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Motto

Basic principles of thermodynamics of closed systems

LE Die Energie der Welt ist constant. Die Entropie der Welt
“ strebt einem Maximum zu.

Rudolf Clasius
1822-1888

Turbulence - ergodic hypothesis

Time averages along trajectories of the flow converge, for
large enough times, to an ensemble average given by a
certain probability measure

Andrey
Nikolaevich
Kolmogorov
1903-1987



Navier—Stokes—Fourier system

Mass conservation

Oro + divx(pu) =0

Newton’s Second law (momentum balance)

Ot(ou) + divi(ou @ u) + Vip = diviS + 0g

Second law of thermodynamics (entropy balance)

. . 1 - Vv
De(os(0,9)) + divi(os(o, )u) + divi (g)zg@:mxu—q - )

Newton’s rheological law
S0, Deu) = () (qu 4 Via— %divmﬂ) + n(9)divyul

Fourier’s law
q(9, Vi) = —k(9) Vi




Boundary conditions

Closed systems
impermeability: u-njsqo =0, no-slip: u Xxnjspa =0

thermal insulation: q-n|sqo =0

Open systems
ulaqo = ug, inflow I, :ug -n <0, outflow oyt :ug-n >0

olr,, = o8

Boundary temperature (Dirichlet boundary conditions: ¥ = ¥g on 992




Problem with conservative boundary conditions

Conservative boundary conditions

uloe =0, q-njag=o

Driving force

of, f=1(x)

f=V.G, G=G(x) = p— s, 9 >0Js, m=pgu—0ast— oo

¥s - a positive constant, V,p(gs,¥s) = 0sVxG

f#V.G = /{l|u\2+ge(g,ﬂ)] dx — 00 as t — o0
al?




Rayleigh—Benard problem

Navier—Stokes—Fourier system

00 + divi(ou) =0,
Ot(ou) + dive(ou ® u) + Vyp(o, ) = div,S + oV«G,

1 -V,
B(0s(0,9)) + divs(os(0, 9)u) + divy (%) =3 (S :Deu— 9 Z )

Boundary conditions
Q="T>x(0,1)

ulxg=0 = uls=1 =0,
79|X3:0 = 937 19‘)@:1 = eU~

S(¢, Dyxu) = u(9) (qu + Viu— %divxul[) + n(¥)diveul

q(0, Vi) = —k(9) V0



Abstract theory

Global existence: The problem admits global-in—time solutions defined
for all t > to for any admissible data

m Levinson dissipativity or bounded absorbing set. Any
global-in—time weak solution to the Navier—Stokes—Fourier system in
a domain with impermeable boundary endowed with the Dirichlet
boundary conditions for the temperature enters eventually a
bounded absorbing set.

m Asymptotic compactness. Any bounded family of global solutions
is precompact in a suitable topology of the trajectory space, whereas
any of its accumulation points represents a weak solution of the
same problem.




Equilibrium states — static solutions

USZO

us =0 = divi(k(Is)Vxs) =0, Jslag = I

VXP(QS7195) = QSVXG = CUI’IX(QSVXG) = vaS X VXG =0

0op(05,Vs)Vx0s + Oop(0,9)Vx¥s = 05V G
=
Vx¥s x VxG =0




Abstract setting

‘}‘-. e

Space of entire trajectories

George Roger
Sell

T = Goc(R; X), t € (—00,0)
1937-2015

w—limit set

w[U(, Xo)] € T

wlU(-, Xo)] = {V eT ’ U(-+tp, Xo) = Vin T as t, — oo}
Necessary ingredients

m Dissipativity — ultimate boundedness of trajectories

m Compactness — in appropriate spaces



Bounded absorbing set

Bounded absorbing set [EF - A. Swierczewska-Gwiazda]

For any global-in—time weak solution (g, %, u) defined on a time interval
(T,00), there exists a constant £ that depends only on the boundary
data and the total mass of the fluid

I\/I:/de7
Q

ess lim sup/ E(o,9,u)(t,-) dx < £x, E(0,9,u) =
Q

t— o0

such that

olul® + oe(o, ¥)

N =

If, moreover,

ess lim sup/ E(o,%,u)(t, ) dx < & < oo,
Q

t—T+

then the convergence is uniform in &. Specifically, for any € > 0, there
exists a time T (g, &) such that

ess  sup / E(o,%,u)(t,") dx < Ex +&.
Q

t>T(e,E)




Asymptotic compactness

Asymptotic compactness [EF - A. Swierczewska-Gwiazda 2021]
Let (@n,¥n,un)se1 be a sequence of weak solutions defined on the time
intervals

(Ta,00), Th> —00, Tp— —00 as n — oo,

such that

ess sup / E(on, On,un)(t,) dx < 50./ odx=M>0,
Q Q

t—T,
Then there is a subsequence (not relabelled) such that
00 = 0 in Cuear([—M, M]; L3 (R)) N C([—M, M]; LX(R2)),
9o — 0 in LI((—M, M); L*(R)) for any 1 < g < oo,
u, — u weakly in L*((—M, M); W"*(Q; R%))

for any M > 0, where the limit (o, ¥, u) is an entire weak solution defined
for all t € R and satisfying

/ E(o,9,u)(t, ) dx < & fora.a. t € R.
Q




Trajectory space, attractor

Trajectory space

T: Ufiﬂ—u
where
To={(e.5:m) | € L*(RiW (@), (e:6,) € C(R), n=1.2,...,

sup[lo(t, )l w-r2(q) < L,
teR

m e L®(R, W **(Q; R*)), (m;¢,) € C(R), n=1,2,.
sup [[m(t, -)[lw—r2(qrs) < L,
ter

ey

SeLl®(RW ¥ *Q)), (S5;¢n) cagladin R, n=1,2,...,
sup [1S(t, )l w-+2(@) < L}-
teER
Attractor

A= {(g7 S, m) ‘ (0, S, m) a weak solution of the Navier—Stokes—Fourier system

on the time interval t € R},




Attractor

Trajectory attractor [EF - A, Swierczewska-Gwiazda 2021]

Let M > 0, & be given. Let F[M, &) be a family of weak solutions to
the Rayleigh—Bénard problem for the Navier—Stokes—Fourier system on the
time interval (0, c0) satisfying

/ odx = M, esslim sup/ E(o,S,m)(r,-) dx < &.
Q Q

T—0+
We identify the set F[M, &) with a subset of the trajectory space T ex-

tending them by constant values for 7 < 0.

Then for any € > 0, there exists a time T(e) such that

dr(e,S,m)(-+T); A] < efor any (0, S,m) € F[M,&E] and any T > T(¢).
J




Statistical solutions

U: te R [ot,:),m(t,:),S(t,")] € X

Statistical solution
m U random process with continuous (caglad) trajectories
m U solves the Rayleigh—Benard problem a.s.

equivalently (canonical representation)
V -probability measure on the trajectory space T
supp[V] C solutions of Rayleigh-Benard problem

m probability space (7, V)
mt—U(t),UeT




Stationary statistical solutions

Stationary statistical solutions [EF - A. Swierczewska-Gwiazda 2021]
Let U C A be a non-empty time—shift invariant set, meaning

(0, S, m)elUd = (o,S,m)(-+ T)eU forany T € R.

Then there exists a stationary statistical solution V' supported by U/:
m V is a Borel probability measure, V € B(U);
m suppV C U, where the closure of a If is a compact invariant set;

m V is shift invariant, i.e., V[B] = V[B(- + T)] for any Borel set
BCTandany T € R.




Statistical stationary solutions

Application of Krylov — Bogolyubov method

AL
T O m(-+t,),5(-+t,-) At = p € P[T] narrowly
nJo
[T, 1] (canonical representation) — statististical stationary solution

u(t)|x (marginal) independent of t € R

Application of Birkhoff — Khinchin ergodic theorem

—/ o(t,-),m(t,-),S(t))dt = Fas T — oo

F bounded Borel measurable on X for u —a.a. (9,m) € w




Strong and weak ergodic hypothesis

Krylov — Bogolyubov construction

T
T — %/ Ou(.+t,x,)dt — a family of probability measures on T
0

L
tightnessin 7 = T, +— - Ou(-+t,x)dt = 1 € P[T]
nJo

[T, u] stationary statistical solution
1 /7
Ergodic hypothesis < p is unique = T — 7/ Ou(+t,x0)dt —>
0

unique ~ unique on w[U(+, Xo)]

Weak ergodic hypothesis

1 [T
lim —/ du(-+t,%)dt = p exists in the narrow sense in P[T]
T—ooo T 0 ’

[T, u] stationary statistical solution




Ergodic means
Phase space

H=W(Q) x W Q) x W *(Q; R®).

Convergence of ergodic means [application of Birkhoff-Khinchin er-
godic theorem]

Let V be a stationary statistical solution and (g, S, m) the associated sta-
tionary process. Let F : H — R be a Borel measurable function such that

/T IF(0(0,-), 5(0, ), m(0, )| dV < co.

Then there exists a measurable function F,
F: (T, V) =R
such that

%/OTF(Q(t,~),5(t,-)’m(t7,))dt_>fas T2 oo

V—as. and in L'(T,V).




