the first order with respect to y;, i =1,...,N — 1.

Proposition 7.2 Let Q be a domain of class C%', let B be a symmetric positive definite
N x N matriz, let f € L*(Q) be a given function, and let u € W, *(Q) be a solution of the
problem

/ ((BVu,Vw) — gw) de =0 Yw € CF (). (7.4)

Then u € W*%(Q).

The existence and uniqueness of a solution to (7.4) is easy to prove, see, e.g., [11], and the
regularity stated in Proposition 7.2 is also proved in [11] in a more general context. The case
of non-homogeneous and nonlinear boundary conditions for parabolic problems is discussed in
[8]. This result is, however, of interest in particular if B is the identity matrix. Then one
scalar quantity, namely the sum of derivatives Zfil O?u is enough to control all second order
derivatives of w.

Here, the assumption of CU!-regularity of the boundary 0 is substantial. Before proving
Proposition 7.2, we give an example showing that the statement does not hold if the domain
Q) is only Lipschitzian.
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Example 7.3 Consider the set in polar coordinates

Q= {(7",9) :r€(0,1),0 € (—l 1)}

2w’ 2w
for some w > 1/2, and put
Q. = {(z,y) € R?: 2 =rcosh,y =rsinb, (r,0) € Q,},
see Fig. 4. We define the functions f,o: (), — R

f(r,0) =r“coswh, o(r,0) =r*cosw,

and the corresponding functions f,v,g: €, — R given by the formula

f(r,0) = f(rcosf,rsinb), o(r,60) =v(rcosd,rsind), g(z,y) = vee(T,y) + vy (2, y).
Then ¢ is continuously differentiable on €2, , the function
U([L’,y) = f($7y) - U(Zl',y)

satisfies the equation
Upy + Uy = —¢g In Q, v]go =0, (7.5)

and u ¢ W?2%(Q) provided w < 1.
The fact that (7.5) holds follows from the identity
A 1. 1 -
fmc + fyy = frr + ;fr + 7._2]696 = 0.
To check that u ¢ W?22(Q) for w < 1, we compute
; 2pg, L oy Lo o 25 25 : w—2

fez = frrc08” 0+— f,sin” 04— fogsin” 0+ | — fo — = fro | cosOsinb = w(w—=1)r*"*cos((2—w)0),

r r r r

hence,

1 w/(2w)
/ | foe? dz dy = W (w — 1)2/ 23 dr/ cos?((2 — w)f) dh = cc.
Q 0 —7/(2w)

Proof of Proposition 7.2. Consider the covering  C Upe, Q4 as in Definition 5.1, and the
partition of unity {¢y : £k =0,1,...,m} as in the proof of Proposition 5.4, and set wuj = uty.
It is enough to prove that u, € W22(A,(G;)) for each k = 0,...,m, and the general statement
follows from the formula w =>";" ju; on Q.

For a fixed k and each fixed w € CZ(2) we have
/ (BVug, Vw) dz = / (BVu, V(wiy)) + (B(uVw — wVu), Vi) dz
Q Q

= /Q (guﬂ/}k + (B(qu — qu), Vﬂ’kz)) dzx

_ /Q (grw + (b, Vo)) da, (7.6)
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YA

]Y

Figure 4: Counterexample to Proposition 7.2.

with functions gy := g1 — (BVu, Vi) € L*(Q) and hy, := uBVy, € Wy*(Q;RY), both with
a compact support in Ax(G).

Let now w € C(Ak(G},)) be arbitrarily chosen. We pass to the substitution y = Az in (7.6),
and by (6.5) we obtain for the new quantities vx(y) = ux(AJy), 2(y) = w(AJly) the identity

/Gk (ATBA YV, Vz) dy = /G (g0 + (. 92)) dy, (7.7)

k
where Gi(y) = gr(Axy) and hi(y) = AT hi(Agy), and it is enough to prove that v, € W22(G5).

As in the proof of Theorem 5.2, we pass from coordinates y = (v, yn), ¥' = (y1,.. ., yn_1)" €
Ak, yn € (ar(y') — 6,ar(y’")) to new coordinates (y',s), v € Ay, s = yv — ar(y’) and put
(v, s) = vk(v, s + ar(y)), 2(v,s) = z1(v, s + ax(y/)). In terms of the new variables, the
identity (7.7) has the form

//<B’“(y/)Wk(y’,8),Vf(y’,8)> dy' ds
—5JAy

= [ [ (0692090 + (nte'9), 92009))) ' (79)

for every z € CZF(Ag x (—0,0)), where Bg(y') is the symmetric positive definite matrix

Bi(y) == M (y') AL BA My (y')

with
1 0 ... 0 =0iax(y)
01 ... 0 —=0ar(y)
Mk<y/) = P s
O O e 1 —3N_1ak(y’)
00 ... 0 1

and gi(y',s) = §(y', s +ar(y’)) belongs to L*(Ax x (=6,0)), hu(y,s) = h(y', s+ a(y')) Mu(y/)
belongs to Wy (Ag x (—6,0); RY). We can use in (7.8) the Gauss-Ostrogradsky formula (6.2)
and write

/_ Z /A k (Br(y )\ V(Y s), V(Y. 5)) dy ds = /_ 05 /A k gLy, 8)2(y, s) dy' ds (7.9)
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with g = gp — div by, € L2(Ag x (—6,0)). Again, it will be enough to prove that
O € W22 (AL x (—=6,0)). (7.10)

To this end, we denote by e; the unit vector in the direction of the i-th coordinate, i €
{1,..., N —1}. All functions in (7.9) have compact support in Ay x (—6,0), so that for |¢| > 0
sufficiently small we have

0 0
/ / (Br(y' + te;))Vor(y + tei,s),Vi(y',s)) dy' ds = / / gy +te;, 8)2(y, ) dy' ds
—0 Ak - Ak
(7.11
for every 2z € CZ(Ar x (—0,0)). We now subtract (7.9) from (7.11) and put 2(y/,s) =
(0n(y + tes,s) — 0n(y',s))/t?. This is indeed an admissible choice by virtue of Proposition
6.3. By hypothesis, the matrix By(y') is symmetric positive definite and depends Lipschitz-
continuously on y'. Furthermore, we know that Vo, and g; belong to L?(A x (—4,0)). We
thus find a constant C' > 0 independent of ¢ such that

0 ~ / ~ / 2
Vog(y +te;,s) — Vor(y', s
-5/,

0 N, ) op (o N 2 1/2
S C<1 + (/ / ‘vk<y =+ tela S) QUk(y 75) + Uk(y t6“5>’ dy/ dS) ) (712)
-6 JAL

t4

We split the fraction on the right hand side into three terms and estimate its L?-norm from
above by the sum

0 (91@ y’ +te;, 8) — &@ y/, s)|? 12
—6 JAg

2 0 ~ / ~ / ~ / 2 / 2
T [0k (Y, 5) — On(y" — tei, s) — 004y, s)|" dy'ds | .
-5 J A

The first term is dominated by the left-hand side of (7.12), while the second term can be

estimated by
9 0 Itl 2
= / / / |0;01,(y + Tes, s) — ;o (y, s)| d7 | dy'ds
13 —sJa, \Jo

which can in turn be estimated using the Minkowski inequality (2.7) by

9 rlt 0 1/2
£ (/ [ 1oty + ) = Ot o) dy’ds) o
t=Jo —5J Ay

1/2

For t > 0 put

t 0 1/2
V(t) = / (/ / \Vir(y' + 7€, s) — Vip(y', s)|° dy ds) dr.
0 \J=sJa,

Then (7.12) yields that
1. 1
— (V)< C (1 + t_zV(t))

t2
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for all ¢ > 0, that is,
1. 1
SV <c (1 + ;Vl/z(t)) .

Put U(t) := V(t)/t for t > 0. Then U(t) = V(t)/t — V(t)/t2 < C(1 + U(t)/t*/?) — U(t)/t,
hence U(t) < C+C?/4. From the Mean Continuity Theorem it follows that U(0—) = 0, hence
U(t) < (C+ C?/4)t, and V(t) < (C + C?/4)t*. We conclude from (7.12) that there exists a
constant C* independent of ¢ such that for all |¢| > 0 sufficiently small we have

0 ~ , + : . ~ / 2
/ / |Vvk(y + te 7?) vvk(y ’S)’ dyl ds < C*. (713)
Ay

2

Consequently, we can find a sequence t; — 0 and a function n; € L*(Ay x (—6,0)) such that

Vor(y +tjei, s) — Vog(y, s)
t

— (Y, s) weakly in L*(Ay x (=6,0)).

On the other hand, for every z € C&(Ag x (—§,0); RY) we have

0 ~ / . o A /
/ / <Vvk(y +t]6178) Vvk(y 78),Z<y/,5)> dy/ ds
_sJa, t

0 / _ I _+.p.
-/ <wk(y’,s>,z(y’s) 2 tjez)>d?/ds
s Ja, j

0
— —/ (Vir(y', s),0:2(y/, s)) dy' ds,
Ag

and we conclude that 9;Voy, = np; € L*(Ay x (—=6,0)) for i = 1,..., N — 1. It remains to
prove that 0%0; € L*(Ay X (—4,0)). This follows from (7.9), where we can integrate by parts
in all terms of the left-hand side except for the term (By)nynOnUkON 2k, and we obtain

/ / (Bi)nn () ONO(Y', s)On2(Y, s) Ay dS—/ / 2(y,s)dy’ ds (7.14)
Ay Ag

with some function g;* € L*(Ag x (—6,0)). Since By is symmetric and uniformly positive
definite, we necessarily have (By)nn(y') > ¢ for some constant ¢ > 0, and we conclude that
all second derivatives 9;0;0; belong to L*(Ag x (—4,0)), which we wanted to prove. ]

In the theory of elasticity, it is assumed that the stress tensor o = o;; is related to the strain
tensor € = ¢;; given by (7.1) by a linear relation

N
= Z Aijklgkl (715)

k=1

with a symmetric positive definite fourth order tensor A = A;;x, see [10]. Let g = (¢g1,...9n)
be the vector of volume force density acting on the body. Then the equilibrium condition has
the form div Ao = g, that is,

N
Z ainjklé'kl = g; for 1 = 1, NN N. (716)

Jbk=1

We have the following counterpart of Proposition 7.2
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Corollary 7.4 Let Q be as in Proposition 7.2 and let g; € L*(Q) for i = 1,...,N. Then
the solution w of (7.16) with boundary condition u = 0 on 9Q belongs to W22(Q;RY) N
Wy (Q;RY).

We omit the proof which is similar to the proof of Proposition 7.2 except that it makes use of
the Korn inequality in Proposition 7.1.

8 Embeddings

The word embedding is used in the situation of two Banach spaces U and V', endowed with

respective norms || - ||y and | - ||y, and such that
Vcu, 51)
AC >0 YoeV: ||vllv <Clo|v.

If (8.1) holds, then we say that V' is embedded in U .
The embedding is said to be compact, if every bounded set A C V' is precompact in U , that is,

Ve>0 3ay,...,a, € A Yae A Fke{l,....n}: |a—a|lv <e. (8.2)

The following theorem represents a basic tool in the theory of compact embeddings in function
spaces.

Theorem 8.1 (Arzela-Ascoli) Let XY be Banach spaces and let A C X, B CY be com-
pact sets. Let C(A; B) be the Banach space of all continuous mappings from A into B. Let
K C C(A; B) be an equicontinuous set, that is,

Ve>0 30>0 VfeK Vo,ycA:|lz—yllx <d=|f(x)—fy)ly <e.

Then K is compact in C(A;B). Conversely, every relatively compact set in C(A;B) is
equICcCONtINUOUS.

Proof. Let K C C(A; B) be equicontinuous, and let € > 0 be given. We find 6 > 0 such that
for all f € K we have || f(z) — f(y)|ly < /4 whenever |z — y||x < 0. Since A is compact,
there exist z1,...,z, € A such that for every x € A there exists i € 7 := {1,...,p} such that
|z — z;]|lx < d. Furthermore, B is compact, hence there exist yi,...,y, € B such that for
every y € B there exists j € J :={1,...,¢} such that ||y —y,|ly <e/4.

For z € J?, z ={z,...,%,}, we now denote

K. = {feKivieT: |f)-u.

e
<3

Set J:={z€ J? : K, #0}. The set J is indeed finite and we have K =J, ., K., hence we
may fix one representative f, € K, for each z € J. For any f € K, and x € A we find z;
such that ||z — x;]|x < J, and estimate

[f(x) = f(@)ly < ([f(@) = f(@)lly + 1f (i) = yally + 1 f2(zi) = yzlly + 1 f(2) = fa(za)ly

< e,
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which we wanted to prove. Since every finite set of mappings in C(A; B) is equicontinuous,
the fact that that relatively compact sets are equicontinuous follows easily. [ |

As an example, consider the spaces C(Q) of continuous real functions defined on 2, endowed
with the norm

Ifllco = sup{|f(z)]; = € Q},

and C1(Q) of continuously differentiable real functions on €, endowed with the norm
N —
||f||c,1=SUP{|f($)|+Z ;JJGQ} :
i=1

Proposition 8.2 If Q is a bounded domain Lipschitzian boundary, then the space C*(Q) is

compactly embedded in C(€2).

of
oz, (z)

Proof. Condition (8.1) is automatically satisfied. Furthermore, let K C C'(Q)) be bounded.
Hence, there exists M > 0 such that

N

ViEK YoeQ:|f(z)+)

i=1

We are thus in the situation of Theorem 8.1 with X =RY | Y =R, A=Q, B =[-M, M],

provided we check that K is equicontinuous. Let z,y € Q be arbitrarily chosen. We find

a Lipschitz continuous function ¢ : [0,1] — Q and a constant C' > 0 such that £(0) = =z,

(1) =y, [£(0)] < Clx —y| a.e. (this is possible by the hypotheses on ), and use the chain
rule to estimate

of
oz, ()

<M.

1
d
@) =1 = | [ Goree) o
1
- | [ wreon.g@n ar
< MClz—y].
The relative compactness now follows from Theorem 8.1. [ |

For Sobolev spaces WP(€2), we have the following classical embedding formula.

Theorem 8.3 Let p,q € [1,00) be such that

1>1>1 1
p q p N’
and set
1 1
K o= 1—N<———) € (0,1].
p q

Then there exists Cpy > 0 such that for every u € W'P(RY) and every o € (0,1] we have
u” —ulg < Cpqo™ |[Vulp, (8.3)

where u® is as in (4.3).
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Proof. Notice first that for every x € RY and o € (0,1) we obtain, integrating by parts, that

(%u”(x) = J_N/RNZZN; <£Bi;yi90($;y)> u(y) dy

— o N /RN <<I> (x ; y) ,W(y)> dy, (8.4)

where we set ®(&) = {p(€). This yields in particular,

/RN <<1> (:c ; 3/) 7w(y)> dy' do (8.5)

for every 0 < a < 3 < 1. To estimate the difference u® —u® in (8.5) in the space LI(RY), we
make use of the Minkowski and Young II inequalities with r as in (2.12), using the notation
Jx, [y for [y as in Proposition 2.3. More specifically, we have

W’ — ], < (/X </:a—N/Y o <x;y) |Vu(y)|dyda)q dx)
. /a = ( /X ( /Y ® (x - y) Vu(y)| dy)q dx) "
e /j o N (/RN ‘@ (%) ' dy> " (/RN |Vu(:1c)|pda:) " 4o

1/r ,p
< |Vul, ( / |® ()] dx> / oV g (8.6)
B1(0) o
We have N(1/r —1) =rx — 1, hence

|uﬁ —u®ly < Cpy (87 —a”) |Vul, (8.7)

0
Dy

B

ui(2) — ()] < / o

«

1/q

with C,, = |®|,/k. Hence, for every sequence o; — 0+, u is a Cauchy sequence in L?(R").
By Corollary 4.4, u° converge to u in LP(RY), hence u € LIY(RY) and u% converge to u
(strongly) in L9(RY). Letting « tend to 0 and replacing 3 by o, we thus obtain (8.3). ®

Corollary 8.4 Let Q C RY be an open bounded connected set with Lipschitzian boundary, and
let 1 <p<oo, 1<q< oo satisfy the inequality
1 1 1

¢ p N
Then the space WP(Q) is compactly embedded in L(2).
Proof.  Assume first ¢ > p, and set u, = FEpu, where E, : W'P(Q) — W P(RY) is the

prolongation operator from Theorem 5.2. By Theorems 5.2 and 8.3, there exist constants C
and Cy such that for every o € (0,1] we have

uf =y < Cro® [V, < Cro®lufipe- (8.8)
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By (4.4) and Theorem 5.2 we have
ully < Cs0" Hulp < C36y0™ ulpa, (8.9)
with C3 = |p],. Consequently, there exists a constant Cy > 0 such that
ulge < ludy < Ci(0" ulpo + 0" [ullipe) (8.10)

for all o € (0,1]. According to (8.1), WP(2) is thus embedded in L9(Q2). To see that the
embedding is compact, consider a bounded set M C W'P(Q) and an arbitrary € > 0. We fix
o > 0 such that, with the notation of Theorem 8.3, we have

Cog 0% | Vs, < Z Yue M. (8.11)

With this fixed o, every element uJ of the set M, = {ug; u € M} vanishes outside of the set
(1+0)B1(0) =: B11,(0). Moreover, M, is bounded in C'(Bj,,(0), hence, by Proposition 8.2,
there exist wuq,...,u, € M such that

€

v M dk 1,... A Bi.,(0): 7 —uy < . 8.12
u < € { ) ,TZ} T € by ( ) |u* (l’) Uk(ZE)l Ameas (Bl—‘,-o'(O)) ( )
We then have, by (8.11), (8.12), and Theorem 8.3, that
e €
[ue —ug |y < Jul —ujl,+— < <. (8.13)

4 2

For k =1,...,n set My ={ue M; ju, —uj|, <e/2},and J ={k € {1,....,n}; My # 0}.
For every k € J we fix one representative u, € M, , so that for every u € My we have
lu — Gglq0 < € and M = (J,; M. The proof is thus complete for ¢ > p. Let now ¢ < p.
Holder’s inequality yields

[uf =y < (meas (Biyo(0)) 7P lul — wly,

hence the above argument remains valid. [ |

Corollary 8.5 Let Q C RY be an open bounded connected set with Lipschitzian boundary, and
let p> N . Then the space W'P(Q) is compactly embedded in C(Q).

Proof. We repeat the argument of the proof of Theorem 8.3 and Corollary 8.4, putting

N
k:=1—— € (0,1].
p

A computation analogous to (8. 6) yields for every € RV that

o (1) Iwemlayao

Sider I5 / 1/p' 1/p
HE / o N (/ ‘QJ <2> ’ dy) (/ |Vu,(x)|P dx) do
@ RN o RN
, 1" rB
< |V </B o | ()" dx) / o NP e, (8.14)

and we proceed as above. [ |

—N

[l (x) —ug
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9 Limit cases and counterexamples

Proposition 9.1 Let @ C RY, N > 2, be an open bounded connected set with Lipschitzian
boundary, and let

(9.1)

1 1 1
¢ p N
Then the space WP(Q) is embedded in L(S2).

Proof. We proceed in principle as in the proof of Theorem 8.3. The main difference is that
the number s is zero here and we have to proceed more carefully. We represent = € RV as
r=(2,ry), ¥ € R¥1 and rewrite inequality (8.5) as

B
]uﬁ(a:’,a:N)—uo‘(a:’,xN)\ §/ U_N/
a RN

=y TN —
(I)( O_y> NO_yN)' ‘Vu(y/ayN)’dy/dyNdo—

(9.2)
With r = N/(N — 1), we now repeat the computation from (8.6), restricted to the component
2, to obtain

W’ (- on) = u® (s aw)lg

B 2 Ta— q 1/q
< ( Lo (o [ e (52 I9ut ol duvas) dx>
RN-1 a R JRN-1 o o
inkowski ﬁ o _ q 1/!]
Lo () nin) )
RJa RN-1 RN-1 o g
oung g ! opn— r 1/r 1/p
Y o 11 // o—N (/ P (y_’ TN yN) dy’) (/ |Vu(x',yN)|p d:L‘/) do dyy
R Ja RN-1 g o RN-1

16} _
< / / NN T g @(N—”)
RJa o

The function | (-, L4 ) |r vanishes if o < |zy —yn|. Moreover, ® is bounded by a constant
®y > 0. Hence, using the fact that —N + N —1/r = =2+ 1/N, we have

8 _
/ o~ N+N=1/r | g (_’ TN Z/N)
o g

We thus have
WP (- on) —u(an)lg < Por / IVu(,yn)lp |lon — yn| ™" dyx .
R

do dyN . (93)

T

do S q)g/ 0'_2+1/Nd(7 = (I)()’I“|ZEN—yN|_1/T.
r |

zN—YN|

At this point, we use the Hardy-Littlewood inequality (3.1), with ¢ replaced by ¢'. Indeed,
1/¢ +1/p+1/r = 2. Hence, for every function g € L (R) we have by Proposition 3.1 that

/’“ﬂ(',xzv)—ua('axN)|q9($N)d$N < Clglg|Vul,
R
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with some constant C' > 0, hence, by the reverse Holder inequality (2.11), we have
W’ —u®|, < C|Vul,. (9.4)

Since u? converge strongly to u in LP(RY) and their L? norms are bounded, we conclude that
they converge strongly in LI(RY) as well and the embedding formula follows. [ |

Corollary 9.2 Let Q C RY be an open bounded connected set with Lipschitzian boundary, and
let N
* pP—Dp
q=q = N :
- P

Then the trace operator F), defined in Theorem 6.1 is continuous from W'P(Q) to LY(OQ). If
moreover q > q*, then the trace operator is compact.

Proof. With the notation from the proof of Theorem 6.1 we have

N 1/2
/A ok (v, ax(y)]? <1+Z(@ak(y’))2> dy’

ak(y/)
SC/ / loe (/s yn) |9t |Onvoe (Y, yn) | dyw dy/
Ay Jag(y')—d

1/p 1/p
<C ( / o (y) [P dy) ( / |Onur(y) P dy) 7
Q Qy

k k
where we have used Hélder’s inequality with p’ as in (2.3). We have

Np
/ *
Plg=1)zp(d —1)=—.

N-—p
From Proposition 9.1 it follows that the norm [vy|, ;- is bounded above by the norm [[vg|];., 5
and the assertion follows from the partition of unity. The compactness of the embedding for
q > ¢* is a consequence of Corollary 8.4. ]

We now show a few examples to illustrate that the embedding inequalities are (at least quali-
tatively) optimal.

(i) To see that the embedding in Proposition 9.1 is not compact, and that W'?(Q) is not
embedded in L(Q) if
1 1 1
S 9.5
SN (9-5)
it suffices to fix any open set {2, some zy € €2, find sy > 0 such that z¢ + soB1(0) C €2,
and consider the family of functions

ws(z) = sN/Py (3” _85”0) . s€(0,s0), (9.6)
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with ¢ asin (1.1). We have

dp
833'1'

Ou,
83@

’ |u'8‘q7Q = 8a|90’q VS € (07 30)7
p

p,2

|u5|P7Q = S|S0|p )

where « =1 — N(1/p—1/q). In the case (9.1), we have a = 0. Using the fact that u,
converge to 0 in LP(Q2) as s — 0+, we conclude that the family {u,}, having constant
nonzero norm in L?(Q2), does not contain any convergent subsequence in L4(2), hence
the embedding is not compact. In the case (9.5), we have o < 0, hence the family {u,}
is unbounded in L9(€2) and no embedding takes place.

(ii) In another limit case
p=N, (9.7)

the space WP(Q) is embedded in L>(Q) if and only if p = N = 1, and the embedding
is not compact. For N > 2 it suffices to consider 2 = B;(0), and

o ({5

for any 0 < a < 1—1/N. Then u is unbounded, but belongs to W"¥(B;(0)). For
N =1, the embedding of W1(Q) into C(2) (hence L>(f)) for every bounded interval
Q2 is obvious. To see that it is not compact, we may consider for n € N the sequence

| 1 1
un(x) _ Sin P fOI‘ €T € [m, E:|
0 otherwise.

It is bounded in W1(0,1/7), but sup |u,(z) — u,(x)| = 1 for all m # n, hence it is not
precompact in L*(0,1/7).

(iii) The assumption on the Lipschitzian boundary is substantial. We show that there exists
an open simply connected set  C R? such that W1?(Q) is not embedded in L4(£2) for
any g > p > 1. This set can be defined as (see Fig. b)

Q0 = {x:($1,$2)€R2;0<x1<1,0<x2<e—1/x1} ‘

For any ¢ > p we set
qu<513) _ eZ/(P-‘rq)m )

Then u,, € WHP(Q), but u,, ¢ LI().

10 Anisotropic embeddings

In evolution problems, one deals with functions which depend on a space variable x € € and
time t € w, where w C R is an open interval corresponding to the time of the process. For
1 < p,q < oo, we introduce the spaces

1/p
LP(w; LY(Q)) = {u € L' (Qxw); ulpgow = (/ [u(- )7 o dt) < oo} , (10.1)
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Figure 5: Non-Lipschitzian boundary.

with obvious modifications for p = co or ¢ = co.

We state explicitly one possible embedding result for such spaces, without going into much
detail in the proof, which is fully analogous to the above ones.

Theorem 10.1 Let Q C RY be an open bounded connected set with Lipschitzian boundary, let
w be a bounded open interval, and let W1iPoqoP1a1 (- Q) be the space

Wl,(po,qo)%(p17q1)(w; Q) = {u c LI(Q % w); % c Lpo(w; LQO(Q))’
O e I w; 19(@) for i=1,... N}

If g2 > max{qo, 1}, p2 > max{po,p1}, and

1 1 1 1 1 1 1 1 1
S R CaICE
Po P2 N q1 q2 pP1 D2 qo0 q2

then the space WWipowrnai(w: Q) is compactly embedded in LP*(w; L®()). If moreover
(10.2) holds for go = oo with the convention 1/oo =0, that is,

(1 1+1><1 1>>1(1 1) (103)
po p2) \N @ g \p1  p2)’ '

then WMwowirrar(y: Q) is compactly embedded in LP2(w; C(Q)). If (10.2) holds for py =

ga = 00, that is,

po 1 _1
—t — < = 104
D140 * q N’ (104)

then the space WhHPoa0)ira) (4: Q) is compactly embedded in C(Q x @) .

Hint for the proof. Consider as before the extensions to the space Wh(Po-a)i(Pra)(R; RN,
where the norms |- |, 4,00 are denoted again for simplicity as |- |, 4, ¢ =0,1. For o € (0, 1]
and u € WWpoawrra (R RN) | we define regularizations analogous to (4.3) in the form

o ~N=\ r—1Yy t—s
= 10.
(@) = o //w( v )u<y,s>dyds, (10.5)

where ¢ is a smooth nonnegative function on RV which vanishes outside B;(0) x (—1,1),

and .
/ / o(z,t)dxdt = 1.
—1JB1(0)




sobo3.tex 39

The number )\ is to be chosen as

1+N (i — i)
q0 q1
A = T (10.6)
Py | p1

Note that A > 0 by (10.2). A computation similar to (8.4)—(8.6) yields

0 o _ _N—-1 r—1y t—s ou
95 (x,t) = —Xo /R/RNCI)O( . )as(y,s)dyds

_N— rT—y t—s
_oN /\/R/RN <CI)1< - ,?),Vyu(y,s)> dyds, (10.7)

where ®¢(&,7) = T9(&,7), P1(€,7) = Ep(&,T), hence
[P (2, ) — u®(z,t)] < Ao(z,t) + Iy(z, 1) (10.8)

for 0 < a < <1, where

Lo(z,t) = fﬁgiNilfRfRN |<I>0 (z; 72_)} o5y, ‘ dydsdo,

(10.9)
Ti(z,t) = [ o[ fon |1 (58 5)| IVyu(y, 5)] dydsdo.

Let (10.2) hold. With the intention to use Young’s inequality for convolutions again, we intro-
duce the numbers g, so, 71, 81 by the identities

1 1 1 1 1 1 1 1 1 1 1 1
Sl mmle gy =1y S =1 (10.10)
To do G2 So Po P2 1 q g2 S1 P11 P2
We use again the notation [, dz, [, dy for [ dz, [pn dy, and [, dt, [;ds for [, dt,
Jg ds. For t € R, we have

inkowski ﬁ _ t_ 8 q2 1/112
el " o (L] oo (55| G| ) ar) T asao
o s \Jx \Jy o 0 0s
Young II ﬁ . t_ a
< /a—N—l/ o, (—, AS) 98,8 dsdo
o g o o v Js “
s t— )
= /a—N—”N/TO/ D ( AS) 2L s)| dsdo (10.11)
@ S g To s )
hence
1/p2
Minkowski ﬁ t — S au b2
|Io|, < /UNlJrN/ro / /(po (7_) _(.73) ds dt do
P2,92 A . ; o . 99 .
Young II B . au
< / O_—N—l—l—N/m D, (_7 _> do
« U 50,70 88 .

@
0s

| 0|80,T0

B
/ o~ N-1+N/rot)/50 g5 (10.12)
Po,q0 ¥ &



sobo3.tex 40

Similarly,

Minkowski ﬁ
meol "E [ ([ (]
« S X Y
Young II 6 . t — S
< / O'NA/ Ol (—,—/\)
@ S g g r
B t—s
_ / O,N/\+N/7"1/ D, (., S >
(0% S o r
hence

Minkowski B t— s
11120 < / g NN/ / / P, <" ) )
e T S g

B
Young II .
> / o NN, <" A)
o g

B
= [l Vit / o NI do (10.14)

R T 1 1 1 1 1 11 1 1
k= N(>+— -4+ =) |[=—-=+=)-(===) (===
Do M Po D2 N ¢ @ G @) \p1 D2

Then x > 0 by (10.2), and we have

—y t— a2 1/g2
d, (M —8)‘ |V,u(y, s)| dy) dx) dsdo

)
o o

Vyu(-, s)l,, dsdo

Vyu(-, s)],, dsdo, (10.13)

D2 1/p2
IVyu(-, s)l, ds) dt) do
1

|V, ul do

P1,91

51,71

Set

N A N A
-N-14+—4+—=-N-A+—4+—=xr-—-1.
To S0 1 S1

Combining (10.8) with (10.9), (10.12), and (10.14) yields

(6% K K au
|uﬁ — U prge < Cpoprpoaoara (85— %) | |57 + |qu|p17q1 ) (10.15)
ot
0,40
and we obtain the result similarly as in Corollaries 8.4 or 8.5. [ |

We can consider a higher degree of anisotropy, where also the degree of differentiability is
different in different directions. General formulas can again be found in [2, 3]. Here we show
one example which is typical for parabolic PDEs.

Theorem 10.2 Let QO C RY be an open bounded connected set with Lipschitzian boundary, let
w be a bounded open interval, and let W1 (Po90):2:(p1a)(yy: Q) be the space

er(pO’QO)Qv(ply‘Jl)(w;Q) — {u c Ll(Q % w); % e Lpo(w; qu(Q))’
O (s L9(Q)) for i =1 N}
(9a:i8:1:j ) =L .
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If ¢o > max{qo,q1}, p2 > max{po,p1}, and

1 1 1 1 1 1 1 1 1 1
i Y (I [ e N e 10.16
( Po P2) (N q1 Q2) <]91 p2> <N q0 CI2) ( )
then for every bounded set B C WhH(Po:a0)i2(pran) (o: Q) the set {V,u;u € B} is precompact in
LP2(w; L%2(Q)).

Sketch the proof. We choose

1
2+ N (L -1
g

A = (10.17)

and repeat the computations from the proof of Theorem 10.1 with «” asin (10.5) for o € (0, 1],
and u € B. Note that for j € {1,..., N} we have

ou’ . N-a r—y t—s\ Ou
axj<'r7t) =0 /]R/]RNSO< o ) O'>‘ ) ayj<y78)dyds7 (1018)

23 - (5 52) B
[ L () Gt ) ave
R 2//RN (x‘y ’5;5) %(w)dyds
_g—N—A/R/RN <c1>1 ("”;y,t;s),aavyyju(y,s)> dyds, (10.19)

where ®;(¢,7) = %(57), hence

and

ou” ou®

t
Oz, 7z, (1)~ 0z, s
for 0 < a < <1, where

Trt) = f7 0N fy fo [ (5252|205, 5)] dydsdo,

Il(x?t> = ff O-_N_A fR fRN |CI)1 (%7 F_AS)| )aavyiu(yv S)) ddedO',

g

x t)’ < MZj(z,t) + Iy (x, ) (10.20)

(10.21)

and we proceed as in the proof of Theorem 10.1. [ |

Note that the order of integration in (10.1) cannot be reversed. For p > ¢ we have by Remark
2.5 that L9(Q; LP(w)) is embedded into LP(w; L%(2)), but the opposite inclusion does not
hold, see Example 2.4. On the other hand, denoting

WL(QO,PO)§(Q1,Z71)(Q;W) — {u c LI(Q X w); % e LO(Q; [P (w)),

O ¢ (s [P (w)) for i — 1,...,N},

Z;
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we may repeat the computations in (10.11)—(10.14) with reversed order of integration, to check
that conditions (10.2), (10.4) remain valid for the compact embedding of Wt (@0-Po)i(ar) (Q): )
into L®(Q; LP?(w)) and C(Q x @), respectively. Let us mention one important particular case
which frequently occurs in applications. We omit the proof which is the same as for the other
cases.

Corollary 10.3 If ¢ > max{qo,q:1}, and

1 /1 1 1 1 /1 1
=== )= (===, (10.22)
AN @ @ P1 \q  q2

then the space WHaopo)lilap)(Q: ) is compactly embedded in L%(Q; C(@)) .

Embeddings of function spaces that are fully anisotropic with respect to all variables can be
treated in the same way. For a vector p = (p1,...,pn), 1 < p; < oo, we define the space
LY(RYN) as the subspace of LL(RY) of functions u of variable x = (z1,...,2zy) € RY with
support in the ball Br(0) C RY and such that the norm

PN/PN-1 1/pn

lull, = /R( /R</R|u(x)|p1 dm)m/pl dz, ) dey (10.23)

is finite, where the expression

1/171'
(/ UPi(x;) d.ri) for p; = 00
R

has to be interpreted as

supess U(z;) .
z; ER
For a matrix P = (P;),_;, P;j = 1/pij, 1 < pij < 0o, we define the anisotropic Sobolev space
0 .
WEE (RN = {u € LL(RY) : a“ ceLYRY),i=1,... ,N} : (10.24)
T

where p; = (pi1,...,pin). We denote by I the identity N x N matrix, and by 1 the vector
1=(1,1,...,1). The spectral radius o(P) of P is defined as

o(P) = max{|\| : A € C, det (P — A\I) = 0} = limsup |[P"|"/, (10.25)

n—oo

Theorem 10.4 Let P be a matriz as above, and let q = (q1,...,qn), 1 < gj < 00 be a given
vector such that q; > pi; for all 4,5 = 1,...,N. We define the matriz P4 = (PZ)N with

ij=1
entries
g 1 1

i T

bij  4;
Let o(P9) < 1. Then WgF(RYN) is compactly embedded in LL(RY).
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The proof of Theorem 10.4 can be found in [9], see also [8]. The idea is to put
b=I-P) '"1=1+P '+ P +...)1, b= (b,...,by),

choose the regularizations in the form

u’(z) = o~ P /RN gp(w _ y)u(y) dy (10.26)

ob

with ¢ as in (1.1), where we denote |b| = Zf;l b; and

Y S ) TN — YN
- O'bl AR O'bN 9

and use the Minkowski and the Young inequality for convolutions as above to obtain the
estimate

N
lu—u’lq < Co Z |0l (10.27)
i=1

with a constant C' > 0 independent of o.

11 Interpolations
We first recall the following classical interpolation result in LP spaces.

Proposition 11.1 Let Q C RY be an open set (bounded or unbounded), and let 1 < py <
p1 < o0 be given. If u e LPo(Q) N LPY(Q), then u € LP(Q) for all p € [po,p1], and we have

[ulpe < Julp dlulp, o

for all w e LP(Q) N LP(QY), where

Proof. Set ¢ =p;/ap. Then ¢ = py/(1 — a)p, and we may use Holder’s inequality to obtain

1/p
b = ([l lut)a
Q

) 1/pq’ 1/pq
< ( [ ut@yr-em dx) ( [ e dx)
Q Q

11—«
P0,§2

«

= Julpaluly -

We now establish an interpolation formula between LP spaces and Sobolev spaces.
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Theorem 11.2 Let p,q,s € (1,00) be such that

and set

11 11
e 1-n(2-D) aen (i)
P q s q

Then there exists Cpys > 0 such that for every uw € WH(RN) N L*(RN) and every o € (0,1]
we have
ulg < Chgs (U_PYMS + 0" |Vu|p) : (11.1)

Proof. The assertion follows from (4.4) and (8.3) provided ¢ > p. In particular, for ¢ = p we
have k =1, y=1:= N(1/s —1/p), and
|u|p < Chps (0_70|U|s +o |Vu|p) . (11.2)

Let now ¢ < p. By Proposition 11.1 we have

[
|
Q=

lul, < |u|;_°‘|u|z, with a =

» [~
SR

This yields

’U|p S Cgps

(o’a70|u|s + o |uli |Vu|g) )
We now use inequality (2.5) with p replaced by 1/a, and with z = po®|Vuls, y = Ju|}= /1,

where we set = (1= and obtain
0 Jul}* [Val2 < ag™ 0% [Vul, + (1 — a)o~" [ul,.

Hence,
|u|P S 20]()1175 (O.—Q’Yo|u|8 + 0.1+(1—O¢)’yo |vu|p) ’

which is precisely (11.1). ]

We conclude this text with the famous Gagliardo-Nirenberg inequality.

Corollary 11.3 (Gagliardo-Nirenberg inequality) Let 2 C RY be an open bounded con-
nected set with Lipschitzian boundary, and let

1>1>1 1
s q p N
Set
11
s q
e = T .1 _1°
¥tsTp

Then there exists a constant K,y > 0 such that for every u € W'P(Q) we have

[ulgn < Kpgs (Julsa + luli g lullf,0) - (11.3)
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Proof. As in the proof of Corollary 8.4, we set u, = E,u. By Theorem 11.2, we have

[uely < Chpys (a’”[u*|S +o" |Vu*\p) i (11.4)

If |V, > |usls, then we set

|U*|s 1/(v+x)
o= ,
(|Vu*\p)

otherwise we choose o = 1. In both cases we obtain

[uslg < 2Cgs ([uals + [usl /07 [V, [ 0F) (11.5)

We have /(v + k) =1— 0, v/(y+ k) = 0, and the desired result follows from Theorem 5.2.

It is in principle possible to derive from (10.27) the corresponding interpolation inequalities
also for anisotropic spaces. We leave the particular cases to the reader.
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