Compressible fluid flows driven by temperature gradient
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Problem formulation

Navier—Stokes—Fourier system

0r0 + divx(ou) =0

Ot(ou) + divi(ou ® u) + Vip(o,9) = div,S(9, Dyu) +
De(0e(0,9)) + div(oe(0, D)u) + Va9, V0) = § : Dy — p(o, 9)divu

Boundary conditions

QC Rd7 d = 2,3 bounded, regular

G = G(X)7 193 = ’195(X)

S8, Dxu) = u(V) (qu + Viu — %divxul[) + n(¥)div,ul

q(0, V) = —k(9) V0




Crucial problems

m Global existence. Global-in-time existence of solutions “far from
equilibrium”

m Levinson dissipativity or bounded absorbing set. Any
global-in—time weak solution to the Navier—Stokes—Fourier system in
a domain with impermeable boundary endowed with the Dirichlet
boundary conditions for the temperature enters eventually a
bounded absorbing set.

m Asymptotic compactness. Any bounded family of global solutions
is precompact in a suitable topology of the trajectory space, whereas
any of its accumulation points represents a weak solution of the
same problem.




Problem with conservative boundary conditions

Conservative boundary conditions

UlaQ :07 q'n‘BQ =0

Driving force

of, f=1(x)

f=V.G, G=G(x) = p0—ps, 9 > 0s, m=pgu—0ast— oo

¥s - a positive constant, V,p(gs,¥s) = 0sVxG

f#V.G = /[%Q\u|2+ge(g,ﬁ) dx — o0 as t — oo
Q




Static solutions

USZO

us =0 = divi(k(Is)Vxs) =0, Jslag = I

VXP(QS7195) = QSVXG = CUI’IX(QSVXG) = vaS X VXG =0

0op(05,Vs)Vx0s + Oop(0,9)Vx¥s = 05V G
=
Vx¥s x VxG =0




Weak solutions, |

Equation of continuity

/ / [00:p + ou - V] dxdt =0,
T Ja

[ [ [B@0:0+ bioyu - Vo -+ (ble)  be)e) divaug] axde =0

T Ja
for any o € C2((T,0) x Q), and any b € C}(R), b’ € C(R)
Momentum equation
/ / [ou - Orp + ou ® u: Vi + pdivyep] dxdt
T Ja
= / / [S: Vip — 0V4G - ] dxdt,
T Ja

for any p € C2((T,00) x ; R%)




Weak solutions, |1

Entropy inequality

—/ / [Qsaﬂp + osu - Vip + % . ngo] dxdt
T Ja

* [ q- V.9
> p :Dyu — d
_/T /919 [S Dyu 3 } xdt

for any ¢ € C2((T,00) x Q), ¢ >0

Ballistic energy
1 ~
Ey = §Q|u| + oe — Yps

>0, 5\@9 =g

Ballistic energy boundary flux

q-n*gq'"\anzo




Weak solutions, 111

Ballistic energy balance

—/ 8t¢/ [lg\u|2+ge—1§gs} dxdt
T al?

> J ] q- V¥

<[ [ V6o vd-9v.0] ax
T Q v

for any ¢ € CX(T;00), ¥ >0, and any 9 € CH([T; ) x Q), J)oq = 95
\ J

m Compatibility [Chaudhuri—-EF 2021]. Smooth weak solutions are classical
solutions

m Weak-strong uniqueness [Chaudhuri—-EF 2021]. A weak solution
coincides with the strong solution as long as the latter exists



Constitutive theory, |

Gibbs’ law
¥Ds = De + pD <§)

Thermodynamic stability

dp(0,9)
do

Oe(p,?)
09

>0, >0

Pressure EOS
p(o,9) = pm(0,9) + praa(¥)

2 a
pm(0,9) = S eem(e, ), praa(¥) = 5194, a>0

Internal energy

e(0,9) = en(0,9) + €aa(0,9), €raa(0,0) = gﬁ“.




Constitutive theory, Il

[ |
Gibbs' law = pm(0,9) = 93P (ﬁ%)
2
- P(Z
Thermodynamic stability =- Z(i) N\ Poo >0 as Z — oo
m Entropy.

0 43 9%
W) =8| =5 | +—5—, 85 <0
s(e, V) (19%) 3 o

m Third law of thermodynamics.

S(Z)N0Oas Z — o0




Constitutive theory, 111

Viscosity.

0< (1 +9) < u(®), W) <7
0<n(W) <7(1+9)

Thermal conductivity.

0<r(1+9°)<k(®) <r1+9°), 3>6

Global existence [Chaudhuri, EF, 2021].

Under the above constitutive restrictions, the problem admits global—-in—
time weak solutions for any finite energy initial data and any sufficiently
smooth boundary data




Bounded absorbing set

Bounded absorbing set [EF - A. Swierczewska-Gwiazda]

For any global-in—time weak solution (g, %, u) defined on a time interval
(T,00), there exists a constant £ that depends only on the boundary
data and the total mass of the fluid

I\/I:/de7
Q

ess lim sup/ E(o,9,u)(t,-) dx < £x, E(0,9,u) =
Q

t— o0

such that

olul® + oe(o, ¥)

N =

If, moreover,

ess lim sup/ E(o,%,u)(t, ) dx < & < oo,
Q

t—T+

then the convergence is uniform in &. Specifically, for any € > 0, there
exists a time 7(e, &) such that

ess  sup / E(o,%,u)(t,") dx < Ex +&.
t>T+7(e,E) JQ




Principal difficulties

“Elastic pressure”: p(o,9) =~ g§ for 9 — 0

e

Ballistic energy inequality

d
dt Jq

B
+ ar(@e) (Il + 197 [ + 1og(@) 2@

<%Q‘U|2 + ge — Jos — QG) dx

< a(@)S() [ elul dx + A0, ),
Q
where ¢c1 >0, &2 >0, A(r) — o0 as r — o0

S(r) - 0fas r — oo.




Asymptotic compactness

Asymptotic compactness [EF - A. Swierczewska-Gwiazda 2021]
Let (@n,¥n,un)se1 be a sequence of weak solutions defined on the time
intervals

(Ta,00), Th> —00, Tp— —00 as n — oo,

such that

ess sup / E(on, On,un)(t,) dx < 50./ odx=M>0,
Q Q

t—T,
Then there is a subsequence (not relabelled) such that
00 = 0 in Cuear([—M, M]; L3 (R)) N C([—M, M]; LX(R2)),
9o — 0 in LI((—M, M); L*(R)) for any 1 < g < oo,
u, — u weakly in L*((—M, M); W"*(Q; R%))

for any M > 0, where the limit (o, ¥, u) is an entire weak solution defined
for all t € R and satisfying

/ E(o,9,u)(t, ) dx < & fora.a. t € R.
Q




Principal difficulties

Weak convergence of densities

0n = 0 in Cucar([~M, M]; L3(Q))

on(—M, ) ’ not compact in general ‘

Oscillations defect

D(e) = | [eTore) - etoe(o)] (5.) dx

%D—FW(D)SO, W(Z)Z>0for Z#0, teR

D bounded = D=0
§ Y,

Strong convergence

on — 0 in C([-M, MJ; L}(Q))



Trajectory space, attractor

Trajectory space

T= UT:)17—L, (¢n)n217 (Qan)n21

where

T = {(Q,S,m) ] o€ L®(R; W 2(Q)), (0:6n) € C(R), n=1,2,...,

sup[lo(t, )lw—r2(q) < L,
teR

m e L®(R, W **(Q; R*)), (m;¢,) € C(R), n=1,2,.
sup [[m(t, -)[lw-r2qrs) < L,
ter

SeLl®(RW ¥ *Q)), (5;¢n) cagladin R, n=1,2,...,
sup [[S(t, )l w-+2(@) < L}-
teER

ey

Attractor

A= {(g7 S, m) ‘ (0, S, m) a weak solution of the Navier—Stokes—Fourier system

on the time interval t € R} C Ti, L large enough




Attractor

Trajectory attractor [EF - A. Swierczewska-Gwiazda 2021]
Let M > 0, & be given. Let F[M, &] be a family of weak solutions to the
Navier-Stokes—Fourier system on the time interval (0, co0) satisfying

T—0+

/ o0 dx = M, esslim sup/ E(o,S,m)(7,-) dx < &.
Q Q

We identify the set F[M, &] with a subset of the trajectory space T ex-
tending them by constant values for 7 < 0.

Then for any € > 0, there exists a time T(e) such that

dr((e,S,m)(-+T); A] < e for any (9, S,m) € F[M,E] and any T > T(e).

J




Stationary statistical solutions

Stationary statistical solutions [EF - A. Swierczewska-Gwiazda 2021]
Let U4 C A be a non-empty time—shift invariant set, meaning

(0,S;m)eU = (0,S,m)(-+ T)eU forany T € R.

Then there exists a stationary statistical solution V supported by U/:
m V is a Borel probability measure, V € SB(U);
m suppV C U, where the closure of a I/ is a compact invariant set;

m V is shift invariant, i.e., V[B] = V[B(- + T)] for any Borel set
BCTandany T € R.

(77 B(T)y) — probability basis

w=1(0,5,m), t € R xw €T > w(t) stationary process



Ergodic means
Phase space

H=W%(Q) x W Q) x W *2(Q; R®).

Convergence of ergodic means [application of Birkhoff-Khinchin er-
godic theorem]

Let V be a stationary statistical solution and (g, S, m) the associated s-
tationary process. Let F : H — R be a Borel measurable function such
that

/\F 0,),m(0,-)] dV < oo.
Then there exists a measurable function F,
F:(T,V) =R
such that

%/OT Flo(t,), S(t,-),m(t, ))dt — F as T — oo

V—a.s. and in LY(T, V).




Open questions

m Global existence of smooth solution vs. blow-up in a finite time, cf.
Merle et al. 2019, Buckmaster et al. 2021

m The existence of bounded absorbing sets for more general state
equations

m Extension to specific class of solutions, cf. EF, Gwiazda,
Swierczewska—Gwiazda - time periodic solutions




