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Motto

Rudolf Clasius
1822–1888

Basic principles of thermodynamics of closed systems

Die Energie der Welt ist constant. Die Entropie der Welt
strebt einem Maximum zu.

Turbulence - ergodic hypothesis

Time averages along trajectories of the flow converge, for
large enough times, to an ensemble average given by a
certain probability measure

Andrey
Nikolaevich
Kolmogorov
1903–1987



Navier–Stokes–Fourier system

Mass conservation

∂t%+ divx(%u) = 0

Newton’s Second law (momentum balance)

∂t(%u) + divx(%u⊗ u) +∇xp = divxS + %g

Second law of thermodynamics (entropy balance)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
=

1

ϑ

(
S : Dxu− q · ∇xϑ

ϑ

)

Newton’s rheological law

S(ϑ,Dxu) = µ(ϑ)

(
∇xu +∇t

xu− 2

d
divxuI

)
+ η(ϑ)divxuI

Fourier’s law
q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ



Boundary conditions

Closed systems

impermeability: u · n|∂Ω = 0, no–slip: u× n|∂Ω = 0

thermal insulation: q · n|∂Ω = 0

Open systems

u|∂Ω = uB , inflow Γin : uB · n < 0, outflow Γout : uB · n > 0

%|Γin = %B

Boundary temperature (Dirichlet boundary conditions: ϑ = ϑB on ∂Ω



Problem with conservative boundary conditions

Conservative boundary conditions

u|∂Ω = 0, q · n|∂Ω=0

Driving force

%f, f = f(x)

f = ∇xG , G = G(x) ⇒ %→ %S , ϑ→ ϑS , m = %u→ 0 as t →∞

ϑS - a positive constant, ∇xp(%S , ϑS) = %S∇xG

f 6= ∇xG ⇒
∫

Ω

[
1

%
|u|2 + %e(%, ϑ)

]
dx →∞ as t →∞



Rayleigh–Benard problem

Navier–Stokes–Fourier system

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + %∇xG ,

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(q

ϑ

)
=

1

ϑ

(
S : Dxu− q · ∇xϑ

ϑ

)

Boundary conditions
Ω = T2 × (0, 1)

u|x3=0 = u|x3=1 = 0,

ϑ|x3=0 = ΘB , ϑ|x3=1 = ΘU .

S(ϑ,Dxu) = µ(ϑ)

(
∇xu +∇t

xu− 2

3
divxuI

)
+ η(ϑ)divxuI

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ



Abstract theory

Global existence: The problem admits global–in–time solutions defined
for all t ≥ t0 for any admissible data

Levinson dissipativity or bounded absorbing set. Any
global–in–time weak solution to the Navier–Stokes–Fourier system in
a domain with impermeable boundary endowed with the Dirichlet
boundary conditions for the temperature enters eventually a
bounded absorbing set.

Asymptotic compactness. Any bounded family of global solutions
is precompact in a suitable topology of the trajectory space, whereas
any of its accumulation points represents a weak solution of the
same problem.



Equilibrium states – static solutions

uS = 0

uS = 0 ⇒ divx(κ(ϑS)∇xϑS) = 0, ϑS |∂Ω = ϑB

∇xp(%S , ϑS) = %S∇xG ⇒ curlx(%S∇xG) = ∇x%S ×∇xG = 0

∂%p(%S , ϑS)∇x%S + ∂ϑp(%, ϑ)∇xϑS = %S∇xG

⇒

∇xϑS ×∇xG = 0



Abstract setting

George Roger
Sell
1937–2015

Space of entire trajectories

T = Cloc(R;X ), t ∈ (−∞,∞)

ω–limit set

ω[U(·,X0)] ⊂ T

ω[U(·,X0)] =
{

V ∈ T
∣∣∣ U(·+ tn,X0)→ V in T as tn →∞

}
Necessary ingredients

Dissipativity – ultimate boundedness of trajectories

Compactness – in appropriate spaces



Bounded absorbing set

Bounded absorbing set [EF - A. Świerczewska-Gwiazda]
For any global–in–time weak solution (%, ϑ, u) defined on a time interval
(T ,∞), there exists a constant E∞ that depends only on the boundary
data and the total mass of the fluid

M =

∫
Ω

% dx ,

such that

ess lim sup
t→∞

∫
Ω

E(%, ϑ, u)(t, ·) dx ≤ E∞, E(%, ϑ, u) ≡ 1

2
%|u|2 + %e(%, ϑ)

If, moreover,

ess lim sup
t→T+

∫
Ω

E(%, ϑ, u)(t, ·) dx ≤ E0 <∞,

then the convergence is uniform in E0. Specifically, for any ε > 0, there
exists a time T (ε, E0) such that

ess sup
t>T (ε,E0)

∫
Ω

E(%, ϑ, u)(t, ·) dx ≤ E∞ + ε.



Asymptotic compactness

Asymptotic compactness [EF - A. Świerczewska-Gwiazda 2021]
Let (%n, ϑn, un)∞n=1 be a sequence of weak solutions defined on the time
intervals

(Tn,∞), Tn ≥ −∞, Tn → −∞ as n→∞,

such that

ess sup
t→Tn

∫
Ω

E(%n, ϑn, un)(t, ·) dx ≤ E0.

∫
Ω

% dx = M > 0,

Then there is a subsequence (not relabelled) such that

%n → % in Cweak([−M,M]; L
5
3 (Ω)) ∩ C([−M,M]; L1(Ω)),

ϑn → ϑ in Lq((−M,M); L4(Ω)) for any 1 ≤ q <∞,

un → u weakly in L2((−M,M);W 1,2(Ω;R3))

for any M > 0, where the limit (%, ϑ, u) is an entire weak solution defined
for all t ∈ R and satisfying∫

Ω

E(%, ϑ, u)(t, ·) dx ≤ E∞ for a.a. t ∈ R.



Trajectory space, attractor

Trajectory space

T = ∪∞L=1TL,

where

TL =
{

(%, S ,m)
∣∣∣ % ∈ L∞(R;W−k,2(Ω)), 〈%;φn〉 ∈ C(R), n = 1, 2, . . . ,

sup
t∈R
‖%(t, ·)‖W−k,2(Ω) ≤ L,

m ∈ L∞(R;W−k,2(Ω;R3)), 〈m;ϕn〉 ∈ C(R), n = 1, 2, . . . ,

sup
t∈R
‖m(t, ·)‖W−k,2(Ω;R3) ≤ L,

S ∈ L∞(R;W−k,2(Ω)), 〈S ;φn〉 càglàd in R, n = 1, 2, . . . ,

sup
t∈R
‖S(t, ·)‖W−k,2(Ω) ≤ L

}
.

Attractor

A =
{

(%, S ,m)
∣∣∣ (%, S ,m) a weak solution of the Navier–Stokes–Fourier system

on the time interval t ∈ R
}
,



Attractor

Trajectory attractor [EF - A. Świerczewska-Gwiazda 2021]
Let M > 0, E0 be given. Let F [M, E0] be a family of weak solutions to
the Rayleigh–Bénard problem for the Navier–Stokes–Fourier system on the
time interval (0,∞) satisfying∫

Ω

% dx = M, ess lim sup
τ→0+

∫
Ω

E(%, S ,m)(τ, ·) dx ≤ E0.

We identify the set F [M, E0] with a subset of the trajectory space T ex-
tending them by constant values for τ < 0.

Then for any ε > 0, there exists a time T (ε) such that

dT [(%, S ,m)(·+T );A] < ε for any (%, S ,m) ∈ F [M, E0] and any T > T (ε).



Statistical solutions

U : t ∈ R 7→ [%(t, ·),m(t, ·), S(t, ·)] ∈ X

Statistical solution

U random process with continuous (càglàd) trajectories

U solves the Rayleigh–Benard problem a.s.

equivalently (canonical representation)

V -probability measure on the trajectory space T

supp[V] ⊂ solutions of Rayleigh–Benard problem

probability space (T ,V)

t 7→ U(t), U ∈ T



Stationary statistical solutions

Stationary statistical solutions [EF - A. Świerczewska-Gwiazda 2021]
Let U ⊂ A be a non-empty time–shift invariant set, meaning

(%, S ,m) ∈ U ⇒ (%,S ,m)(·+ T ) ∈ U for any T ∈ R.

Then there exists a stationary statistical solution V supported by U :

V is a Borel probability measure, V ∈ P(U);

suppV ⊂ U , where the closure of a U is a compact invariant set;

V is shift invariant, i.e., V[B] = V[B(·+ T )] for any Borel set
B ⊂ T and any T ∈ R.



Statistical stationary solutions

Application of Krylov – Bogolyubov method

1

Tn

∫ Tn

0

δ%(·+t,·),m(·+t,·),S(·+t,·) dt → µ ∈ P[T ] narrowly

[T , µ] (canonical representation) – statististical stationary solution

µ(t)|X (marginal) independent of t ∈ R

Application of Birkhoff – Khinchin ergodic theorem

1

T

∫ T

0

F (%(t, ·),m(t, ·), S(t·))dt → F as T →∞

F bounded Borel measurable on X for µ− a.a. (%,m) ∈ ω



Strong and weak ergodic hypothesis

Krylov – Bogolyubov construction

T 7→ 1

T

∫ T

0

δU(·+t,X0)dt – a family of probability measures on T

tightness in T ⇒ Tn 7→
1

Tn

∫ Tn

0

δU(·+t,X0)dt → µ ∈ P[T ]

[T , µ] stationary statistical solution

Ergodic hypothesis ⇔ µ is unique ⇒ T 7→ 1

T

∫ T

0

δU(·+t,X0)dt → µ

unique ≈ unique on ω[U(·,X0)]

Weak ergodic hypothesis

lim
T→∞

1

T

∫ T

0

δU(·+t,X0)dt = µ exists in the narrow sense in P[T ]

[T , µ] stationary statistical solution



Ergodic means
Phase space

H = W−k,2(Ω)×W−k,2(Ω)×W−k,2(Ω;R3).

Convergence of ergodic means [application of Birkhoff–Khinchin er-
godic theorem]
Let V be a stationary statistical solution and (%, S ,m) the associated sta-
tionary process. Let F : H → R be a Borel measurable function such that∫

T
|F (%(0, ·), S(0, ·),m(0, ·)| dV <∞.

Then there exists a measurable function F ,

F : (T ,V)→ R

such that

1

T

∫ T

0

F (%(t, ·), S(t, ·),m(t, ·))dt → F as T →∞

V−a.s. and in L1(T ,V).


