
Compressible fluid flows driven by temperature gradient

Eduard Feireisl
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Problem formulation

Navier–Stokes–Fourier system

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,Dxu) + %∇xG

∂t(%e(%, ϑ)) + divx(%e(%, ϑ)u) +∇xq(ϑ,∇xϑ) = S : Dxu− p(%, ϑ)divxu

Boundary conditions

Ω ⊂ Rd , d = 2, 3 bounded, regular

u|∂Ω = 0, ϑ|∂Ω = ϑB

G = G(x), ϑB = ϑB(x)

S(ϑ,Dxu) = µ(ϑ)

(
∇xu +∇t

xu− 2

3
divxuI

)
+ η(ϑ)divxuI

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ



Crucial problems

Global existence. Global-in-time existence of solutions “far from
equilibrium”

Levinson dissipativity or bounded absorbing set. Any
global–in–time weak solution to the Navier–Stokes–Fourier system in
a domain with impermeable boundary endowed with the Dirichlet
boundary conditions for the temperature enters eventually a
bounded absorbing set.

Asymptotic compactness. Any bounded family of global solutions
is precompact in a suitable topology of the trajectory space, whereas
any of its accumulation points represents a weak solution of the
same problem.



Problem with conservative boundary conditions

Conservative boundary conditions

u|∂Ω = 0, q · n|∂Ω = 0

Driving force

%f, f = f(x)

f = ∇xG , G = G(x) ⇒ %→ %S , ϑ→ ϑS , m = %u→ 0 as t →∞

ϑS - a positive constant, ∇xp(%S , ϑS) = %S∇xG

f 6= ∇xG ⇒
∫

Ω

[
1

2
%|u|2 + %e(%, ϑ)

]
dx →∞ as t →∞



Static solutions

uS = 0

uS = 0 ⇒ divx(κ(ϑS)∇xϑS) = 0, ϑS |∂Ω = ϑB

∇xp(%S , ϑS) = %S∇xG ⇒ curlx(%S∇xG) = ∇x%S ×∇xG = 0

∂%p(%S , ϑS)∇x%S + ∂ϑp(%, ϑ)∇xϑS = %S∇xG

⇒

∇xϑS ×∇xG = 0



Weak solutions, I

Equation of continuity ∫ ∞
T

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dxdt = 0,∫ ∞
T

∫
Ω

[
b(%)∂tϕ+ b(%)u · ∇xϕ+

(
b(%)− b′(%)%

)
divxuϕ

]
dxdt = 0

for any ϕ ∈ C 1
c ((T ,∞)× Ω), and any b ∈ C 1(R), b′ ∈ Cc(R)

Momentum equation

∫ ∞
T

∫
Ω

[%u · ∂tϕ + %u⊗ u : ∇xϕ + pdivxϕ] dxdt

=

∫ ∞
T

∫
Ω

[S : ∇xϕ− %∇xG ·ϕ] dxdt,

for any ϕ ∈ C 1
c ((T ,∞)× Ω;R3)



Weak solutions, II

Entropy inequality

−
∫ ∞
T

∫
Ω

[
%s∂tϕ+ %su · ∇xϕ+

q

ϑ
· ∇xϕ

]
dxdt

≥
∫ ∞
T

∫
Ω

ϕ

ϑ

[
S : Dxu− q · ∇xϑ

ϑ

]
dxdt

for any ϕ ∈ C 1
c ((T ,∞)× Ω), ϕ ≥ 0

Ballistic energy

Eϑ̃ =

[
1

2
%|u|2 + %e − ϑ̃%s

]
ϑ̃ > 0, ϑ̃|∂Ω = ϑB

Ballistic energy boundary flux

q · n− ϑ̃

ϑ
q · n|∂Ω = 0



Weak solutions, III

Ballistic energy balance

−
∫ ∞
T

∂tψ

∫
Ω

[
1

2
%|u|2 + %e − ϑ̃%s

]
dxdt

+

∫ ∞
T

ψ

∫
Ω

ϑ̃

ϑ

[
S : Dxu− q · ∇xϑ

ϑ

]
dxdt

≤
∫ ∞
T

ψ

∫
Ω

[
%u · ∇xG − %su · ∇x ϑ̃−

q

ϑ
· ∇x ϑ̃

]
dx

for any ψ ∈ C 1
c (T ;∞), ψ ≥ 0, and any ϑ̃ ∈ C 1([T ;∞)× Ω), ϑ̃|∂Ω = ϑB

Compatibility [Chaudhuri–EF 2021]. Smooth weak solutions are classical
solutions

Weak–strong uniqueness [Chaudhuri–EF 2021]. A weak solution
coincides with the strong solution as long as the latter exists



Constitutive theory, I

Gibbs’ law

ϑDs = De + pD

(
1

%

)
Thermodynamic stability

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0

Pressure EOS
p(%, ϑ) = pm(%, ϑ) + prad(ϑ)

pm(%, ϑ) =
2

3
%em(%, ϑ), prad(ϑ) =

a

3
ϑ4, a > 0

Internal energy

e(%, ϑ) = em(%, ϑ) + erad(%, ϑ), erad(%, ϑ) =
a

%
ϑ4.



Constitutive theory, II

Gibbs’ law ⇒ pm(%, ϑ) = ϑ
5
2 P

(
%

ϑ
3
2

)

Thermodynamic stability ⇒ P(Z)

Z
5
3

↘ p∞ > 0 as Z →∞

Entropy.

s(%, ϑ) = S
(
%

ϑ
3
2

)
+

4a

3

ϑ3

%
, S ′ < 0

Third law of thermodynamics.

S(Z)↘ 0 as Z →∞



Constitutive theory, III

Viscosity.

0 < µ(1 + ϑ) ≤ µ(ϑ), |µ′(ϑ)| ≤ µ

0 ≤ η(ϑ) ≤ η(1 + ϑ)

Thermal conductivity.

0 < κ(1 + ϑβ) ≤ κ(ϑ) ≤ κ(1 + ϑβ), β > 6

Global existence [Chaudhuri, EF, 2021].
Under the above constitutive restrictions, the problem admits global–in–
time weak solutions for any finite energy initial data and any sufficiently
smooth boundary data



Bounded absorbing set

Bounded absorbing set [EF - A. Świerczewska-Gwiazda]
For any global–in–time weak solution (%, ϑ, u) defined on a time interval
(T ,∞), there exists a constant E∞ that depends only on the boundary
data and the total mass of the fluid

M =

∫
Ω

% dx ,

such that

ess lim sup
t→∞

∫
Ω

E(%, ϑ, u)(t, ·) dx ≤ E∞, E(%, ϑ, u) ≡ 1

2
%|u|2 + %e(%, ϑ)

If, moreover,

ess lim sup
t→T+

∫
Ω

E(%, ϑ, u)(t, ·) dx ≤ E0 <∞,

then the convergence is uniform in E0. Specifically, for any ε > 0, there
exists a time τ(ε, E0) such that

ess sup
t>T+τ(ε,E0)

∫
Ω

E(%, ϑ, u)(t, ·) dx ≤ E∞ + ε.



Principal difficulties

“Elastic pressure”: p(%, ϑ) ≈ %
5
3 for ϑ→ 0

Ballistic energy inequality

d

dt

∫
Ω

(
1

2
%|u|2 + %e − ϑ̃%s − %G

)
dx

+ c1(ϑB)
(
‖u‖2

W 1,2(Ω;R3) + ‖ϑ
β
2 ‖2

W 1,2(Ω) + ‖ log(ϑ)‖2
W 1,2(Ω)

)
≤ c2(ϑB)S(r)

∫
Ω

%|u| dx + Λ(ϑB , r),

where c1 > 0, c2 > 0, Λ(r)→∞ as r →∞

S(r)→ 0 as r →∞.



Asymptotic compactness

Asymptotic compactness [EF - A. Świerczewska-Gwiazda 2021]
Let (%n, ϑn, un)∞n=1 be a sequence of weak solutions defined on the time
intervals

(Tn,∞), Tn ≥ −∞, Tn → −∞ as n→∞,

such that

ess sup
t→Tn

∫
Ω

E(%n, ϑn, un)(t, ·) dx ≤ E0.

∫
Ω

% dx = M > 0,

Then there is a subsequence (not relabelled) such that

%n → % in Cweak([−M,M]; L
5
3 (Ω)) ∩ C([−M,M]; L1(Ω)),

ϑn → ϑ in Lq((−M,M); L4(Ω)) for any 1 ≤ q <∞,

un → u weakly in L2((−M,M);W 1,2(Ω;R3))

for any M > 0, where the limit (%, ϑ, u) is an entire weak solution defined
for all t ∈ R and satisfying∫

Ω

E(%, ϑ, u)(t, ·) dx ≤ E∞ for a.a. t ∈ R.



Principal difficulties

Weak convergence of densities

%n → % in Cweak([−M,M]; L
5
3 (Ω))

%n(−M, ·) not compact in general

Oscillations defect

D(t) =

∫
Ω

[
% log(%)− % log(%)

]
(t, ·) dx

d

dt
D + Ψ(D) ≤ 0, Ψ(Z)Z > 0 for Z 6= 0, t ∈ R

D bounded ⇒ D ≡ 0

Strong convergence

%n → % in C([−M,M]; L1(Ω))



Trajectory space, attractor

Trajectory space

T = ∪∞L=1TL, (φn)n≥1, (ϕn)n≥1

where

TL =
{

(%, S ,m)
∣∣∣ % ∈ L∞(R;W−k,2(Ω)), 〈%;φn〉 ∈ C(R), n = 1, 2, . . . ,

sup
t∈R
‖%(t, ·)‖W−k,2(Ω) ≤ L,

m ∈ L∞(R;W−k,2(Ω;R3)), 〈m;ϕn〉 ∈ C(R), n = 1, 2, . . . ,

sup
t∈R
‖m(t, ·)‖W−k,2(Ω;R3) ≤ L,

S ∈ L∞(R;W−k,2(Ω)), 〈S ;φn〉 càglàd in R, n = 1, 2, . . . ,

sup
t∈R
‖S(t, ·)‖W−k,2(Ω) ≤ L

}
.

Attractor

A =
{

(%, S ,m)
∣∣∣ (%, S ,m) a weak solution of the Navier–Stokes–Fourier system

on the time interval t ∈ R
}
⊂ TL, L large enough



Attractor

Trajectory attractor [EF - A. Świerczewska-Gwiazda 2021]
Let M > 0, E0 be given. Let F [M, E0] be a family of weak solutions to the
Navier–Stokes–Fourier system on the time interval (0,∞) satisfying∫

Ω

% dx = M, ess lim sup
τ→0+

∫
Ω

E(%, S ,m)(τ, ·) dx ≤ E0.

We identify the set F [M, E0] with a subset of the trajectory space T ex-
tending them by constant values for τ < 0.

Then for any ε > 0, there exists a time T (ε) such that

dT [(%, S ,m)(·+T );A] < ε for any (%, S ,m) ∈ F [M, E0] and any T > T (ε).



Stationary statistical solutions

Stationary statistical solutions [EF - A. Świerczewska-Gwiazda 2021]
Let U ⊂ A be a non-empty time–shift invariant set, meaning

(%, S ,m) ∈ U ⇒ (%,S ,m)(·+ T ) ∈ U for any T ∈ R.

Then there exists a stationary statistical solution V supported by U :

V is a Borel probability measure, V ∈ P(U);

suppV ⊂ U , where the closure of a U is a compact invariant set;

V is shift invariant, i.e., V[B] = V[B(·+ T )] for any Borel set
B ⊂ T and any T ∈ R.

(
T ,B(T ),V

)
− probability basis

ω = (%,S ,m), t ∈ R × ω ∈ T 7→ ω(t) stationary process



Ergodic means
Phase space

H = W−k,2(Ω)×W−k,2(Ω)×W−k,2(Ω;R3).

Convergence of ergodic means [application of Birkhoff–Khinchin er-
godic theorem]
Let V be a stationary statistical solution and (%, S ,m) the associated s-
tationary process. Let F : H → R be a Borel measurable function such
that ∫

T
|F (%(0, ·),S(0, ·),m(0, ·)| dV <∞.

Then there exists a measurable function F ,

F : (T ,V)→ R

such that

1

T

∫ T

0

F (%(t, ·), S(t, ·),m(t, ·))dt → F as T →∞

V−a.s. and in L1(T ,V).



Open questions

Global existence of smooth solution vs. blow-up in a finite time, cf.
Merle et al. 2019, Buckmaster et al. 2021

The existence of bounded absorbing sets for more general state
equations

Extension to specific class of solutions, cf. EF, Gwiazda,
Świerczewska–Gwiazda - time periodic solutions


