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Introduction to Sobolev spaces for PDEs
Pavel Krejč́ı

This is a third iteration of a text, which is intended to be an introduction to the theory of
Sobolev spaces, traces, embeddings, and interpolations which are useful in the theory of PDEs.
The goal is to show the main ideas of the proofs, so that the reader can derive himself/herself
particular formulas in cases that are not explicitly treated in textbooks. Hence, emphasis is
put on methods rather than on a collection of formulas. Additional information can be found
in [1, 2, 3, 11, 12].
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1 Some analytical tools

Let X be a real Banach space. For a set A ⊂ X we denote here and in the sequel by IntA
the interior of A , by Ā the closure of A , and by ∂A := Ā \ IntA the boundary of A . The
symbol Bρ(x) denotes the open ball in X centered at x ∈ X with radius r .

In this introductory section we recall for the reader’s convenience some basic properties of the
space RN starting from the following classical lemma.

Lemma 1.1 Let us consider two sets K and G , K ⊂ G ⊂ RN , K compact, G open. Then
there exists a function g ∈ C∞(RN) such that 0 ≤ g(x) ≤ 1 for all x ∈ RN , g(x) = 1 for
x ∈ K , g(x) = 0 for x ∈ RN \G .

Proof. The set K is compact, hence ρ := dist(K,RN \G) is positive. Let U :=
⋃

x∈K Bρ/2(x) .
Then U is open, Ū is compact, and dist(Ū ,RN \G) = dist(K,RN \ U) = ρ/2 . Put f(x) = 1
for x ∈ U , f(x) = 0 for x ∈ RN \U . We now choose a function ϕ ∈ C∞(RN) called a mollifier
such that

ϕ(x) ≥ 0 ∀x ∈ RN , ϕ(x) = 0 for |x| ≥ 1,

∫
RN

ϕ(x) dx = 1. (1.1)
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For a fixed value σ ∈ (0, ρ/2) put

g(x) = σ−N

∫
RN

ϕ

(
x− y

σ

)
f(y) dy =

∫
RN

ϕ(ξ)f(x− σξ) dξ. (1.2)

Then g ∈ C∞(RN) , 0 ≤ g(x) ≤ 1 for all x ∈ RN . For x ∈ K and |ξ| < 1 we have x−σξ ∈ U
and similarly, for x ∈ RN \G and |ξ| < 1 we have x− σξ ∈ RN \ U . Hence, g(x) = 1 on K ,
g(x) = 0 on RN \G , which we wanted to prove. �

Theorem 1.2 (Partition of unity) Let G1, . . . , Gm be open subsets of RN , and let K ⊂⋃m
j=1Gj be a compact set. Then there exist functions ψ1, . . . , ψm in C∞(RN) such that for all

j = 1, . . . ,m and all x ∈ RN we have 0 ≤ ψj(x) ≤ 1 , ψj(x) = 0 for x ∈ RN \Gj , and

m∑
j=1

ψj(x) = 1 ∀x ∈ K.

Proof. For each x ∈ K we denote J(x) = {j ∈ {1, . . . ,m} : x ∈ Gj} , and find r(x) > 0 such
that

Br(x)(x) ⊂
⋂

j∈J(x)

Gj.

We have indeed K ⊂
⋃

x∈K Br(x)/2(x) . Using the compactness of K we select a finite subcov-
ering

K ⊂
M⋃
i=1

Br(xi)/2(xi).

For j = 1, . . . ,m put

Rj := {i ∈ {1, . . . ,M} : Br(xi)(xi) ⊂ Gj},

Vj :=
⋃

i∈Rj

Br(xi)(xi),

Wj :=
⋃

i∈Rj

Br(xi)/2(xi).

We have W̄j ⊂ Vj ⊂ Gj for each j = 1, . . . ,m , and

K ⊂
m⋃

j=1

Wj.

Using Lemma 1.1 we find functions gj ∈ C∞(RN) such that gj(x) = 1 for x ∈ W̄j , gj(x) = 0
for x ∈ RN \ Vj . We now construct a sequence for x ∈ RN by the recurrent formula

ψ0(x) = 0, ψj(x) = gj(x)

(
1−

j−1∑
i=0

ψi(x)

)
for j = 1, . . . ,m.

By construction, we have ψj(x) = 0 for all x ∈ RN \Gj and for all j = 1, . . . ,m . Furthermore,

j∑
i=0

ψi(x) = gj(x) + (1− gj(x))

j−1∑
i=0

ψi(x),
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We easily prove the implications

j−1∑
i=0

ψi(x) ≤ 1 =⇒
j∑

i=0

ψi(x) ≤ 1,

j−1∑
i=0

ψi(x) = 1 for x ∈
j−1⋃
i=1

Wi =⇒
j∑

i=0

ψi(x) = 1 for x ∈
j⋃

i=1

Wi,

and obtain in particular
∑m

i=0 ψi(x) = 1 on
⋃m

i=1Wi ⊃ K which completes the proof. �

2 Spaces Lp(Ω)

Let Ω ⊂ RN be any open set, and let u : Ω → R be a Lebesgue measurable function. We say
that the class of functions

{û : Ω → R : û(x) = u(x) a. e.}

belongs to Lp(Ω) for some 1 ≤ p ≤ ∞ if the expression

|u|p,Ω =


(∫

Ω

|u(x)|p dx

)1/p

if 1 ≤ p <∞ ,

sup ess
x∈Ω

|u(x)| if p = ∞ .
(2.1)

is finite. In the case Ω = RN , we simply write | · |p instead of | · |p,RN . It is easy to see that
| · |∞,Ω is a norm on L∞(Ω) . We shall see below in (2.8) that | · |p,Ω is a norm on Lp(Ω) for all
p ≥ 1 . Note that the spaces Lp(Ω) with the above norms are Banach spaces , see [1].

Let us begin with some auxiliary inequalities that are needed in the sequel.

Proposition 2.1 (Young’s inequality) Let f : [0,∞) → [0,∞) be an absolutely continuous
increasing function, f(0) = 0 . Then for every x, y ≥ 0 we have (see Fig. 1)

xy ≤
∫ x

0

f(u) du+

∫ y

0

f−1(v) dv , (2.2)

where f−1 is the inverse function to f .

Proof. Substituting v = f(u) we have, with the convention
∫ b

a
= −

∫ a

b
if b < a , that∫ x

0

f(u) du+

∫ y

0

f−1(v) dv =

∫ x

0

(f(u) + uf ′(u)) du+

∫ f−1(y)

x

uf ′(u) du

≥ xf(x) + x(y − f(x)) = xy .

�

For 1 < p <∞ , we denote by p′ the conjugate exponent

p′ =
p

p− 1
. (2.3)
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Reciprocally, p is the conjugate of p′ and we have

1

p
+

1

p′
= 1 , p′ − 1 =

1

p− 1
. (2.4)

As an immediate consequence of Proposition 2.1 we obtain, putting f(x) = xp−1 , that

xy ≤ 1

p
xp +

1

p′
yp′ (2.5)

for every x, y ≥ 0 and 1 < p <∞ .

��u

v

0
x

y

v = f(u)

Figure 1: Young’s inequality.

Proposition 2.2 (Hölder’s inequality) Let Ω ⊂ RN be any open set and let 1 ≤ p ≤ ∞
be arbitrary. Then for every f ∈ Lp(Ω) and g ∈ Lp′(Ω) we have∫

Ω

f(x) g(x) dx ≤ |f |p,Ω |g|p′,Ω , (2.6)

with the convention 1′ = ∞ , ∞′ = 1 .

Proof. The cases f = 0, or g = 0, or p = 1, or p = ∞ are obvious. For 1 < p < ∞ and
|f |p,Ω 6= 0, |g|p′,Ω 6= 0 we set

F (x) =
f(x)

|f |p,Ω

, G(x) =
g(x)

|g|p′,Ω
.

By (2.5) we have

|F (x)| |G(x)| ≤ 1

p
|F (x)|p +

1

p′
|G(x)|p′ =

|f(x)|p

p |f |pp,Ω

+
|g(x)|p′

p′ |g|p′p′,Ω
,

hence ∫
Ω

F (x)G(x) dx ≤
∫

Ω

|F (x)| |G(x)| dx ≤ 1

p
+

1

p′
= 1 ,

which we wanted to prove. �

Proposition 2.3 (Minkowski’s inequality) Let X ⊂ Rn , Y ⊂ Rm be open sets, and let
f : X × Y → [0,∞) be a measurable function. Then for every 1 ≤ p <∞ we have(∫

Y

(∫
X

f(x, y) dx

)p

dy

)1/p

≤
∫

X

(∫
Y

fp(x, y) dy

)1/p

dx . (2.7)
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Proof. For y ∈ Y and R > 0 set

F (y) =

∫
X

fR(x, y) dx , g(y) = F p−1(y) ,

where

fR(x, y) =

{
min{R, f(x, y)} if max{|x|, |y|} < R ,
0 if max{|x|, |y|} ≥ R .

Then ∫
Y

F p(y) dy =

∫
Y

F (y) g(y) dy =

∫
X

(∫
Y

fR(x, y) g(y) dy

)
dx

Hölder

≤
∫

X

(∫
Y

fp
R(x, y) dy

)1/p(∫
Y

gp′(y) dy

)1/p′

dx

=

∫
X

(∫
Y

fp
R(x, y) dy

)1/p

dx

(∫
Y

F p(y) dy

)1/p′

,

hence (∫
Y

F p(y) dy

)1/p

≤
∫

X

(∫
Y

fp
R(x, y) dy

)1/p

dx ≤
∫

X

(∫
Y

fp(x, y) dy

)1/p

dx ,

and we obtain the result from Fatou’s Lemma letting R tend to +∞ . �

Note that replacing X by a finite set {1, . . . , n} , f(x, y) by fk(y) , k = 1, . . . , n , and
∫

X
dx

by
∑n

k=1 , the Minkowski inequality appears in the form∣∣∣∣∣
n∑

k=1

fk

∣∣∣∣∣
p,Y

≤
n∑

k=1

|fk|p,Y , (2.8)

which is nothing but the triangle inequality for the norm | · |p,Y .

Let us also mention the trivial “variant” of the Minkowski inequality for p = ∞ , namely

sup ess
y∈Y

∫
X

f(x, y) dx ≤
∫

X

sup ess
y∈Y

f(x, y) dx . (2.9)

The following example shows that the Minkowski inequality cannot be reversed.

Example 2.4 Consider X = Y = (0, 1) , and f(x, y) = ((x− y)+)
−1/p

for some p > 1 . Then(∫
Y

(∫
X
f(x, y) dx

)p
dy
)1/p

=
(∫ 1

0

(∫ 1

y
(x− y)−1/p dx

)p

dy
)1/p

= 1
p−1

p1−1/p,∫
X

(∫
Y
fp(x, y) dy

)1/p
dx =

∫ 1

0

(∫ x

0
(x− y)−1 dx

)1/p
dy = +∞ .

Remark 2.5 In the same way we prove that for every 1 ≤ q < p <∞ we have(∫
Y

(∫
X

f q(x, y) dx

)p/q

dy

)1/p

≤

(∫
X

(∫
Y

fp(x, y) dy

)q/p

dx

)1/q

. (2.10)

We set in this case

F (y) =

∫
X

f q
R(x, y) dx , g(y) = F (p/q)−1(y) ,

and estimate
∫

Y
F p/q(y) dy similarly as in the proof of Proposition 2.3.
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The proof of the Minkowski inequality is related to the so-called reverse Hölder inequality :∫
Ω

f(x) g(x) dx ≤ C |g|p′,Ω ∀g ∈ Lp′(Ω) =⇒ |f |p,Ω ≤ C . (2.11)

To prove this statement, it suffices to choose g(x) = sign(fR(x)) |fR(x)|p−1 with fR defined
analogously as in the proof of Proposition 2.3, use the fact that∫

Ω

|fR(x)|p dx ≤
∫

Ω

f(x) g(x) dx ≤ C |g|p′,Ω = C |fR|p/p′

p,Ω ,

and let R tend to ∞ .

Proposition 2.6 (Young’s inequality II for convolutions) Let 1 ≤ p, q, r ≤ ∞ be given
such that

1

p
+

1

r
= 1 +

1

q
. (2.12)

For u ∈ Lp(RN) , v ∈ Lr(RN) , and x ∈ RN set

w(x) =

∫
RN

u(y) v(x− y) dy .

Then w ∈ Lq(RN) and
|w|q ≤ |u|p |v|r . (2.13)

Proof. The case q = ∞ follows immediately from Hölder’s inequality. Hence, assume that q <
∞ , and set α = r/q ∈ (0, 1] . To make the use of the Minkowski inequality more transparent,
we write

∫
X

dx ,
∫

Y
dy instead of

∫
RN dx ,

∫
RN dy . Then, using the fact that 1 − α = r/p′

and that ∫
Y

|v(x− y)|r dy =

∫
Y

|v(y)|r dy

for a. e. x ∈ X , we obtain

|w|q =

(∫
X

∣∣∣∣∫
Y

u(y) v(x− y) dy

∣∣∣∣q dx

)1/q

≤
(∫

X

(∫
Y

|u(y)| |v(x− y)|α |v(x− y)|1−α dy

)q

dx

)1/q

Hölder

≤

(∫
X

(∫
Y

|u(y)|p |v(x− y)|pα dy

)q/p

dx

)1/q (∫
Y

|v(y)|p′(1−α) dy

)1/p′

Minkowski

≤

(∫
Y

(∫
X

|u(y)|q |v(x− y)|qα dx

)p/q

dy

)1/p

|v|1−α
r

=

(∫
Y

|u(y)|p dy

)1/p (∫
X

|v(x)|qα dx

)1/q

|v|1−α
r = |u|p |v|r .

�

We devote the next section to the Hardy-Littlewood inequality , the proof of which is quite in-
volved and requires a certain number of auxiliary steps. The proof we give here is a modification
of the one from [2].
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3 Hardy-Littlewood-Sobolev inequality

In this section we prove the following statement.

Proposition 3.1 (Hardy-Littlewood-Sobolev inequality) Let 1 < p, q, r < ∞ be such
that 1

p
+ 1

q
+ 1

r
= 2 . Then there exists a constant Hpr > 0 such that for every f ∈ Lp(R) ,

g ∈ Lq(R) we have ∫∫
R2

f(x) g(y) |x− y|−1/r dx dy ≤ Hpr|f |p |g|q . (3.1)

An explicit estimate for Hpr will be given in (3.16) below. There exist also interesting coun-
terparts in RN , see [6]. In R , the most elementary approach consists in rearrangements . We
recall here some basic facts about this technique.

We denote by L the space of functions g ∈ L∞(R)∩L1(R) such that g(x) ≥ 0 a. e. For g ∈ L
and r ≥ 0 we define

A(r) = {x ∈ R : g(x) > r},

δ(r) =
1

2
measA(r),

A∗(r) = (−δ(r), δ(r)).

We further put

A = {(x, r) ∈ R× [0,∞) : x ∈ A(r)},
A∗ = {(x, r) ∈ R× [0,∞) : x ∈ A∗(r)},

g∗(x) =

∫ ∞

0

χA∗(x, r) dr for x ∈ R,

where χA∗ is the characteristic function of the set A∗ .

�
0 x

r

r = g(x)

r = g∗(x)

Figure 2: Rearrangement.

The function g∗ is called the rearrangement of g , and admits the following characterization.

Lemma 3.2 Let g ∈ L be given. Then for all x ∈ R we have

g∗(x) = sup{r > 0 : δ(r) > |x|}

with the convention sup ∅ = 0 .
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Proof. Put
ρ(x) := sup{s > 0 : δ(s) > |x|}.

The function δ is nonincreasing in [0,∞) . For r > ρ(x) we thus have δ(r) ≤ |x| , hence
x /∈ A∗(r) and χA∗(x, r) = 0. On the other hand, for r < ρ(x) we have δ(r) > |x| , hence
x ∈ A∗(r) and χA∗(x, r) = 1. This yields

A∗(r) = {x ∈ R : g∗(x) > r}, g∗(x) =

∫ ρ(x)

0

dr = ρ(x), (3.2)

and the proof is complete. �

Let us list some further properties of the rearrangement.

Lemma 3.3 Let g ∈ L be given. Then for all x ∈ R and p ≥ 1 we have

(i) gp(x) =

∫ ∞

0

χA(x, r1/p) dr ;

(ii) (g∗)p(x) = (gp)∗(x) = sup{r > 0 : δ(r1/p) > |x|} =

∫ ∞

0

χA∗(x, r
1/p) dr ;

(iii)

∫
R
|g(x)|p dx =

∫
R
|g∗(x)|p dx .

Proof.
(i) We have for all x ∈ R , p ≥ 1 , and r ≥ 0 that

χA(x, r1/p) =

{
1 for r < gp(x),
0 for r ≥ gp(x),

and the statement follows easily.

(ii) Let x ∈ R and p ≥ 1 be arbitrarily chosen. We use Lemma 3.2 to conclude that for
r > (g∗)p(x) we have δ(r1/p) ≤ |x| , hence x /∈ A∗(r1/p) and χA∗(x, r

1/p) = 0, for r < (g∗)p(x)
we have δ(r1/p) > |x| , hence x ∈ A∗(r1/p) and χA∗(x, r

1/p) = 1. Consequently,∫ ∞

0

χA∗(x, r
1/p) dr =

∫ (g∗)p(x)

0

dr = (g∗)p(x).

We have indeed Ap(r) := {x ∈ R : gp(x) > r} = A(r1/p) , and δp(r) := measAp(r) = δ(r1/p) .
Hence,

(gp)∗(x) =

∫ ∞

0

χA∗(x, r
1/p) dr

and the assertion follows.

(iii) In view of (ii), it suffices to prove that∫
R
g(x) dx =

∫
R
g∗(x) dx. (3.3)
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This follows from the elementary computation based on (i) and on Fubini’s Theorem∫
R
g(x) dx =

∫
R

∫ ∞

0

χA(x, r) dr dx =

∫ ∞

0

∫
R
χA(x, r) dx dr =

∫ ∞

0

measA(r) dr

=

∫ ∞

0

measA∗(r) dr =

∫
R

∫ ∞

0

χA∗(x, r) dr dx =

∫
R
g∗(x) dx

and the proof is complete. �

We introduce the space

R = {f ∈ L : f(x) = f(−x) a. e., f nondecreasing in (−∞, 0), nonincreasing in (0,+∞)}.
(3.4)

By construction, the function g∗ belongs to R , and we call the mapping

R : L → R : g 7→ R[g] = g∗ (3.5)

the rearrangement operator . It is an easy exercise to check that the identity

R[µg] = µR[g] (3.6)

holds for every g ∈ L and every µ ≥ 0 .

Let us mention one classical application of rearrangements.

Proposition 3.4 (Hardy-Littlewood inequality) For every f, g ∈ L , f ∗ = R[f ] , g∗ =
R[g] , we have ∫

R
f(x)g(x) dx ≤

∫
R
f ∗(x)g∗(x) dx. (3.7)

Proof. For f, g ∈ L put Af = {(x, r) ∈ R × (0,∞) : f(x) > r} , Ag = {(x, r) ∈ R × (0,∞) :
g(x) > r} , A∗

f = {(x, r) ∈ R × (0,∞) : f ∗(x) > r} , A∗
g = {(x, r) ∈ R × (0,∞) : g∗(x) > r} .

By Lemma 3.3, the Fubini Theorem, and by definition of the rearrangement we have∫
R
f(x)g(x) dx =

∫ ∞

0

∫ ∞

0

∫
R
χAf

(x, r)χAg(x, s) dx dr ds =

∫ ∞

0

∫ ∞

0

meas (Af (r) ∩ Ag(s)) dr ds

≤
∫ ∞

0

∫ ∞

0

min{measAf (r),measAg(s)} dr ds

=

∫ ∞

0

∫ ∞

0

meas (A∗
f (r) ∩ A∗

g(s)) dr ds

=

∫ ∞

0

∫ ∞

0

∫
R
χA∗f

(x, r)χA∗g(x, s) dx dr ds =

∫
R
f ∗(x)g∗(x) dx,

which we wanted to prove. �

Rearrangements of Lipschitz continuous functions preserve the Lipschitz continuity in the fol-
lowing sense.

Lemma 3.5 Let g ∈ L be such that for all x, y ∈ R we have |g(x) − g(y)| ≤ |x − y| . Then
for g∗ = R[g] we have |g∗(x)− g∗(y)| ≤ |x− y| for every x, y ∈ R .
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Proof. Let r > s > 0 and x ∈ A(r) be arbitrarily chosen. For y ∈ (x − r + s, x + r − s) we
have g(x) − g(y) ≤ r − s , hence g(y) ≥ g(x) − r + s > s , so that y ∈ A(s) . We thus have
δ(s) = 1

2
measA(s) ≥ 1

2
measA(r) + r − s , and we conclude that

δ(s)− δ(r) ≥ r − s for r > s. (3.8)

Assume now that there exist y > x ≥ 0 and m > 0 such that

g∗(x)− g∗(y) ≥ y − x+m. (3.9)

Put a = g∗(x) , b = g∗(y) . By Lemma 3.2 we have a = sup{s > 0 : δ(s) > x} , b = sup{s > 0 :
δ(s) > y . Hence, δ(a− ε) > x and δ(b+ ε) ≤ y for every ε > 0 . From (3.8)–(3.9) we obtain

a− b ≥ m+ δ(b+ ε)− δ(a− ε) ≥ m+ a− b− 2ε,

which is a contradiction for ε < m/2 . Lemma 3.5 is proved. �

Rearrangements are invariant with respect to decompositions. We prove here the following
formula.

Lemma 3.6 Consider a function g ∈ L and fix a number c > 0 . Let us denote for x ∈ R

g−(x) = min{c, g(x)},
g+(x) = max{c, g(x)} − c.

Then g = g+ + g− and R[g] = R[g+] +R[g−] .

Proof. The identity g(x) = g+(x) + g−(x) for all x ∈ R is obvious. Put g∗+ = R[g+] , g∗− =
R[g−] , A+(r) = {x ∈ R : g+(x) > r} , A−(r) = {x ∈ R : g−(x) > r} , δ±(r) = 1

2
measA±(r) for

r > 0 . By Lemma 3.2 we have

g∗−(x) = sup{s > 0 : δ−(s) > |x|},
g∗+(x) = sup{s > 0 : δ+(s) > |x|}

with the convention sup ∅ = 0. Note that

δ−(r) =

{
δ(r) for r < c,
0 for r ≥ c,

δ+(r) = δ(r + c) for r ≥ 0.

For |x| ≥ δ(c) we thus have g∗−(x) = g∗(x) , g∗+(x) = 0. For |x| < δ(c) we have g∗−(x) = c ,
g∗+(x) = g∗(x)− c , which we wanted to prove. �

To illustrate the interaction between rearrangements and integral means, we consider a function
g ∈ L and some γ > 0 , denote g∗ = R[g] as in (3.5), and define for x ∈ R

G(x) =

∫ x+γ

x−γ

g(y) dy, Ĝ(x) =

∫ x+γ

x−γ

g∗(y) dy, G∗(x) = R[G](x).

We have the following result.
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Proposition 3.7 For every λ > 0 we have∫ λ

0

G∗(x) dx ≤
∫ λ

0

Ĝ(x) dx. (3.10)

Proof. It is easy to see that both G∗ and Ĝ belong to the class R introduced in (3.4).
Moreover, they are Lipschitz continuous by virtue of Lemma 3.5 and identity (3.6). We split
he argument of the proof into four steps.

Step 1. Check that G∗(0) ≤ Ĝ(0) .

To prove the assertion, we notice that G∗(0) = maxx∈RG(x) , and

G(x) =

∫ x+γ

x−γ

g(y) dy =

∫ x+γ

x−γ

∫ ∞

0

χA(y, r) dr dy =

∫ ∞

0

∫ x+γ

x−γ

χA(y, r) dy dr

=

∫ ∞

0

meas (A(r) ∩ (x− γ, x+ γ)) dr ≤
∫ ∞

0

min{measA(r), 2γ} dr

=

∫ ∞

0

meas ((−δ(r), δ(r) ∩ (−γ, γ)) dr =

∫ ∞

0

∫ γ

−γ

χA∗(y, r) dy dr = Ĝ(0).

Step 2. Check that
∫∞

0
G∗(x) dx =

∫∞
0
Ĝ(x) dx .

This easily follows from Lemma 3.3 (iii) for p = 1 and from the Fubini Theorem:∫ ∞

0

G∗(x) dx =
1

2

∫
R
G∗(x) dx =

1

2

∫
R
G(x) dx =

1

2

∫
R

∫ γ

−γ

g(x+ z) dz dx =

∫ ∞

0

Ĝ(x) dx.

Step 3. Inequality (3.10) holds for characteristic functions g = χS of any bounded measurable
set S ⊂ R .

In this case we have g∗(x) = χ(−σ,σ)(x) , where σ = 1
2
measS . Then

Ĝ(x) =

∫ x+γ

x−γ

χ(−σ,σ)(y) dy =


0 if x ≤ −Q,
x+Q if −Q < x ≤ −q,
Q− q if − q < x ≤ q,
Q− x if q < x ≤ Q,
0 if x > Q,

where Q = σ+γ , q = |σ−γ| . The function G is Lipschitz continuous with Lipschitz constant
1 , and by Lemma 3.5 we have

|G∗(x)−G∗(y)| ≤ |x− y| ∀x, y ∈ R. (3.11)

To check that (3.10) holds, we distinguish three cases:

(i) λ ≤ q : Then, by Step 1,∫ λ

0

Ĝ(x) dx = λĜ(0) ≥ λG∗(0) ≥
∫ λ

0

G∗(x) dx.
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(ii) λ ≥ Q : Then, by Step 2,∫ λ

0

Ĝ(x) dx =

∫ ∞

0

Ĝ(x) dx =

∫ ∞

0

G∗(x) dx ≥
∫ λ

0

G∗(x) dx.

(iii) q < λ < Q : Put H(λ) =
∫ λ

0
(Ĝ(x)−G∗(x)) dx . By (i), (ii), and (3.11) we have

H ′′(λ) = Ĝ′(λ)− (G∗)′(λ) ≤ 0 a. e.,

hence H is concave, H(λ) ≥ min{H(Q), H(q)} ≥ 0 , which completes Step 3.

Step 4. g ∈ L is arbitrary.

By Lemma 3.6, (3.6), and Step 3, inequality (3.10) holds for every function g with finite range.
For a general function g ∈ L , it suffices to find pointwise convergent approximations of g with
finite range and pass to the limit using the Lebesgue Dominated Convergence Theorem. �

The next step in the proof of the Hardy-Littlewood-Sobolev inequality is the following lemma.

Lemma 3.8 Let f, g ∈ L and h ∈ R be given, and let f ∗ = R[f ] , g∗ = R[g] . Then∫∫
R2

f(x) g(y)h(x− y) dy dx ≤
∫∫

R2

f ∗(x) g∗(y)h(x− y) dy dx . (3.12)

Proof of Lemma 3.8. The function h can be uniformly approximated by piecewise constant
functions from R , and every piecewise constant function from R can be represented as a
sum of characteristic functions of symmetric intervals. Hence, it suffices to prove (3.12) for
h(z) = χ(−γ,γ)(z) with an arbitrary γ > 0 .

Put

G(x) =

∫
R
g(y)χ(−γ,γ)(x− y) dy =

∫ x+γ

x−γ

g(y) dy.

Then by Lemma 3.4∫∫
R2

f(x) g(y)χ(−γ,γ)(x− y) dy dx =

∫
R
f(x)G(x) dx ≤

∫
R
f ∗(x)G∗(x) dx, (3.13)

where G∗ = R[G] . The function f ∗ belongs to R and can also be uniformly approximated by
piecewise constant functions from R , and every piecewise constant function from R can be
represented by a sum of characteristic functions of symmetric intervals. For f ∗(x) = χ(−λ,λ)(x)
we have by Proposition 3.7∫

R
f ∗(x)G∗(x) dx =

∫ λ

−λ

G∗(x) dx ≤
∫ λ

−λ

Ĝ(x) dx =

∫∫
R2

χ(−λ,λ)(x) g
∗(y)χ(−γ,γ)(x− y) dy dx,

(3.14)
and (3.12) follows by approximating h and f ∗ by piecewise constant functions. �

We are now ready to pass to the proof of Proposition 3.1.

Proof of Proposition 3.1. We restrict ourselves to the case that f, g ∈ L and replace h by a
truncation of the form h(z) = min{|z|−1/r, K} with an arbitrary K which we let tend to ∞ .
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The general case then follows from the density argument. We estimate the right hand side of
(3.12) by introducing an auxiliary function F by the formula

F (y) =

∫
R
f ∗(x)h(x− y) dx for y ∈ R.

The function f ∗ belongs to R , hence, by Lemma 3.3 (iii),

|f |pp = |f ∗|pp ≥
∫ |x|

−|x|
(f ∗(ξ))p dξ ≥ 2|x|(f ∗(x))p ∀x ∈ R . (3.15)

Choosing α = p/q′ and using again Lemma 3.3, we obtain for every y ∈ R that

F (y) ≤
∫

R
(f ∗(x))α|2x|−(1−α)/p|f |1−α

p |x− y|−1/r dx

= 2−1+1/r |f |1−p/q′

p

∫
R
(f ∗(x))p/q′|x|−1+1/r |x− y|−1/r dx

= 2−1+1/r |f |1−p/q′

p

∫
R
(f ∗(yt))p/q′|t|−1+1/r |t− 1|−1/r dt .

We now use the Minkowski inequality (2.7) to estimate the Lq′ norm of F . We have

|F |q′ ≤ 2−1+1/r |f |1−p/q′

p

(∫
R

(∫
R
(f ∗(yt))p/q′|t|−1+1/r |t− 1|−1/r dt

)q′

dy

)1/q′

Minkowski

≤ 2−1+1/r |f |1−p/q′

p

∫
R

(∫
R
(f ∗(yt))p|t|−q′+q′/r |t− 1|−q′/r dy

)1/q′

dt

= 2−1+1/r |f |1−p/q′

p

∫
R
|t|−1+1/r |t− 1|−1/r

(∫
R
(f ∗(yt))p dy

)1/q′

dt

= 2−1+1/r |f |p
∫

R
|t|−1/p |t− 1|−1/r dt .

By Hölder’s inequality, Lemma 3.8, and inequality (3.12), the left-hand side of (3.1) is estimated
from above by |g|q|F |q′ . Hence, (3.1) holds with

Hpr = 2−1+1/r

∫
R
|t|−1/p |t− 1|−1/r dt . (3.16)

�

4 Approximation of Lp -functions

Let us start with the following classical result, see also [5, Corollary 4.8.5].

Theorem 4.1 (Lusin) Let Ω ⊂ RN be an open bounded set, and let u : Ω → R be a bounded
measurable function. Then for every δ > 0 there exists a measurable set Aδ , measAδ < δ ,
and a continuous function g : Ω → R such that supx∈Ω |g(x)| ≤ supx∈Ω |u(x)| and g(x) = u(x)
on Ω \ Aδ .
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Proof. We can assume that 0 ≤ u(x) < 1 for all x ∈ Ω, and define

E
(n)
i =

{
x ∈ Ω :

i− 1

2n
≤ u(x) <

i

2n

}
for i = 1, . . . , 2n , n ∈ N ∩ {0}.

Then Ω =
⋃2n

i=1E
(n)
i for each n , and E

(n)
i ∩ E(n)

j = ∅ for i 6= j . We now put

u(n)(x) =
2n∑
i=1

i− 1

2n
χ

E
(n)
i

(x) for x ∈ Ω,

where χA denotes the characteristic function of a set A ⊂ Ω, that is, χA(x) = 1 if x ∈ A ,
χA(x) = 0 if x /∈ A . We see that for all x ∈ Ω and n ∈ N ∪ {0} we have

0 ≤ u(x)− u(n)(x) ≤ 2−n, (4.1)

hence u(n) converge uniformly to u . We now define an auxiliary sequence {w(n)} by

w(0)(x) = u(0)(x) = 0, w(n)(x) = u(n)(x)− u(n−1)(x) for n ∈ N, x ∈ Ω.

We have
E

(n−1)
i = E

(n)
2i−1 ∪ E

(n)
2i ,

which implies the representation

u(n−1)(x) =
2n−1∑
i=1

2i− 2

2n

(
χ

E
(n)
2i−1

(x) + χ
E

(n)
2i

(x)
)
,

u(n)(x) =
2n−1∑
i=1

(
2i− 2

2n
χ

E
(n)
2i−1

(x) +
2i− 1

2n
χ

E
(n)
2i

(x)

)
.

This yields in particular that

w(n)(x) = 2−nχÊ(n)(x) , Ê(n) =
2n−1⋃
i=1

E
(n)
2i .

We conclude from (4.1) that

u(x) =
∞∑

n=1

wn(x)

and the series converges uniformly.

Let now δ > 0 be given. We find for each n ∈ N a compact set Kn and an open set Gn such
that Kn ⊂ Ê(n) ⊂ Gn ⊂ Ω and meas (Gn \Kn) < δ2−n . Put

Aδ =
∞⋃

n=1

(Gn \Kn).

Then measAδ < δ . By Lemma 1.1 there exist continuous functions gn on RN such that
gn(x) = 1 for x ∈ Kn , gn(x) = 0 for x ∈ RN \Gn . Put

g(x) =
∞∑

n=1

2−ngn(x).
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This is a uniformly convergent series of continuous functions, hence g is continuous, and

gn(x) = hn(x) for x ∈ (Ω \Gn) ∪Kn.

We thus have g(x) = u(x) for x ∈ Ω \ Aδ , and the proof is complete. �

As a first consequence of the Lusin Theorem we prove that continuous functions form a dense
subset of Lp(Ω) for 1 ≤ p <∞ .

Corollary 4.2 Let Ω ⊂ RN be an open bounded set, and let u ∈ Lp(Ω) with 1 ≤ p < ∞ be
arbitrary. Then

∀ε > 0 ∃g ∈ C(Ω̄) :

(∫
Ω

|u(x)− g(x)|p dx

)1/p

< ε.

Proof. We can assume that u(x) ≥ 0 a. e., otherwise we prove the statement separately for
the positive and negative parts u+ and u− . For n ∈ N and x ∈ Ω put

un(x) = min{u(x), n}.

By virtue of Theorem 4.1 there exists for each n ∈ N a set An , measAn < n−2p and a function
fn ∈ C(Ω) such that fn(x) = un(x) on Ω \ An . For x ∈ Ω and n ∈ N put

f ∗n(x) = min{fn(x), n}+.

Then f ∗n(x) = un(x) on Ω \ An and we have∫
Ω

|un(x)− f ∗n(x)|p dx =

∫
An

|un(x)− f ∗n(x)|p dx ≤
(

2

n

)p

. (4.2)

Put Mn = {x ∈ Ω : u(x) > n} . Then

U :=

(∫
Ω

|u(x)|p dx

)1/p

≥ (measMn)1/p,

hence measMn ≤ (U/n)p .

Let now ε > 0 be given. The absolute continuity of the Lebesgue integral (see, e. g., [7, Chapter
III, §2, Theorem 3]) yields

∃δ > 0 ∀B ⊂ Ω, measB < δ :

(∫
Ω

|u(x)|p dx

)1/p

<
ε

2
.

We choose n sufficiently large such that

2

n
<
ε

2
,

(
U

n

)p

< δ.

Then(∫
Ω

|u(x)− f ∗n(x)|p dx

)1/p

≤
(∫

Ω

|un(x)− f ∗n(x)|p dx

)1/p

+

(∫
Ω

|u(x)− un(x)|p dx

)1/p

≤ ε

2
+
ε

2
= ε,
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and it suffices to put g = f ∗n . �

The next consequence of Theorem 4.1 describes an important property of Lp -functions which
will be often referred to in the sequel.

Theorem 4.3 (Mean Continuity) Let Ω,Ω∞ be bounded open sets in RN such that Ω ⊂
Ω̄ ⊂ Ω∞ . Let u ∈ Lp(Ω∞) be given, 1 ≤ p <∞ . Then

∀ε > 0 ∃δ ∈ (0, 1) ∀ξ ∈ RN , |ξ| < δ :

(∫
Ω

|u(x)− u(x+ ξ)|p dx

)1/p

< ε.

Proof. Let ε > 0 be given. Using Corollary 4.2 we find g ∈ C(Ω̄∞) such that(∫
Ω∞

|u(x)− g(x)|p dx

)1/p

<
ε

4
.

Let δ ∈ (0, 1) be chosen such that Ω +Bδ(0) ⊂ Ω∞ and

|g(x)− g(y)| < ε

2 meas (Ω̄)1/p
for x, y ∈ (Ω̄∞), |x− y| < δ.

Then for |ξ| < δ we have(∫
Ω

|u(x)− u(x+ ξ)|p dx

)1/p

≤
(∫

Ω

|u(x)− g(x)|p dx

)1/p

+

(∫
Ω

|u(x+ξ)− g(x+ξ)|p dx

)1/p

+

(∫
Ω

|g(x)− g(x+ ξ)|p dx

)1/p

≤ ε

4
+
ε

4
+
ε

2
= ε

and the proof is complete. �

The Mean Continuity Theorem 4.3 can be easily extended to the whole RN as follows.

Corollary 4.4 Let u ∈ Lp(RN) be given, 1 ≤ p <∞ . Then

∀ε > 0 ∃δ ∈ (0, 1) ∀ξ ∈ RN , |ξ| < δ :

(∫
RN

|u(x)− u(x+ ξ)|p dx

)1/p

< ε.

Proof. Let ε > 0 be given. We find r > 0 sufficiently large such that |u|p,RN\Br−1(0) < ε/4 .
Using Theorem 4.3 we find δ ∈ (0, 1) such that for |ξ| < δ we have |u− u(·+ ξ)|p,Br(0) < ε/2 .
We have (∫

RN

|u(x)− u(x+ ξ)|p dx

)1/p

≤ |u− u(·+ ξ)|p,Br(0) + 2|u|p,RN\Br−1(0) < ε

which we wanted to prove. �

We can now strengthen the result of Corollary 4.2 in the following sense.
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Corollary 4.5 Let Ω ⊂ RN be an open bounded set, and let u ∈ Lp(Ω) with 1 ≤ p < ∞ be
arbitrary. Then

∀ε > 0 ∃g ∈ C∞(RN) :

(∫
Ω

|u(x)− g(x)|p dx

)1/p

< ε.

Proof. We choose a mollifier ϕ as in (1.1). For u ∈ Lp(Ω) we consider its extension

ũ(x) =

{
u(x) for x ∈ Ω,
0 for x ∈ RN \ Ω.

to the whole RN , and for a given x ∈ RN and a parameter σ ∈ (0, 1] we set

uσ(x) = σ−N

∫
RN

ϕ

(
x− y

σ

)
ũ(y) dy . (4.3)

For all σ ∈ (0, 1] , the function uσ is of class C∞ and we have(∫
Ω

|uσ − u|p(x) dx

)1/p

≤
(∫

RN

|uσ − ũ|p(x) dx

)1/p

=

(∫
RN

∣∣∣∣∫
B1(0)

ϕ(z)(ũ(x− σξ)− ũ(x)) dξ

∣∣∣∣p dx

)1/p

Minkowski

≤
∫

B1(0)

ϕ(ξ)

(∫
RN

|ũ(x− σξ)− ũ(x)|p dx

)1/p

dξ ,

hence uσ → u strongly in Lp(Ω) as σ → 0+ as a consequence of the Mean Continuity Theorem
4.3, and it suffices to put g = uσ for σ sufficiently small. �

The regularization formula (4.3) will often be used in the sequel. Note that Proposition 2.6
yields for u ∈ Lp(RN) the following relation between the Lq norm of uσ and Lp norm of u :

|uσ|q ≤ σ−N(1/p−1/q)|ϕ|r |u|p ∀q ≥ p , (4.4)

where r is as in (2.12).

5 Spaces W 1,p(Ω)

We say that v ∈ Lp(Ω) is a generalized partial derivative of u ∈ Lp(Ω) with respect to xi ,
i ∈ {1, . . . , N} , if for every smooth function ϕ : Ω → R with compact support in Ω, that is,

∃K = K̄ ⊂ Ω ∀x ∈ Ω \K : ϕ(x) = 0 , (5.1)

we have ∫
Ω

u(x)
∂ϕ

∂xi

(x) dx = −
∫

Ω

v(x)ϕ(x) dx . (5.2)

By [11, Chap. 2, Sect. 2.2], condition (5.2) is fulfilled if and only if u is absolutely continuous
along almost all lines parallel to the xi -axis and v coincides with ∂u/∂xi almost everywhere.
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The Sobolev space W 1,p(Ω) is defined as the subspace of Lp(Ω) of all functions u , which
together with all generalized partial derivatives ∂u/∂xi belong to Lp(Ω) . With the norm

‖u‖1;p,Ω = |u|p,Ω +
N∑

i=1

∣∣∣∣ ∂u∂xi

∣∣∣∣
p,Ω

, (5.3)

W 1,p(Ω) is also a Banach space.

Extensions and continuously differentiable approximations of functions from Sobolev spaces
outside their domain of definition are more delicate. We cannot simply extend the function by
zero as we did, for instance, in Theorem 4.3 for Lp -functions, since we have to preserve the
absolute continuity along the lines parallel to the coordinate axes across the boundary. We
therefore have to assume some regularity of the boundary. This can be done in the following
way (see Fig. 3).

Definition 5.1 Let Ω ⊂ RN be an open connected set. We say that Ω has Lipschitzian
boundary if the following condition holds

(L) There exist δ > 0 and m ∈ N , and for each k = 1, . . . ,m there exists an open convex
set ∆k ⊂ RN−1 , a Lipschitz continuous function ak : ∆k → R , and a rotation Ak in
RN (represented by an N × N matrix, still denoted by Ak , such that A−1

k = AT
k and

detAk = 1), such that

(i) ∂Ω ⊂
⋃m

k=1Ak(Gk) ,

(ii) Gk = {y ∈ RN ; y = (y′, yN), y′ = (y1, . . . , yN−1) ∈ ∆k, yN ∈ (ak(y
′)− δ, ak(y

′)+ δ)} ,

(iii) G−
k = {y ∈ Gk ; yN ∈ (ak(y

′)− δ, ak(y
′))} ,

(iv) G0
k = {y ∈ Gk ; yN = ak(y

′)} ,

(v) Ω ∩ Ak(Gk) = Ak(G
−
k ) ,

(vi) ∂Ω ∩ Ak(Gk) = Ak(G
0
k) .

���∆k

y′

Ak

yN

G−
k G+

k

Ω

Figure 3: A domain with Lipschitzian boundary.

The prolongation result reads as follows.

Theorem 5.2 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, and
let R > 0 be such that Ω̄ ⊂ BR(0) . Let W 1,p

R be the set of all functions from W 1,p(RN) which
vanish outside BR(0) , and let ‖ · ‖1;p denote the norm in W 1,p(RN) . Then there exists a linear
prolongation operator Ep : W 1,p(Ω) → W 1,p

R such that for every u ∈ W 1,p(Ω) we have
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(i) Epu(x) = u(x) for a. e. x ∈ Ω ;

(ii) There exists a constant cp > 0 such that for every u ∈ W 1,p(Ω) we have

|Epu|p ≤ cp|u|p,Ω, ‖Epu‖1;p ≤ cp‖u‖1;p,Ω .

The proof of Theorem 5.2 requires several intermediate steps and we start with an easy lemma.

Lemma 5.3 Let Ω ⊂ RN be an open bounded set, and let Ω0 ⊂ Ω̄0 ⊂ Ω and u ∈ W 1,p(Ω) be
given. For σ ∈ (0, 1] we define

uσ(x) := σ−N

∫
Ω

ϕ

(
x− y

σ

)
u(y) dy , (5.4)

where ϕ is as in (1.1). Then we have

lim
σ→0

‖uσ − u‖1;p,Ω0 = 0 .

Two things are worth mentioning. First, formula (5.4) is not the same as (4.3). Here, we
integrate only over Ω. Second, the convergence takes place only on the subdomain Ω0 ⊂ Ω.

Proof of Lemma 5.3. Put ρ = dist(Ω̄0,RN \ Ω). For σ < ρ and x ∈ Ω0 has the function
y 7→ ϕ((x − y)/σ) compact support in Ω. Hence, for i = 1, . . . , N the partial derivatives
∂i := ∂/∂xi of uσ satisfy the identities

∂iu
σ(x) = −σ−N−1

∫
Ω

∂iϕ

(
x− y

σ

)
u(y) dy = σ−N

∫
Ω

ϕ

(
x− y

σ

)
∂iu(y) dy

=

∫
B1(0)

ϕ(ξ) ∂iu(x− σξ) dξ.

This yields

∂iu
σ(x)− ∂iu(x) =

∫
B1(0)

ϕ(ξ) (∂iu(x− σξ)− ∂iu(x)) dξ. (5.5)

From the Minkowski inequality (2.7) it follows that

|∂iu
σ − ∂iu|p,Ω0 ≤

∫
B1(0)

ϕ(ξ) |∂iu(· − σξ)− ∂iu|p,Ω0
dξ.

In the same way we obtain a similar estimate for |uσ − u|p,Ω0 , and the assertion follows. �

Proposition 5.4 Let Ω be as in Theorem 5.2 and let Ω∞ ⊃ Ω̄ be an open set. Then for every
ε > 0 there exists a function g ∈ C∞(RN) with compact support in Ω∞ such that

‖g − u‖1;p,Ω < ε.
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Proof. We proceed in three steps.

Step 1. Let ∂Ω ⊂
⋃m

k=1Ak(Gk) ⊂
⋃m

k=1Ak(Gk) ⊂ Ω∞ be the covering of ∂Ω from Definition
5.1, and let Ω0 ⊂ Ω̄0 ⊂ Ω be such that

Ω̄ ⊂
m⋃

k=0

Ωk, Ωk = Ak(Gk) for k = 1, . . . ,m. (5.6)

Let ψ0, . . . , ψm be a partition of unity associated with this covering according to Theorem 1.2,
and for x ∈ Ωk put uk(x) = ψk(x)u(x) , k = 0, . . . ,m . It suffices to prove that for every ε > 0
and every k = 0, . . . ,m there exists gk ∈ C∞(RN) with support in Ωk such that

‖gk − uk‖1;p,Ωk
<

ε

m
(5.7)

and put g =
∑m

k=0 ψkgk .

Step 2. The case k = 0 of (5.7) is treated in Lemma 5.3. For k ≥ 1 we denote by ek the unit
vector ek := Ak(0, . . . , 0, 1)T , and for t ∈ (0, δ) and x ∈ Ωk − tek put ut

k(x) = uk(x+ tek) . We
have indeed

∂iu
t
k(x) = ∂iuk(x+ tek)

for a. e. x ∈ Ωk− tek and all i = 1, . . . , N . Since the support Sk := supp(ψk) of ψk is compact
in Ωk , we have dist(Sk,RN \ Ωk) =: ρk > 0 , hence, the function ut

k is defined on Ωk for all
t < ρk . Using Theorem 4.3 we can choose tk ∈ (0,min{ρk, δ}) such that

‖ut
k − uk‖1;p,Ωk

<
ε

2m
for t ∈ (0, tk) . (5.8)

Step 3. For δk ∈ (0, ρk − tk) we have Bδk
(x) ⊂ Ωk − tkek for all x ∈ Ω̄ ∩ Sk . We now set for

x ∈ Ωk , t ∈ (0, tk) , and σ ∈ (0, δk)

utσ
k (x) = σ−N

∫
Ωk

ϕ

(
x− y

σ

)
ut

k(y) dy

with ϕ as in (1.1). Then we have for i = 1, . . . , N similarly as in (5.5) that

∂iu
tσ
k (x)− ∂iu

t
k(x) =

∫
B1(0)

ϕ(ξ)
(
∂iu

t
k(x− σξ)− ∂iu

t
k(x)

)
dy

and similarly as in the proof of Lemma 5.3 we obtain limσ→0 ‖utσ
k − ut

k‖1;p,Ωk
= 0. Combining

this result for σ sufficiently small with (5.8) we thus have

‖utσ
k − uk‖1;p,Ωk

<
ε

m
for k = 1, . . . ,m .

This is precisely (5.7) with gk = utσ
k , which completes the proof. �

We are now ready to prove Theorem 5.2.

Proof. Let us consider the covering of Ω as in (5.6). Similarly as in the proof of Proposition
5.4, we consider the partition of unity {ψk : k = 0, . . . ,m} associated with the covering (5.6),
and set uk(x) := ψk(x)u(x) for k = 0, . . . ,m and x ∈ Ωk ∩Ω. It is enough to prove that each
uk admits a bounded linear extension from W 1,p(Ωk ∩ Ω) to W 1,p(Ωk) .
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There is nothing to prove for k = 0. Let us consider now some k ∈ {1, . . . ,m} and for
y = (y′, yN) ∈ G−

k put
vk(y) = uk(Aky).

Then vk ∈ W 1,p(G−
k ) , and we define

wk(y
′, t) := vk(y

′, ak(y
′) + t) (5.9)

for y′ ∈ ∆k and t ∈ (−δ, 0) . Let us check that wk ∈ W 1,p(∆k×(−δ, 0)) . Indeed, by Proposition

5.4 we find a sequence {v(n)
k : n ∈ N} of smooth functions with support in Gk and such that

v
(n)
k → vk in W 1,p(G−

k ) , and set w
(n)
k (y′, t) := v

(n)
k (y′, ak(y

′) + t) . We have

∂iw
(n)
k = ∂iv

(n)
k + ∂Nv

(n)
k ∂iak for i = 1, . . . , N − 1,

∂Nw
(n)
k = ∂Nv

(n)
k

almost everywhere in ∆k×(−δ, 0) , and there exists a constant C > 0 such that for all n, l ∈ N

|∂iw
(n)
k − ∂iw

(l)
k |p,∆k×(−δ,0) ≤ C‖v(n)

k − v
(l)
k ‖1;p,G−k

for i = 1, . . . , N,

|w(n)
k − w

(l)
k |p,∆k×(−δ,0) = |v(n)

k − v
(l)
k |p,G−k

.

It follows that {w(n)
k : n ∈ N} is a Cauchy sequence in W 1,p(∆k × (−δ, 0)) and w

(n)
k converge

to wk almost everywhere in ∆k × (−δ, 0) , hence wk = limn→∞w
(n)
k ∈ W 1,p(∆k × (−δ, 0)) .

We now extend the functions w
(n)
k to ∆k × (−δ, δ) by the formula

w̃
(n)
k (y′, t) =

{
w

(n)
k (y′,−|t|) for y′ ∈ ∆k, t ∈ (−δ, 0) ∪ (0, δ),

w
(n)
k (y′, 0−) for y′ ∈ ∆k, t = 0.

This extension preserves the absolute continuity along the coordinate axes and

|∂iw̃
(n)
k − ∂iw̃

(l)
k |p,∆k×(−δ,δ) ≤ 21/p|∂iw

(n)
k − ∂iw

(l)
k |p,∆k×(−δ,0) for i = 1, . . . , N,

so that w̃
(n)
k converge in W 1,p(∆k × (−δ, δ)) to a limit w̃k which coincides with wk on ∆k ×

(−δ, 0) . We now put
ṽk(y) = w̃k(y

′, yN − ak(y
′))

for y = (y′, yN) ∈ Gk . We argue as above using Proposition 5.4 to check that ṽk ∈ W 1,p(Gk) ,
ṽk = vk on G−

k , and that the function

ũk(x) := ṽk(A
T
kx) for x ∈ Ωk

belongs to W 1,p(Ωk) and ũk = uk on Ωk ∩ Ω. To complete the proof, it is enough to put

Epu(x) =
m∑

k=0

ψk(x) ũk(x).

By construction, we have Epu(x) = u(x) on Ω and Epu(x) = 0 on RN \
⋃m

k=0 Ωk ⊂ RN \BR(0)
for R > 0 sufficiently large. Since the mapping Ep : W 1,p(Ω) → W 1,p

R is linear and bounded,
it is continuous, which we wanted to prove. �
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6 Traces on the boundary

One important property of functions u ∈ W 1,p(Ω) for domains Ω with Lipschitzian boundary
is that the trace of u on ∂Ω is well defined. In the situation of Definition 5.1, consider a
partition of unity {ψk} as in the proof of Theorem 5.2, and a function f : ∂Ω → [0,∞) , and put
fk(x) := ψk(x)f(x) for x ∈ ∂Ω ∩ Ωk , f̂k(y) = fk(Aky) for y ∈ G0

k , and f ∗k (y′) = f̂k(y
′, ak(y

′))
for y′ ∈ ∆k , k = 1, . . . ,m . Assuming that f ∗k is integrable on ∆k , we define the surface
integral ∫

∂Ω∩Ωk

fk(x) dS(x) :=

∫
∆k

f ∗k (y′)

(
1 +

N∑
i=1

(∂iak(y
′))2

)1/2

dy′,

∫
∂Ω

f(x) dS(x) :=
m∑

k=1

∫
∂Ω∩Ωk

fk(x) dS(x).

(6.1)

We say that a function ū belongs to the space Lp(∂Ω) for 1 ≤ p <∞ if

|ū|p,∂Ω :=

(∫
∂Ω

|ū(x)|p dS(x)

)1/p

<∞,

with an obvious modification for p = ∞ as in (2.1). For functions in W 1,p(Ω) we have the
following result.

Theorem 6.1 (The Trace Theorem) Let Ω ⊂ RN be as in Theorem 5.2 and let 1 ≤ p <∞ .
Then there exists a linear continuous mapping Tp : W 1,p(Ω) → Lp(∂Ω) such that for every
u ∈ C1(Ω̄) and every x ∈ ∂Ω we have Tpu(x) = u(x) .

Proof. Let u ∈ W 1,p(Ω) be given, and let ṽ
(n)
k , w̃

(n)
k be as in the proof of Theorem 5.2. By

construction, the functions ṽ
(n)
k have compact support in Gk , and we have for y′ ∈ ∆k and

n, l ∈ N that

|w̃(n)
k (y′)− w̃

(l)
k (y′)|p = |ṽ(n)

k (y′, ak(y
′))− ṽ

(l)
k (y′, ak(y

′))|p =

∫ ak(y′)

ak(y′)−δ

∂N |ṽ(n)
k − ṽ

(l)
k |

p(y′, yN) dyN

≤ p

∫ ak(y′)

ak(y′)−δ

|ṽ(n)
k − ṽ

(l)
k |

p−1(y′, yN)|∂N(ṽ
(n)
k − ṽ

(l)
k )|(y′, yN) dyN ,

hence, we have either∫
∆k

|w̃(n)
k − w̃

(l)
k |(y

′)

(
1 +

N∑
i=1

(∂iak(y
′))2

)1/2

dy′ ≤ C

∫
G−k

|∂N w̃
(n)
k − ∂N w̃

(l)
k | dy

if p = 1 or, by Hölder’s inequality if p > 1 ,∫
∆k

|w̃(n)
k − w̃

(l)
k |

p(y′)

(
1 +

N∑
i=1

(∂iak(y
′))2

)1/2

dy′

≤ C

(∫
G−k

|w̃(n)
k − w̃

(l)
k |

p dy

)1/p′ (∫
G−k

|∂N w̃
(n)
k − ∂N w̃

(l)
k |

p dy

)1/p′
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with a constant C > 0 independent of n, l . By definition of the surface integral, the functions
ṽ

(n)
k form a Cauchy sequence on Lp(G0

k) . There exists therefore a limit v̄k = limn→∞ ṽ
(n)
k ∈

Lp(G0
k) , and we have

|v̄k|p,G0
k
≤ C‖vk‖1;p,G−k

.

It suffices to put ūk(x) = v̄k(A
T
kx) for x ∈ ∂Ω∩Ωk , and ū(x) =

∑m
k=1 ψk(x)ūk(x) for x ∈ ∂Ω,

and the assertion follows. For continuously differentiable functions u the convergence ṽ
(n)
k → vk

is uniform, and we consequently have in this case that ū = u on ∂Ω. �

Let us mention the following interesting relation between the values of a function in Ω and its
trace.

Proposition 6.2 (Gauss-Ostrogradsky) Let Ω be as in Theorem 5.2 and let a function
u ∈ W 1,1(Ω; RN) be given, u = (u1, . . . , uN) . Let n(x) denote the unit outward normal vector
to ∂Ω at the point x ∈ ∂Ω , and let us denote div u =

∑N
i=1 ∂iu

i . Then we have∫
Ω

div u(x) dx =

∫
∂Ω

〈T1u(x), n(x)〉 dS(x), (6.2)

where we denote by 〈·, ·〉 the canonical scalar product in RN .

Proof. Let Ak = (Ak)ij , i, j = 1, . . . , N , Gk , G0
k , ψk , uk be as in Definition 5.1 and in the

proof of Proposition 5.4. It is enough to prove that for each k = 1, . . . ,m we have∫
Ak(G−k )

div uk(x) dx =

∫
Ak(G0

k)

〈T1uk(x), n(x)〉 dS(x) (6.3)

and that ∫
Ω0

div u0(x) dx = 0. (6.4)

Indeed, the general statement then follows from the formula u =
∑m

k=0 uk . The identity (6.4) is
easy. If necessary, we cover Ω0 with finitely many cubes Q1, . . . , Qr whose edges are parallel to
the coordinate axes and construct a partition of unity ζ1, . . . , ζr associated with this covering.
For each function ûj = ζju0 , j = 1, . . . , r we obtain (6.4) by a straightforward integration, the
result for u0 follows from the formula u0 =

∑r
j=1 ûj .

To prove (6.3) for k ≥ 1 , we put vk(y) := uk(Aky) for y ∈ G−
k . Then

∂ui
k

∂xi

(x) =
N∑

j=1

(Ak)ij
∂vi

k

∂yj

(AT
kx), (6.5)

and ∫
Ak(G−k )

div uk(x) dx =
N∑

i,j=1

(Ak)ij

∫
G−k

∂vi
k

∂yj

(y) dy

=
N∑

i,j=1

(Ak)ij

∫
∆k

∫ ak(y′)

ak(y′)−δ

∂vi
k

∂yj

(y′, yN) dyN dy′.
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As in (5.9), we define for y′ ∈ ∆k and t ∈ (−δ, 0)

wi
k(y

′, t) := vi
k(y

′, ak(y
′) + t). (6.6)

Then

∂wi
k

∂yj

(y′, t) =
∂vi

k

∂yj

(y′, ak(y
′) + t) +

∂vi
k

∂yN

(y′, ak(y
′) + t)

∂ak

∂yj

(y′) for j = 1, . . . , N − 1,

∂wi
k

∂yN

(y′, t) =
∂vi

k

∂yN

(y′, ak(y
′) + t).

We have for all i, k, t and j = 1, . . . , N − 1 that∫
∆k

∂wi
k

∂yj

(y′, t) dy′ = 0,

hence, ∫
Ak(G−k )

div uk(x) dx =
N∑

i,j=1

(Ak)ij

∫
∆k

∫ ak(y′)

ak(y′)−δ

∂vi
k

∂yN

(y′, yN)n∗j(y
′) dyN dy′

=
N∑

i,j=1

(Ak)ij

∫
∆k

vi
k(y

′, ak(y
′))n∗j(y

′) dy′,

where we denote n∗j(y
′) = −∂jak(y

′) for j = 1, . . . N − 1 and n∗N(y′) = 1.

We now introduce a unit vector n̂(y) = n̂1(y), . . . n̂N(y) for y ∈ G−
k by the formula

n̂j(y
′, yN) = n∗j(y

′)

(
1 +

N∑
i=1

(∂iak(y
′))2

)−1/2

.

By definition (6.1) of the surface integral we obtain (6.3) with n(x) = Akn̂(AT
kx) . �

The subspace of W 1,p(Ω) of functions with zero trace

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω) : Tpu = 0},

that is, the null-space of the operator Tp , plays a particular role in the theory. It admits the
following characterization.

Proposition 6.3 Let Ω be as in Theorem 5.2 and let 1 ≤ p <∞ . Then the space C∞
C (Ω) of

infinitely differentiable functions with compact support in Ω is dense in W 1,p
0 (Ω) with respect

to the norm ‖ · ‖1;p,Ω .

Proof. Let u ∈ W 1,p
0 (Ω) and ε > 0 be given. The problem consists in finding g ∈ C∞

C (Ω)
such that

‖u− g‖1;p,Ω < ε. (6.7)
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We keep below the notation from the proof of Theorem 5.2 and define the functions wk :
∆k × (−δ, 0) → R as in (5.9). Since Tpu = 0, we have wk(y

′, 0−) = 0 for a. e. y′ ∈ ∆k , and
the function

w̃k(y
′, t) =

{
wk(y

′, t) for (y′, t) ∈ ∆k × (−δ, 0),
0 for (y′, t) ∈ ∆k × (0, δ)

is an extension to W 1,p(∆k × (−δ, δ) of wk . For η < δ and (y′, t) ∈ ∆k × (−δ, 0) put

wη
k(y

′, t) = w̃k(y
′, t+ η).

Then wη
k ∈ W 1,p(∆k × (−δ, 0) and for η sufficiently small, the functions wη

k have compact
support in ∆k × (−δ, 0) . Let now κ > 0 be arbitrary. By the Mean Continuity Theorem 4.3
we can choose η > 0 such that

‖wη
k − wk‖1;p,∆k×(−δ,0) < κ.

We now put vη
k(y

′, yN) = wη
k(y

′, yN − ak(y
′)) and uη

k(x) = vη
k(A

Tx) . There exists a constant
C1 > 0 independent of κ such that

‖uη
k − uk‖1;p,Ak(Gk) < C1κ.

We now put uη =
∑m

k=0 ψku
η
k and find a constant C2 > 0 such that

‖uη − u‖1;p,Ω < C2κ.

The functions uη vanish outside a set Ωη ⊂ Ω̄η ⊂ Ω, and it suffices to choose κ > 0 sufficiently
small and apply Proposition 5.4 to obtain (6.7). �

7 Regularity

We start with an example motivated by mechanics, see [4, 10]. The state of a deformable body
Ω ⊂ RN is described by the displacement vector u : Ω → RN which indicates where is the point
x located with respect to its referential position. The local state of the body is characterized
by the strain tensor {εij : i, j = 1, . . . , N} defined by the formula

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (7.1)

This is indeed a symmetric tensor with N(N +1)/2 independent components. It can, however,
control all the N2 components of ∇u in the following sense.

Proposition 7.1 (Korn inequality) Let Ω be as in Theorem 5.2. Then there exists a con-
stant C > 0 such that for all u ∈ W 1,2

0 (Ω; RN) we have

|∇u|2,Ω ≤ C max
i,j∈{1,...,N}

|εij|2,Ω.

Proof. By virtue of of Proposition 6.3, it is enough to prove (7.1) for u ∈ C∞
C (Ω; RN) . For

such u and for all i, j, k = 1, . . . , N we have the identity

∂i∂kuj = ∂iεjk + ∂kεij − ∂jεik. (7.2)
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Hence, for every j = 1, . . . , N and every w ∈ C∞
C (Ω) ,∫

Ω

〈∇uj,∇w〉 dx =

∫
Ω

〈fj,∇w〉 dx, (7.3)

where fj is the vector (f1j, . . . , fNj) with components fij = 2εij − δij
∑N

k=1 εkk and δij is the
Kronecker tensor δij = 0 for i 6= j , δij = 1 for i = j . Putting w = uj in (7.3) we obtain the
assertion. �

The concept of Sobolev spaces can be extended to higher derivatives. By induction, we can
define on Ω ⊂ RN the spaces

W k,p(Ω) = {u ∈ W k−1,p(Ω) : ∂iu ∈ W k−1,p(Ω) ∀i ∈ {1, . . . , N}}

for k ∈ N with the convention W 0,p(Ω) = Lp(Ω) . These are Banach spaces with the norm

‖u‖k;p,Ω = ‖u‖k−1;p,Ω +
∑
|α|=k

|∂αu|p,Ω,

where the sum is taken over all multiindices α = (α1, . . . , αN) , αi ∈ N ∪ {0} , such that
|α| :=

∑N
i=1 αi = k , and ∂α denotes the partial derivative of the k -th order

∂αu := ∂α1
1 . . . ∂αN

N u.

There are important particular cases in which the W k,p -regularity of a function is obtained
even if we do not control all partial derivatives of u of the k -th order. We show here one
typical example which frequently arises in the theory of PDEs.

We say that a bounded open domain Ω ⊂ RN is of class C1,1 if there exists a covering of ∂Ω
as in Definition 5.1 and such that all functions ak , k = 1, . . . ,m , admit Lipschitz continuous
partial derivatives of the first order with respect to yi , i = 1, . . . , N − 1 .

Proposition 7.2 Let Ω be a domain of class C1,1 , let B be a symmetric positive definite
N × N matrix, let f ∈ L2(Ω) be a given function, and let u ∈ W 1,2

0 (Ω) be a solution of the
problem ∫

Ω

(〈B∇u,∇w〉 − gw) dx = 0 ∀w ∈ C∞
C (Ω). (7.4)

Then u ∈ W 2,2(Ω) .

The existence and uniqueness of a solution to (7.4) is easy to prove, see, e. g., [11], and the
regularity stated in Proposition 7.2 is also proved in [11] in a more general context. The case
of non-homogeneous and nonlinear boundary conditions for parabolic problems is discussed in
[8]. This result is, however, of interest in particular if B is the identity matrix. Then one
scalar quantity, namely the sum of derivatives

∑N
i=1 ∂

2
i u is enough to control all second order

derivatives of u .

Here, the assumption of C1,1 -regularity of the boundary ∂Ω is substantial. Before proving
Proposition 7.2, we give an example showing that the statement does not hold if the domain
Ω is only Lipschitzian.
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Example 7.3 Consider the set in polar coordinates

Ω̂ω :=
{

(r, θ) : r ∈ (0, 1), θ ∈
(
− π

2ω
,
π

2ω

)}
for some ω > 1/2 , and put

Ωω := {(x, y) ∈ R2 : x = r cos θ, y = r sin θ, (r, θ) ∈ Ω̂ω},

see Fig. 4. We define the functions f̂ , v̂ : Ω̂ω → R

f̂(r, θ) = rω cosωθ, v̂(r, θ) = r4 cosωθ,

and the corresponding functions f, v, g : Ωω → R given by the formula

f̂(r, θ) = f(r cos θ, r sin θ), v̂(r, θ) = v(r cos θ, r sin θ), g(x, y) = vxx(x, y) + vyy(x, y).

Then g is continuously differentiable on Ω̄ω , the function

u(x, y) := f(x, y)− v(x, y)

satisfies the equation
uxx + uyy = −g in Ω, v|∂Ω = 0, (7.5)

and u /∈ W 2,2(Ω) provided ω < 1 .

The fact that (7.5) holds follows from the identity

fxx + fyy = f̂rr +
1

r
f̂r +

1

r2
f̂θθ = 0.

To check that u /∈ W 2,2(Ω) for ω < 1 , we compute

fxx = f̂rr cos2 θ+
1

r
f̂r sin2 θ+

1

r2
f̂θθ sin2 θ+

(
2

r2
f̂θ −

2

r
f̂rθ

)
cos θ sin θ = ω(ω−1)rω−2 cos((2−ω)θ),

hence, ∫
Ω

|fxx|2 dx dy = ω2(ω − 1)2

∫ 1

0

r2ω−3 dr

∫ π/(2ω)

−π/(2ω)

cos2((2− ω)θ) dθ = ∞.

Proof of Proposition 7.2. Consider the covering Ω̄ ⊂
⋃m

k=1 Ωk as in Definition 5.1, and the
partition of unity {ψk : k = 0, 1, . . . ,m} as in the proof of Proposition 5.4, and set uk = uψk .
It is enough to prove that uk ∈ W 2,2(Ak(G

−
k )) for each k = 0, . . . ,m , and the general statement

follows from the formula u =
∑m

k=0 uk on Ω.

For a fixed k and each fixed w ∈ C∞
C (Ω) we have∫

Ω

〈B∇uk,∇w〉 dx =

∫
Ω

〈B∇u,∇(wψk)〉+ 〈B(u∇w − w∇u),∇ψk〉 dx

=

∫
Ω

(gwψk + 〈B(u∇w − w∇u),∇ψk〉) dx

=

∫
Ω

(gkw + 〈hk,∇w〉) dx, (7.6)
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�
x

y

0

Ωω

Figure 4: Counterexample to Proposition 7.2.

with functions gk := gψk−〈B∇u,∇ψk〉 ∈ L2(Ω) and hk := uB∇ψk ∈ W 1,2
0 (Ω; RN) , both with

a compact support in Ak(G
−
k ) .

Let now w ∈ C∞
C (Ak(G

−
k )) be arbitrarily chosen. We pass to the substitution y = Akx in (7.6),

and by (6.5) we obtain for the new quantities vk(y) = uk(A
T
k y) , z(y) = w(AT

k y) the identity∫
G−k

〈
AT

kBAk∇vk,∇z
〉

dy =

∫
G−k

(
g̃kz +

〈
h̃k,∇z

〉)
dy, (7.7)

where g̃k(y) = gk(Aky) and h̃k(y) = AT
khk(Aky) , and it is enough to prove that vk ∈ W 2,2(G−

k ) .

As in the proof of Theorem 5.2, we pass from coordinates y = (y′, yN) , y′ = (y1, . . . , yN−1)
T ∈

∆k , yN ∈ (ak(y
′) − δ, ak(y

′)) to new coordinates (y′, s) , y′ ∈ ∆k , s = yN − ak(y
′) and put

v̂k(y
′, s) = vk(y

′, s + ak(y
′)) , ẑk(y

′, s) = zk(y
′, s + ak(y

′)) . In terms of the new variables, the
identity (7.7) has the form∫ 0

−δ

∫
∆k

〈Bk(y
′)∇v̂k(y

′, s),∇ẑ(y′, s)〉 dy′ ds

=

∫ 0

−δ

∫
∆k

(
ĝk(y

′, s)ẑ(y′, s) +
〈
ĥk(y

′, s),∇ẑ(y′, s)
〉)

dy′ ds (7.8)

for every ẑ ∈ C∞
C (∆k × (−δ, 0)) , where Bk(y

′) is the symmetric positive definite matrix

Bk(y
′) := MT

k (y′)AT
kBAkMk(y

′)

with

Mk(y
′) =


1 0 . . . 0 −∂1ak(y

′)
0 1 . . . 0 −∂2ak(y

′)
. . .

0 0 . . . 1 −∂N−1ak(y
′)

0 0 . . . 0 1

 ,

and ĝk(y
′, s) = g̃(y′, s+ ak(y

′)) belongs to L2(∆k × (−δ, 0)) , ĥk(y
′, s) = h̃(y′, s+ ak(y

′))Mk(y
′)

belongs to W 1,2
0 (∆k × (−δ, 0); RN) . We can use in (7.8) the Gauss-Ostrogradsky formula (6.2)

and write ∫ 0

−δ

∫
∆k

〈Bk(y
′)∇v̂k(y

′, s),∇ẑ(y′, s)〉 dy′ ds =

∫ 0

−δ

∫
∆k

g∗k(y
′, s)ẑ(y′, s) dy′ ds (7.9)
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with g∗k = ĝk − div ĥk ∈ L2(∆k × (−δ, 0)) . Again, it will be enough to prove that

v̂k ∈ W 2,2(∆k × (−δ, 0)). (7.10)

To this end, we denote by ei the unit vector in the direction of the i -th coordinate, i ∈
{1, . . . , N −1} . All functions in (7.9) have compact support in ∆k× (−δ, 0) , so that for |t| > 0
sufficiently small we have∫ 0

−δ

∫
∆k

〈Bk(y
′ + tei)∇v̂k(y

′ + tei, s),∇ẑ(y′, s)〉 dy′ ds =

∫ 0

−δ

∫
∆k

g∗k(y
′ + tei, s)ẑ(y

′, s) dy′ ds

(7.11)
for every ẑ ∈ C∞

C (∆k × (−δ, 0)) . We now subtract (7.9) from (7.11) and put ẑ(y′, s) =
(v̂k(y

′ + tei, s) − v̂k(y
′, s))/t2 . This is indeed an admissible choice by virtue of Proposition

6.3. By hypothesis, the matrix Bk(y
′) is symmetric positive definite and depends Lipschitz-

continuously on y′ . Furthermore, we know that ∇v̂k and g∗k belong to L2(∆k × (−δ, 0)) . We
thus find a constant C > 0 independent of t such that∫ 0

−δ

∫
∆k

|∇v̂k(y
′ + tei, s)−∇v̂k(y

′, s)|2

t2
dy′ ds

≤ C

(
1 +

(∫ 0

−δ

∫
∆k

|v̂k(y
′ + tei, s)− 2v̂k(y

′, s) + v̂k(y
′ − tei, s)|2

t4
dy′ ds

)1/2
)
. (7.12)

We split the fraction on the right hand side into three terms and estimate its L2 -norm from
above by the sum(∫ 0

−δ

∫
∆k

|∂iv̂k(y
′ + tei, s)− ∂iv̂k(y

′, s)|2

t2
dy′ ds

)1/2

+
2

t2

(∫ 0

−δ

∫
∆k

|v̂k(y
′, s)− v̂k(y

′ − tei, s)− t∂iv̂k(y
′, s)|2 dy′ ds

)1/2

.

The first term is dominated by the left-hand side of (7.12), while the second term can be
estimated by

2

t2

∫ 0

−δ

∫
∆k

(∫ |t|

0

|∂iv̂k(y
′ + τei, s)− ∂iv̂k(y

′, s)| dτ

)2

dy′ ds

1/2

which can in turn be estimated using the Minkowski inequality (2.7) by

2

t2

∫ |t|

0

(∫ 0

−δ

∫
∆k

|∂iv̂k(y
′ + τei, s)− ∂iv̂k(y

′, s)|2 dy′ ds

)1/2

dτ.

For t ≥ 0 put

V (t) :=

∫ t

0

(∫ 0

−δ

∫
∆k

|∇v̂k(y
′ + τei, s)−∇v̂k(y

′, s)|2 dy′ ds

)1/2

dτ.

Then (7.12) yields that
1

t2
(V̇ (t))2 ≤ C

(
1 +

1

t2
V (t)

)
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for all t > 0 , that is,
1

t
V̇ (t) ≤ C

(
1 +

1

t
V 1/2(t)

)
.

Put U(t) := V (t)/t for t > 0 . Then U̇(t) = V̇ (t)/t − V (t)/t2 ≤ C(1 + U(t)/t1/2) − U(t)/t ,
hence U̇(t) ≤ C+C2/4 . From the Mean Continuity Theorem it follows that U(0−) = 0, hence
U(t) ≤ (C + C2/4)t , and V (t) ≤ (C + C2/4)t2 . We conclude from (7.12) that there exists a
constant C∗ independent of t such that for all |t| > 0 sufficiently small we have∫ 0

−δ

∫
∆k

|∇v̂k(y
′ + tei, s)−∇v̂k(y

′, s)|2

t2
dy′ ds ≤ C∗. (7.13)

Consequently, we can find a sequence tj → 0 and a function ηk,i ∈ L2(∆k × (−δ, 0)) such that

∇v̂k(y
′ + tjei, s)−∇v̂k(y

′, s)

tj
→ ηk,i(y

′, s) weakly in L2(∆k × (−δ, 0)).

On the other hand, for every z ∈ C∞
C (∆k × (−δ, 0); RN) we have∫ 0

−δ

∫
∆k

〈
∇v̂k(y

′ + tjei, s)−∇v̂k(y
′, s)

tj
, z(y′, s)

〉
dy′ ds

= −
∫ 0

−δ

∫
∆k

〈
∇v̂k(y

′, s),
z(y′, s)− z(y′ − tjei)

tj

〉
dy′ ds

→ −
∫ 0

−δ

∫
∆k

〈∇v̂k(y
′, s), ∂iz(y

′, s)〉 dy′ ds,

and we conclude that ∂i∇v̂k = ηk,i ∈ L2(∆k × (−δ, 0)) for i = 1, . . . , N − 1 . It remains to
prove that ∂2

N v̂k ∈ L2(∆k × (−δ, 0)) . This follows from (7.9), where we can integrate by parts
in all terms of the left-hand side except for the term (Bk)NN∂N v̂k∂N ẑk , and we obtain∫ 0

−δ

∫
∆k

(Bk)NN(y′)∂N v̂k(y
′, s)∂N ẑ(y

′, s) dy′ ds =

∫ 0

−δ

∫
∆k

g∗∗k (y′, s)ẑ(y′, s) dy′ ds (7.14)

with some function g∗∗k ∈ L2(∆k × (−δ, 0)) . Since Bk is symmetric and uniformly positive
definite, we necessarily have (Bk)NN(y′) ≥ c for some constant c > 0 , and we conclude that
all second derivatives ∂i∂j v̂k belong to L2(∆k × (−δ, 0)) , which we wanted to prove. �

In the theory of elasticity, it is assumed that the stress tensor σ = σij is related to the strain
tensor ε = εij given by (7.1) by a linear relation

σij =
N∑

k,l=1

Aijklεkl (7.15)

with a symmetric positive definite fourth order tensor A = Aijkl , see [10]. Let g = (g1, . . . gN)
be the vector of volume force density acting on the body. Then the equilibrium condition has
the form divAσ = g , that is,

N∑
j,l,k=1

∂jAijklεkl = gi for i = 1, . . . , N. (7.16)

We have the following counterpart of Proposition 7.2
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Corollary 7.4 Let Ω be as in Proposition 7.2 and let gi ∈ L2(Ω) for i = 1, . . . , N . Then
the solution u of (7.16) with boundary condition u = 0 on ∂Ω belongs to W 2,2(Ω; RN) ∩
W 1,2

0 (Ω; RN) .

We omit the proof which is similar to the proof of Proposition 7.2 except that it makes use of
the Korn inequality in Proposition 7.1.

8 Embeddings

The word embedding is used in the situation of two Banach spaces U and V , endowed with
respective norms ‖ · ‖U and ‖ · ‖V , and such that

V ⊂ U ,
∃C > 0 ∀v ∈ V : ‖v‖U ≤ C‖v‖V .

}
(8.1)

If (8.1) holds, then we say that V is embedded in U .

The embedding is said to be compact , if every bounded set A ⊂ V is precompact in U , that is,

∀ε > 0 ∃a1, . . . , an ∈ A ∀a ∈ A ∃k ∈ {1, . . . , n} : ‖a− ak‖U < ε . (8.2)

The following theorem represents a basic tool in the theory of compact embeddings in function
spaces.

Theorem 8.1 (Arzelà-Ascoli) Let X,Y be Banach spaces and let A ⊂ X,B ⊂ Y be com-
pact sets. Let C(A;B) be the Banach space of all continuous mappings from A into B . Let
K ⊂ C(A;B) be an equicontinuous set, that is,

∀ε > 0 ∃δ > 0 ∀f ∈ K ∀x, y ∈ A : ‖x− y‖X < δ ⇒ ‖f(x)− f(y)‖Y < ε .

Then K is compact in C(A;B) . Conversely, every relatively compact set in C(A;B) is
equicontinuous.

Proof. Let K ⊂ C(A;B) be equicontinuous, and let ε > 0 be given. We find δ > 0 such that
for all f ∈ K we have ‖f(x) − f(y)‖Y < ε/4 whenever ‖x − y‖X < δ . Since A is compact,
there exist x1, . . . , xp ∈ A such that for every x ∈ A there exists i ∈ I := {1, . . . , p} such that
‖x − xi‖X < δ . Furthermore, B is compact, hence there exist y1, . . . , yq ∈ B such that for
every y ∈ B there exists j ∈ J := {1, . . . , q} such that ‖y − yj‖Y < ε/4 .

For z ∈ J p , z = {z1, . . . , zp} , we now denote

Kz =
{
f ∈ K ; ∀i ∈ I : ‖f(xi)− yzi

‖Y <
ε

4

}
.

Set J := {z ∈ J p : Kz 6= ∅} . The set J is indeed finite and we have K =
⋃

z∈J Kz , hence we
may fix one representative fz ∈ Kz for each z ∈ J . For any f ∈ Kz and x ∈ A we find xi

such that ‖x− xi‖X < δ , and estimate

‖f(x)− fz(x)‖Y ≤ ‖f(x)− f(xi)‖Y + ‖f(xi)− yzi
‖Y + ‖fz(xi)− yzi

‖Y + ‖fz(x)− fz(xi)‖Y

< ε ,
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which we wanted to prove. Since every finite set of mappings in C(A;B) is equicontinuous,
the fact that that relatively compact sets are equicontinuous follows easily. �

As an example, consider the spaces C(Ω̄) of continuous real functions defined on Ω̄ , endowed
with the norm

‖f‖C,0 = sup{|f(x)| ; x ∈ Ω̄} ,
and C1(Ω̄) of continuously differentiable real functions on Ω̄ , endowed with the norm

‖f‖C,1 = sup

{
|f(x)|+

N∑
i=1

∣∣∣∣ ∂f∂xi

(x)

∣∣∣∣ ; x ∈ Ω̄

}
.

Proposition 8.2 If Ω is a bounded domain Lipschitzian boundary, then the space C1(Ω̄) is
compactly embedded in C(Ω̄) .

Proof. Condition (8.1) is automatically satisfied. Furthermore, let K ⊂ C1(Ω̄) be bounded.
Hence, there exists M > 0 such that

∀f ∈ K ∀x ∈ Ω̄ : |f(x)|+
N∑

i=1

∣∣∣∣ ∂f∂xi

(x)

∣∣∣∣ ≤M .

We are thus in the situation of Theorem 8.1 with X = RN , Y = R , A = Ω̄, B = [−M,M ] ,
provided we check that K is equicontinuous. Let x, y ∈ Ω̄ be arbitrarily chosen. We find
a Lipschitz continuous function ξ : [0, 1] → Ω̄ and a constant C > 0 such that ξ(0) = x ,
ξ(1) = y , |ξ′(σ)| ≤ C|x− y| a. e. (this is possible by the hypotheses on Ω), and use the chain
rule to estimate

|f(x)− f(y)| =

∣∣∣∣∫ 1

0

d

dσ
f(ξ(σ)) dσ

∣∣∣∣
=

∣∣∣∣∫ 1

0

〈∇f(ξ(σ)), ξ′(σ)〉 dσ

∣∣∣∣
≤ MC|x− y| .

The relative compactness now follows from Theorem 8.1. �

For Sobolev spaces W 1,p(Ω) , we have the following classical embedding formula.

Theorem 8.3 Let p, q ∈ [1,∞) be such that

1

p
≥ 1

q
>

1

p
− 1

N
,

and set

κ := 1−N

(
1

p
− 1

q

)
∈ (0, 1] .

Then there exists Cpq > 0 such that for every u ∈ W 1,p(RN) and every σ ∈ (0, 1] we have

|uσ − u|q ≤ Cpq σ
κ |∇u|p , (8.3)

where uσ is as in (4.3).
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Proof. Notice first that for every x ∈ RN and σ ∈ (0, 1) we obtain, integrating by parts, that

∂

∂σ
uσ(x) = σ−N

∫
RN

N∑
i=1

∂

∂yi

(
xi − yi

σ
ϕ

(
x− y

σ

))
u(y) dy

= −σ−N

∫
RN

〈
Φ

(
x− y

σ

)
,∇u(y)

〉
dy , (8.4)

where we set Φ(ξ) = ξϕ(ξ) . This yields in particular,

|uβ(x)− uα(x)| ≤
∫ β

α

σ−N

∣∣∣∣∫
RN

〈
Φ

(
x− y

σ

)
,∇u(y)

〉
dy

∣∣∣∣ dσ (8.5)

for every 0 < α < β ≤ 1 . To estimate the difference uβ − uα in (8.5) in the space Lq(RN) , we
make use of the Minkowski and Young II inequalities with r as in (2.12), using the notation∫

X
,
∫

Y
for

∫
RN as in Proposition 2.3. More specifically, we have

|uβ − uα|q ≤

(∫
X

(∫ β

α

σ−N

∫
Y

∣∣∣∣Φ(x− y

σ

)∣∣∣∣ |∇u(y)| dy dσ

)q

dx

)1/q

Minkowski

≤
∫ β

α

σ−N

(∫
X

(∫
Y

∣∣∣∣Φ(x− y

σ

)∣∣∣∣ |∇u(y)| dy)q

dx

)1/q

dσ

Young II

≤
∫ β

α

σ−N

(∫
RN

∣∣∣Φ(y
σ

)∣∣∣r dy

)1/r (∫
RN

|∇u(x)|p dx

)1/p

dσ

≤ |∇u|p
(∫

B1(0)

|Φ (x)|r dx

)1/r ∫ β

α

σN(1/r−1) dσ . (8.6)

We have N(1/r − 1) = κ− 1 , hence

|uβ − uα|q ≤ Cpq (βκ − ακ) |∇u|p (8.7)

with Cpq = |Φ|r/κ . Hence, for every sequence σi → 0+, uσi is a Cauchy sequence in Lq(RN) .
By Corollary 4.4, uσi converge to u in Lp(RN) , hence u ∈ Lq(RN) and uσi converge to u
(strongly) in Lq(RN) . Letting α tend to 0 and replacing β by σ , we thus obtain (8.3). �

Corollary 8.4 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, and
let 1 ≤ p <∞ , 1 ≤ q <∞ satisfy the inequality

1

q
>

1

p
− 1

N
.

Then the space W 1,p(Ω) is compactly embedded in Lq(Ω) .

Proof. Assume first q ≥ p , and set u∗ = Epu , where Ep : W 1,p(Ω) → W 1,p(RN) is the
prolongation operator from Theorem 5.2. By Theorems 5.2 and 8.3, there exist constants C1

and C2 such that for every σ ∈ (0, 1] we have

|uσ
∗ − u∗|q ≤ C1 σ

κ |∇u∗|p ≤ C2 σ
κ ‖u‖1;p,Ω . (8.8)
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By (4.4) and Theorem 5.2 we have

|uσ
∗ |q ≤ C3 σ

κ−1 |u∗|p ≤ C3 cp σ
κ−1 |u|p,Ω , (8.9)

with C3 = |ϕ|r . Consequently, there exists a constant C4 > 0 such that

|u|q,Ω ≤ |u∗|q ≤ C4

(
σκ−1 |u|p,Ω + σκ ‖u‖1;p,Ω

)
(8.10)

for all σ ∈ (0, 1] . According to (8.1), W 1,p(Ω) is thus embedded in Lq(Ω) . To see that the
embedding is compact, consider a bounded set M ⊂ W 1,p(Ω) and an arbitrary ε > 0 . We fix
σ > 0 such that, with the notation of Theorem 8.3, we have

Cpq σ
κ |∇u∗|p <

ε

4
∀u ∈M . (8.11)

With this fixed σ , every element uσ
∗ of the set Mσ = {uσ

∗ ; u ∈M} vanishes outside of the set
(1+σ)B1(0) =: B1+σ(0) . Moreover, Mσ is bounded in C1(B1+σ(0) , hence, by Proposition 8.2,
there exist u1, . . . , un ∈M such that

∀u ∈M ∃k ∈ {1, . . . , n} ∀x ∈ B1+σ(0) : |uσ
∗ (x)− uσ

k(x)| < ε

4meas (B1+σ(0))
. (8.12)

We then have, by (8.11), (8.12), and Theorem 8.3, that

|u∗ − uσ
k |q ≤ |uσ

∗ − uσ
k |q +

ε

4
<
ε

2
. (8.13)

For k = 1, . . . , n set Mk = {u ∈ M ; |u∗ − uσ
k |q < ε/2} , and J = {k ∈ {1, . . . , n} ; Mk 6= ∅} .

For every k ∈ J we fix one representative ûk ∈ Mk , so that for every u ∈ Mk we have
|u − ûk|q,Ω < ε and M =

⋃
k∈J Mk . The proof is thus complete for q ≥ p . Let now q < p .

Hölder’s inequality yields

|uσ
∗ − u∗|q ≤ (meas (B1+σ(0)))1/q−1/p|uσ

∗ − u∗|p ,

hence the above argument remains valid. �

Corollary 8.5 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, and
let p > N . Then the space W 1,p(Ω) is compactly embedded in C(Ω̄) .

Proof. We repeat the argument of the proof of Theorem 8.3 and Corollary 8.4, putting

κ := 1− N

p
∈ (0, 1] .

A computation analogous to (8.6) yields for every x ∈ RN that

|uβ
∗ (x)− uα

∗ (x)| ≤
∫ β

α

σ−N

∫
Y

∣∣∣∣Φ(x− y

σ

)∣∣∣∣ |∇u∗(y)| dy dσ

Hölder

≤
∫ β

α

σ−N

(∫
RN

∣∣∣Φ(y
σ

)∣∣∣p′ dy

)1/p′ (∫
RN

|∇u∗(x)|p dx

)1/p

dσ

≤ |∇u∗|p
(∫

B1(0)

|Φ (x)|p
′
dx

)1/p′ ∫ β

α

σ−N/p dσ , (8.14)

and we proceed as above. �
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9 Limit cases and counterexamples

Proposition 9.1 Let Ω ⊂ RN , N ≥ 2 , be an open bounded connected set with Lipschitzian
boundary, and let

1

q
=

1

p
− 1

N
. (9.1)

Then the space W 1,p(Ω) is embedded in Lq(Ω) .

Proof. We proceed in principle as in the proof of Theorem 8.3. The main difference is that
the number κ is zero here and we have to proceed more carefully. We represent x ∈ RN as
x = (x′, xN) , x′ ∈ RN−1 , and rewrite inequality (8.5) as

|uβ(x′, xN)− uα(x′, xN)| ≤
∫ β

α

σ−N

∫
RN

∣∣∣∣Φ(x′ − y′

σ
,
xN − yN

σ

)∣∣∣∣ |∇u(y′, yN)| dy′ dyN dσ .

(9.2)
With r = N/(N − 1) , we now repeat the computation from (8.6), restricted to the component
x′ , to obtain

|uβ(·, xN)− uα(·, xN)|q

≤

(∫
RN−1

(∫ β

α

σ−N

∫
R

∫
RN−1

∣∣∣∣Φ(x′−y′σ
,
xN−yN

σ

)∣∣∣∣ |∇u(y′, yN)| dy′ dyN dσ

)q

dx

)1/q

Minkowski

≤
∫

R

∫ β

α

σ−N

(∫
RN−1

(∫
RN−1

∣∣∣∣Φ(x′−y′σ
,
xN−yN

σ

)∣∣∣∣ |∇u(y′, yN)| dy′
)q

dx′
)1/q

dσ dyN

Young II

≤
∫

R

∫ β

α

σ−N

(∫
RN−1

∣∣∣∣Φ(y′σ , xN−yN

σ

)∣∣∣∣r dy′
)1/r (∫

RN−1

|∇u(x′, yN)|p dx′
)1/p

dσ dyN

≤
∫

R

∫ β

α

σ−N+N−1/r|∇u(·, yN)|p
∣∣∣∣Φ(·, xN − yN

σ

)∣∣∣∣
r

dσ dyN . (9.3)

The function
∣∣Φ (·, xN−yN

σ

)∣∣
r

vanishes if σ < |xN −yN | . Moreover, Φ is bounded by a constant
Φ0 > 0 . Hence, using the fact that −N +N − 1/r = −2 + 1/N , we have∫ β

α

σ−N+N−1/r

∣∣∣∣Φ(·, xN − yN

σ

)∣∣∣∣
r

dσ ≤ Φ0

∫ ∞

|xN−yN |
σ−2+1/N dσ = Φ0 r |xN − yN |−1/r .

We thus have

|uβ(·, xN)− uα(·, xN)|q ≤ Φ0 r

∫
R
|∇u(·, yN)|p |xN − yN |−1/r dyN .

At this point, we use the Hardy-Littlewood inequality (3.1), with q replaced by q′ . Indeed,
1/q′ + 1/p+ 1/r = 2. Hence, for every function g ∈ Lq′(R) we have by Proposition 3.1 that∫

R
|uβ(·, xN)− uα(·, xN)|q g(xN) dxN ≤ C|g|q′|∇u|p



sobo3.tex 36

with some constant C > 0 , hence, by the reverse Hölder inequality (2.11), we have

|uβ − uα|q ≤ C|∇u|p . (9.4)

Since uσ converge strongly to u in Lp(RN) and their Lq norms are bounded, we conclude that
they converge strongly in Lq(RN) as well and the embedding formula follows. �

Corollary 9.2 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, and
let

q ≥ q∗ :=
Np− p

N − p
.

Then the trace operator Fp defined in Theorem 6.1 is continuous from W 1,p(Ω) to Lq(∂Ω) . If
moreover q > q∗ , then the trace operator is compact.

Proof. With the notation from the proof of Theorem 6.1 we have

∫
∆k

|vk(y
′, ak(y

′)|q
(

1 +
N∑

i=1

(∂iak(y
′))2

)1/2

dy′

≤ C

∫
∆k

∫ ak(y′)

ak(y′)−δ

|vk(y
′, yN)|q−1 |∂Nvk(y

′, yN)| dyN dy′

≤ C

(∫
Q−

k

|vk(y)|p
′(q−1) dy

)1/p′ (∫
Q−

k

|∂Nvk(y)|p dy

)1/p

,

where we have used Hölder’s inequality with p′ as in (2.3). We have

p′(q − 1) ≥ p(q∗ − 1) =
Np

N − p
.

From Proposition 9.1 it follows that the norm |vk|q,G−k
is bounded above by the norm ‖vk‖1;p,G−k

,
and the assertion follows from the partition of unity. The compactness of the embedding for
q > q∗ is a consequence of Corollary 8.4. �

We now show a few examples to illustrate that the embedding inequalities are (at least quali-
tatively) optimal.

(i) To see that the embedding in Proposition 9.1 is not compact, and that W 1,p(Ω) is not
embedded in Lq(Ω) if

1

q
<

1

p
− 1

N
, (9.5)

it suffices to fix any open set Ω, some x0 ∈ Ω, find s0 > 0 such that x0 + s0B1(0) ⊂ Ω,
and consider the family of functions

us(x) = s1−N/pϕ

(
x− x0

s

)
, s ∈ (0, s0) , (9.6)
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with ϕ as in (1.1). We have

|us|p,Ω = s|ϕ|p ,
∣∣∣∣∂us

∂xi

∣∣∣∣
p,Ω

=

∣∣∣∣ ∂ϕ∂xi

∣∣∣∣
p

, |us|q,Ω = sα|ϕ|q ∀s ∈ (0, s0) ,

where α = 1−N(1/p− 1/q) . In the case (9.1), we have α = 0. Using the fact that us

converge to 0 in Lp(Ω) as s → 0+, we conclude that the family {us} , having constant
nonzero norm in Lq(Ω) , does not contain any convergent subsequence in Lq(Ω) , hence
the embedding is not compact. In the case (9.5), we have α < 0 , hence the family {us}
is unbounded in Lq(Ω) and no embedding takes place.

(ii) In another limit case
p = N , (9.7)

the space W 1,p(Ω) is embedded in L∞(Ω) if and only if p = N = 1, and the embedding
is not compact. For N ≥ 2 , it suffices to consider Ω = B1(0) , and

u(x) =

(
− log

(
|x|
2

))α

,

for any 0 < α < 1 − 1/N . Then u is unbounded, but belongs to W 1,N(B1(0)) . For
N = 1, the embedding of W 1,1(Ω) into C(Ω̄) (hence L∞(Ω)) for every bounded interval
Ω is obvious. To see that it is not compact, we may consider for n ∈ N the sequence

un(x) =

{
sin 1

x
for x ∈

[
1

(n+1)π
, 1

nπ

]
0 otherwise.

It is bounded in W 1,1(0, 1/π) , but sup |un(x)−um(x)| = 1 for all m 6= n , hence it is not
precompact in L∞(0, 1/π) .

(iii) The assumption on the Lipschitzian boundary is substantial. We show that there exists
an open simply connected set Ω ⊂ R2 such that W 1,p(Ω) is not embedded in Lq(Ω) for
any q > p ≥ 1 . This set can be defined as (see Fig. 5)

Ω =
{
x = (x1, x2) ∈ R2 ; 0 < x1 < 1, 0 < x2 < e −1/x1

}
.

For any q > p we set
upq(x) = e 2/(p+q)x1 .

Then upq ∈ W 1,p(Ω) , but upq /∈ Lq(Ω) .

10 Anisotropic embeddings

In evolution problems, one deals with functions which depend on a space variable x ∈ Ω and
time t ∈ ω , where ω ⊂ R is an open interval corresponding to the time of the process. For
1 ≤ p, q <∞ , we introduce the spaces

Lp(ω ; Lq(Ω)) =

{
u ∈ L1(Ω× ω) ; |u|p,q,Ω,ω :=

(∫
ω

|u(·, t)|pq,Ω dt

)1/p

<∞

}
, (10.1)
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��x1

x2

0

Ω

Figure 5: Non-Lipschitzian boundary.

with obvious modifications for p = ∞ or q = ∞ .

We state explicitly one possible embedding result for such spaces, without going into much
detail in the proof, which is fully analogous to the above ones.

Theorem 10.1 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, let
ω be a bounded open interval, and let W (1);p0,q0;p1,q1(ω; Ω) be the space

W 1,(p0,q0);(p1,q1)(ω; Ω) =
{
u ∈ L1(Ω× ω) ;

∂u

∂t
∈ Lp0(ω ; Lq0(Ω)),

∂u

∂xi

∈ Lp1(ω ; Lq1(Ω)) for i = 1, . . . , N
}
.

If q2 ≥ max{q0, q1} , p2 ≥ max{p0, p1} , and(
1− 1

p0

+
1

p2

)(
1

N
− 1

q1
+

1

q2

)
>

(
1

p1

− 1

p2

)(
1

q0
− 1

q2

)
, (10.2)

then the space W (1);p0,q0;p1,q1(ω; Ω) is compactly embedded in Lp2(ω ; Lq2(Ω)) . If moreover
(10.2) holds for q2 = ∞ with the convention 1/∞ = 0 , that is,(

1− 1

p0

+
1

p2

)(
1

N
− 1

q1

)
>

1

q0

(
1

p1

− 1

p2

)
, (10.3)

then W (1);p0,q0;p1,q1(ω; Ω) is compactly embedded in Lp2(ω ; C(Ω̄)) . If (10.2) holds for p2 =
q2 = ∞ , that is,

p′0
p1q0

+
1

q1
<

1

N
, (10.4)

then the space W 1,(p0,q0);(p1,q1)(ω; Ω) is compactly embedded in C(Ω̄× ω̄) .

Hint for the proof. Consider as before the extensions to the space W 1,(p0,q0);(p1,q1)(R; RN) ,
where the norms | · |pi,qi,Ω,ω are denoted again for simplicity as | · |pi,qi

, i = 0, 1 . For σ ∈ (0, 1]
and u ∈ W (1);p0,q0;p1,q1(R; RN) , we define regularizations analogous to (4.3) in the form

uσ(x, t) = σ−N−λ

∫
R

∫
RN

ϕ

(
x− y

σ
,
t− s

σλ

)
u(y, s) dy ds , (10.5)

where ϕ is a smooth nonnegative function on RN+1 , which vanishes outside B1(0)× (−1, 1) ,
and ∫ 1

−1

∫
B1(0)

ϕ(x, t) dx dt = 1 .
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The number λ is to be chosen as

λ =
1 +N

(
1
q0
− 1

q1

)
1
p′0

+ 1
p1

. (10.6)

Note that λ > 0 by (10.2). A computation similar to (8.4)–(8.6) yields

∂

∂σ
uσ(x, t) = −λσ−N−1

∫
R

∫
RN

Φ0

(
x− y

σ
,
t− s

σλ

)
∂u

∂s
(y, s) dy ds

−σ−N−λ

∫
R

∫
RN

〈
Φ1

(
x− y

σ
,
t− s

σλ

)
,∇yu(y, s)

〉
dy ds , (10.7)

where Φ0(ξ, τ) = τϕ(ξ, τ) , Φ1(ξ, τ) = ξϕ(ξ, τ) , hence

|uβ(x, t)− uα(x, t)| ≤ λI0(x, t) + I1(x, t) (10.8)

for 0 < α < β ≤ 1 , where

I0(x, t) =
∫ β

α
σ−N−1

∫
R

∫
RN

∣∣Φ0

(
x−y

σ
, t−s

σλ

)∣∣ ∣∣∂u
∂s

(y, s)
∣∣ dy ds dσ ,

I1(x, t) =
∫ β

α
σ−N−λ

∫
R

∫
RN

∣∣Φ1

(
x−y

σ
, t−s

σλ

)∣∣ |∇yu(y, s)| dy ds dσ .

 (10.9)

Let (10.2) hold. With the intention to use Young’s inequality for convolutions again, we intro-
duce the numbers r0, s0, r1, s1 by the identities

1

r0
= 1− 1

q0
+

1

q2
,

1

s0

= 1− 1

p0

+
1

p2

,
1

r1
= 1− 1

q1
+

1

q2
,

1

s1

= 1− 1

p1

+
1

p2

. (10.10)

We use again the notation
∫

X
dx ,

∫
Y

dy for
∫

RN dx ,
∫

RN dy , and
∫

T
dt ,

∫
S

ds for
∫

R dt ,∫
R ds . For t ∈ R , we have

|I0(·, t)|q2

Minkowski

≤
∫ β

α

σ−N−1

∫
S

(∫
X

(∫
Y

∣∣∣∣Φ0

(
x−y
σ

,
t−s
σλ

)∣∣∣∣ ∣∣∣∣∂u∂s (y, s)

∣∣∣∣ dy

)q2

dx

)1/q2

ds dσ

Young II

≤
∫ β

α

σ−N−1

∫
S

∣∣∣∣Φ0

(
·
σ
,
t− s

σλ

)∣∣∣∣
r0

∣∣∣∣∂u∂s (·, s)
∣∣∣∣
q0

ds dσ

=

∫ β

α

σ−N−1+N/r0

∫
S

∣∣∣∣Φ0

(
·, t− s

σλ

)∣∣∣∣
r0

∣∣∣∣∂u∂s (·, s)
∣∣∣∣
q0

ds dσ , (10.11)

hence

|I0|p2,q2

Minkowski

≤
∫ β

α

σ−N−1+N/r0

(∫
T

(∫
S

∣∣∣∣Φ0

(
·, t− s

σλ

)∣∣∣∣
r0

∣∣∣∣∂u∂s (·, s)
∣∣∣∣
q0

ds

)p2

dt

)1/p2

dσ

Young II

≤
∫ β

α

σ−N−1+N/r0

∣∣∣Φ0

(
·, ·
σλ

)∣∣∣
s0,r0

∣∣∣∣∂u∂s
∣∣∣∣
p0,q0

dσ

= |Φ0|s0,r0

∣∣∣∣∂u∂s
∣∣∣∣
p0,q0

∫ β

α

σ−N−1+N/r0+λ/s0 dσ . (10.12)
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Similarly,

|I1(·, t)|q2

Minkowski

≤
∫ β

α

σ−N−λ

∫
S

(∫
X

(∫
Y

∣∣∣∣Φ1

(
x−y
σ

,
t−s
σλ

)∣∣∣∣ |∇yu(y, s)| dy

)q2

dx

)1/q2

ds dσ

Young II

≤
∫ β

α

σ−N−λ

∫
S

∣∣∣∣Φ1

(
·
σ
,
t− s

σλ

)∣∣∣∣
r1

|∇yu(·, s)|q1
ds dσ

=

∫ β

α

σ−N−λ+N/r1

∫
S

∣∣∣∣Φ1

(
·, t− s

σλ

)∣∣∣∣
r1

|∇yu(·, s)|q1
ds dσ , (10.13)

hence

|I1|p2,q2

Minkowski

≤
∫ β

α

σ−N−λ+N/r1

(∫
T

(∫
S

∣∣∣∣Φ1

(
·, t− s

σλ

)∣∣∣∣
r1

|∇yu(·, s)|q1
ds

)p2

dt

)1/p2

dσ

Young II

≤
∫ β

α

σ−N−λ+N/r1

∣∣∣Φ1

(
·, ·
σλ

)∣∣∣
s1,r1

|∇yu|p1,q1
dσ

= |Φ1|s1,r1
|∇yu|p1,q1

∫ β

α

σ−N−λ+N/r1+λ/s1 dσ . (10.14)

Set

κ = N

(
1

p′0
+

1

p1

)−1((
1− 1

p0

+
1

p2

)(
1

N
− 1

q1
+

1

q2

)
−
(

1

q0
− 1

q2

)(
1

p1

− 1

p2

))
.

Then κ > 0 by (10.2), and we have

−N − 1 +
N

r0
+
λ

s0

= −N − λ+
N

r1
+
λ

s1

= κ− 1 .

Combining (10.8) with (10.9), (10.12), and (10.14) yields

|uβ − uα|p2,q2 ≤ Cp0,p1,p2,q0,q1,q2 (βκ − ακ)

(∣∣∣∣∂u∂t
∣∣∣∣
p0,q0

+ |∇xu|p1,q1

)
, (10.15)

and we obtain the result similarly as in Corollaries 8.4 or 8.5. �

We can consider a higher degree of anisotropy, where also the degree of differentiability is
different in different directions. General formulas can again be found in [2, 3]. Here we show
one example which is typical for parabolic PDEs.

Theorem 10.2 Let Ω ⊂ RN be an open bounded connected set with Lipschitzian boundary, let
ω be a bounded open interval, and let W 1,(p0,q0);2,(p1,q1)(ω; Ω) be the space

W 1,(p0,q0);2,(p1,q1)(ω; Ω) =
{
u ∈ L1(Ω× ω) ;

∂u

∂t
∈ Lp0(ω ; Lq0(Ω)),

∂2u

∂xi∂xj

∈ Lp1(ω ; Lq1(Ω)) for i, j = 1, . . . , N
}
.
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If q2 ≥ max{q0, q1} , p2 ≥ max{p0, p1} , and(
1− 1

p0

+
1

p2

)(
1

N
− 1

q1
+

1

q2

)
>

(
1

p1

− 1

p2

)(
1

N
+

1

q0
− 1

q2

)
, (10.16)

then for every bounded set B ⊂ W 1,(p0,q0);2,(p1,q1)(ω; Ω) the set {∇xu;u ∈ B} is precompact in
Lp2(ω ; Lq2(Ω)) .

Sketch the proof. We choose

λ =
2 +N

(
1
q0
− 1

q1

)
1
p′0

+ 1
p1

. (10.17)

and repeat the computations from the proof of Theorem 10.1 with uσ as in (10.5) for σ ∈ (0, 1] ,
and u ∈ B . Note that for j ∈ {1, . . . , N} we have

∂uσ

∂xj

(x, t) = σ−N−λ

∫
R

∫
RN

ϕ

(
x− y

σ
,
t− s

σλ

)
∂u

∂yj

(y, s) dy ds , (10.18)

and

∂

∂σ

(
∂uσ

∂xj

)
(x, t) = −λσ−N−1

∫
R

∫
RN

Φ0

(
x− y

σ
,
t− s

σλ

)
∂2u

∂s∂yj

(y, s) dy ds

−σ−N−λ

∫
R

∫
RN

〈
Φ1

(
x− y

σ
,
t− s

σλ

)
,
∂∇yu

∂yj

(y, s)

〉
dy ds

= λσ−N−2

∫
R

∫
RN

Φj

(
x− y

σ
,
t− s

σλ

)
∂u

∂s
(y, s) dy ds

−σ−N−λ

∫
R

∫
RN

〈
Φ1

(
x− y

σ
,
t− s

σλ

)
,
∂∇yu

∂yj

(y, s)

〉
dy ds , (10.19)

where Φj(ξ, τ) = ∂Φ0

∂ξj
(ξτ) , hence∣∣∣∣∂uβ

∂xj

(x, t)− ∂uα

∂xj

(x, t)

∣∣∣∣ ≤ λIj(x, t) + I1(x, t) (10.20)

for 0 < α < β ≤ 1 , where

Ij(x, t) =
∫ β

α
σ−N−2

∫
R

∫
RN

∣∣Φj

(
x−y

σ
, t−s

σλ

)∣∣ ∣∣∂u
∂s

(y, s)
∣∣ dy ds dσ ,

I1(x, t) =
∫ β

α
σ−N−λ

∫
R

∫
RN

∣∣Φ1

(
x−y

σ
, t−s

σλ

)∣∣ ∣∣∣∂∇yu

∂yj
(y, s)

∣∣∣ dy ds dσ ,

 (10.21)

and we proceed as in the proof of Theorem 10.1. �

Note that the order of integration in (10.1) cannot be reversed. For p ≥ q we have by Remark
2.5 that Lq(Ω ; Lp(ω)) is embedded into Lp(ω ; Lq(Ω)) , but the opposite inclusion does not
hold, see Example 2.4. On the other hand, denoting

W 1,(q0,p0);(q1,p1)(Ω;ω) =
{
u ∈ L1(Ω× ω) ;

∂u

∂t
∈ Lq0(Ω ; Lp0(ω)),

∂u

∂xi

∈ Lq1(Ω ; Lp1(ω)) for i = 1, . . . , N
}
,
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we may repeat the computations in (10.11)–(10.14) with reversed order of integration, to check
that conditions (10.2), (10.4) remain valid for the compact embedding of W 1,(q0,p0);(q1,p1)(Ω;ω)
into Lq2(Ω;Lp2(ω)) and C(Ω̄× ω̄) , respectively. Let us mention one important particular case
which frequently occurs in applications. We omit the proof which is the same as for the other
cases.

Corollary 10.3 If q2 ≥ max{q0, q1} , and

1

p′0

(
1

N
− 1

q1
+

1

q2

)
>

1

p1

(
1

q0
− 1

q2

)
, (10.22)

then the space W 1,(q0,p0);(q1,p1)(Ω;ω) is compactly embedded in Lq2(Ω ; C(ω̄)) .

Embeddings of function spaces that are fully anisotropic with respect to all variables can be
treated in the same way. For a vector p = (p1, . . . , pN) , 1 ≤ pi ≤ ∞ , we define the space
Lp

R(RN) as the subspace of L1
R(RN) of functions u of variable x = (x1, . . . , xN) ∈ RN with

support in the ball BR(0) ⊂ RN and such that the norm

‖u‖p =

∫
R

(
. . .

∫
R

(∫
R
|u(x)|p1 dx1

)p2/p1

dx2 . . .

)pN/pN−1

dxN

1/pN

(10.23)

is finite, where the expression(∫
R
Upi(xi) dxi

)1/pi

for pi = ∞

has to be interpreted as
sup ess

xi∈R
U(xi) .

For a matrix P = (Pij)
N
i,j=1 , Pij = 1/pij , 1 ≤ pij ≤ ∞ , we define the anisotropic Sobolev space

W 1,P
R (RN) =

{
u ∈ L1

R(RN) :
∂u

∂xi

∈ Lpi

R (RN), i = 1, . . . , N

}
, (10.24)

where pi = (pi1, . . . , piN) . We denote by I the identity N × N matrix, and by 1 the vector
1 = (1, 1, . . . , 1) . The spectral radius %(P) of P is defined as

%(P) = max{|λ| : λ ∈ C, det (P− λI) = 0} = lim sup
n→∞

|Pn|1/n. (10.25)

Theorem 10.4 Let P be a matrix as above, and let q = (q1, . . . , qN) , 1 ≤ qj ≤ ∞ be a given
vector such that qj ≥ pij for all i, j = 1, . . . , N . We define the matrix Pq = (P q

ij)
N
i,j=1 with

entries

P q
ij =

1

pij

− 1

qj

Let %(Pq) < 1 . Then W 1,P
R (RN) is compactly embedded in Lq

R(RN) .
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The proof of Theorem 10.4 can be found in [9], see also [8]. The idea is to put

b = (I−Pq)−11 = (I + Pq + (Pq)2 + . . . )1, b = (b1, . . . , bN),

choose the regularizations in the form

uσ(x) = σ−|b|
∫

RN

ϕ
(x− y

σb

)
u(y) dy (10.26)

with ϕ as in (1.1), where we denote |b| =
∑N

i=1 bi and

x− y

σb
=

(
x1 − y1

σb1
, . . . ,

xN − yN

σbN

)
,

and use the Minkowski and the Young inequality for convolutions as above to obtain the
estimate

|u− uσ|q ≤ Cσ
N∑

i=1

|∂iu|pi
(10.27)

with a constant C > 0 independent of σ .

11 Interpolations

We first recall the following classical interpolation result in Lp spaces.

Proposition 11.1 Let Ω ⊂ RN be an open set (bounded or unbounded), and let 1 ≤ p0 <
p1 ≤ ∞ be given. If u ∈ Lp0(Ω) ∩ Lp1(Ω) , then u ∈ Lp(Ω) for all p ∈ [p0, p1] , and we have

|u|p,Ω ≤ |u|1−α
p0,Ω|u|

α
p1,Ω

for all u ∈ Lp0(Ω) ∩ Lp1(Ω) , where

α =

1
p0
− 1

p

1
p0
− 1

p1

.

Proof. Set q = p1/αp . Then q′ = p0/(1− α)p , and we may use Hölder’s inequality to obtain

|u|p,Ω =

(∫
Ω

|u(x)|(1−α)p|u(x)|αp dx

)1/p

≤
(∫

Ω

|u(x)|(1−α)pq′ dx

)1/pq′ (∫
Ω

|u(x)|αpq dx

)1/pq

= |u|1−α
p0,Ω|u|

α
p1,Ω .

�

We now establish an interpolation formula between Lp spaces and Sobolev spaces.
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Theorem 11.2 Let p, q, s ∈ (1,∞) be such that

1

s
>

1

q
>

1

p
− 1

N
,

and set

κ := 1−N

(
1

p
− 1

q

)
, γ = N

(
1

s
− 1

q

)
.

Then there exists Cpqs > 0 such that for every u ∈ W 1,p(RN) ∩ Ls(RN) and every σ ∈ (0, 1]
we have

|u|q ≤ Cpqs

(
σ−γ|u|s + σκ |∇u|p

)
. (11.1)

Proof. The assertion follows from (4.4) and (8.3) provided q ≥ p . In particular, for q = p we
have κ = 1, γ = γ0 := N(1/s− 1/p) , and

|u|p ≤ Cpps

(
σ−γ0 |u|s + σ |∇u|p

)
. (11.2)

Let now q < p . By Proposition 11.1 we have

|u|q ≤ |u|1−α
s |u|αp , with α =

1
s
− 1

q

1
s
− 1

p

.

This yields
|u|p ≤ Cα

pps

(
σ−αγ0|u|s + σα |u|1−α

s |∇u|αp
)
.

We now use inequality (2.5) with p replaced by 1/α , and with x = µσα|∇u|αp , y = |u|1−α
s /µ ,

where we set µ = σ(1−α)αγ0 , and obtain

σα |u|1−α
s |∇u|αp ≤ ασ1+(1−α)γ0 |∇u|p + (1− α)σ−αγ0 |u|s .

Hence,
|u|p ≤ 2Cα

pps

(
σ−αγ0|u|s + σ1+(1−α)γ0 |∇u|p

)
,

which is precisely (11.1). �

We conclude this text with the famous Gagliardo-Nirenberg inequality.

Corollary 11.3 (Gagliardo-Nirenberg inequality) Let Ω ⊂ RN be an open bounded con-
nected set with Lipschitzian boundary, and let

1

s
>

1

q
>

1

p
− 1

N
.

Set

% =

1
s
− 1

q

1
N

+ 1
s
− 1

p

.

Then there exists a constant Kpqs > 0 such that for every u ∈ W 1,p(Ω) we have

|u|q,Ω ≤ Kpqs

(
|u|s,Ω + |u|1−%

s,Ω ‖u‖
%
1;p,Ω

)
. (11.3)
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Proof. As in the proof of Corollary 8.4, we set u∗ = Epu . By Theorem 11.2, we have

|u∗|q ≤ Cpqs

(
σ−γ|u∗|s + σκ |∇u∗|p

)
. (11.4)

If |∇u∗|p > |u∗|s , then we set

σ =

(
|u∗|s
|∇u∗|p

)1/(γ+κ)

,

otherwise we choose σ = 1. In both cases we obtain

|u∗|q ≤ 2Cpqs

(
|u∗|s + |u∗|κ/(γ+κ)

s |∇u∗|γ/(γ+κ)
p

)
. (11.5)

We have κ/(γ + κ) = 1− % , γ/(γ + κ) = % , and the desired result follows from Theorem 5.2.
�

It is in principle possible to derive from (10.27) the corresponding interpolation inequalities
also for anisotropic spaces. We leave the particular cases to the reader.
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