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Example I: Strong Law of Large numbers

Strong Law of Large Numbers

{Un}∞n=1 independent random variables, E(Un) = µ

⇒

1

N

N∑
n=1

Un → µ as N →∞a.s.

Subsequence principle: Komlos (Banach–Saks) theorem∫
Ω

|Un| dx ≤ c uniformly for n→∞

⇒
there is a subsequence {Unk }

∞
k=1 such that

1

N

N∑
l=1

Unl → U ∈ L1(Ω) as N →∞ a.a. in Ω

for any subsequence {nl} ⊂ {nk}



Example II: Ergodic hypothesis

Asymptotic behavior of dynamical systems

t ∈ [0,∞) 7→ U(t) ∈ X ,

ω-limit set

ω[U] =
{

u ∈ X
∣∣∣ there exists tn →∞ U(tn)→ u

}
Ergodic hypothesis

1

T

∫ T

0

F (U(t))dt → F as T →∞ for any Borel F ∈ B(X ;R)

Birkhoff–Khinchin ergodic theorem

U(t) : R → X stationary process ⇒ 1

T

∫ T

0

F (U(t))dt → F a.s.



(S) - convergence, basic idea

Trivial example of oscillatory sequence

Un =

{
1 for n odd
−1 for n even

Convergence via Young measure approach

Convergence up to a subsequence

Un ≈ δUn , Unk →
{
δ1 as k →∞, nk odd
δ−1 as k →∞, nk even

Convergence via averaging

Un ≈ δUn ,
1

N

N∑
n=1

Un →
1

2
δ−1 +

1

2
δ1

1

wN

N∑
n=1

w
( n

N

)
Un →

1

2
δ−1 +

1

2
δ1, wN ≡

N∑
n=1

w
( n

N

)



Euler system of gas dynamics

Mass conservation

∂t%+ divxm = 0

Momentum balance – Newton’s Second Law

∂tm + divx

[
m⊗m

%

]
+∇xp = 0

Energy balance – First Law of Thermodynamics

∂tE + divx

[
(E + p)

m

%

]
= 0

Boundary conditions

m · n|∂Ω = 0



Constitutive relations – Second Law of Thermodynamics

Pressure, internal energy, entropy

E =
1

2

|m|2

%︸ ︷︷ ︸
kinetic energy

+ %e︸︷︷︸
internal energy

, p = (γ − 1)%e︸ ︷︷ ︸
EOS (incomplete)

Entropy

s = S
(

p

%γ

)
, S = %s︸ ︷︷ ︸

total entropy

Boyle–Mariotte Law:

p = %ϑ, e =
1

γ − 1
ϑ, s = log

(
ϑ

1
γ−1

%

)

Entropy balance (inequality) – Second Law of Thermodynamics

∂tS + divx

[
S

m

%

]
= (≥)0



Thermodynamic stability

Conservative–entropy variables

density %, momentum m, total entropy S , [%,m, S ]

Thermodynamic stability – energy

E = E(%,m, S) : Rd+2 → [0,∞]

E = (%,m, S) =∞ if % < 0, E(0,m, S) = lim
%→0+

E(%,m, S)

convex, lower semi–continuous on Rd+2

Thermodynamic stability in standard variables

positive compressibility
∂p(%, ϑ)

∂%
> 0

positive specific heat at constant volume
∂e(%, ϑ)

∂ϑ
> 0



Known facts about solvability of Euler system

Classical solutions

Smooth initial state gives rise to smooth solution on a (generically) finite
time interval Tmax, singularities (shocks) develop after Tmax

Weak solutions

Admissible (weak + entropy inequality) weak solutions exist globally in
time. There is a “vast” class of initial data for which the problem admits
infinitely many admissible weak solutions, the system is ill–posed in the
class of admissible weak solutions

Generalized - oscillatory solutions

There are various concepts of generalized solutions: measure–valued
solutions, dissipative measure–valued solutions, etc. They can be seen as
limits of consistent approximations. They are inseparable from the
process how they were obtained.



Consistent approximation

Approximate field equations (in the distributional sense)

∂t%n + divxmn = e1
n

∂tmn + divx

[
mn ⊗mn

%n

]
+∇xp(%n, Sn) = e2

n

∂tE(%n,mn, Sn) + divx

[
(E + p) (%n,mn, Sn)

mn

%n

]
= e3

n

∂tSn + divx

[
Sn

mn

%n

]
≥ e4

n

Vanishing consistency errors

e1
n , e2

n , e4
n → 0 in the distributional sense∫

Ω

e3
n dx → 0 uniformly in time

Stability:∫
Ω

E(%n,mn, Sn) dx ≤ c, sn =
Sn

%n
≥ −c uniformly in time



Consistent approximation - basic properties

Examples of consistent approximations

Vanishing dissipation limit from the Navier–Stokes–Fourier system
to the Euler system

Limits of entropy (energy) preserving numerical schemes,
Lax–Friedrichs scheme, Rusanov scheme, Brenner model based
scheme (EF, M.Lukáčová, H. Mizerová)

Convergence of consistent approximation

%nk → %, Snk → S weakly-(*) in L∞(0,T ; Lγ(Ω))

mnk → m weakly-(*) in L∞(0,T ; L
2γ
γ+1 (Ω;Rd))

the limit [%,m,S ] is a generalized (dissipative) solution of the Euler
system

{%nk ,mnk ,Snk } ≈ {δ%nk ,mnk
,Snk
} generates a Young measure

up to a suitable subsequence!



Convergence of consistent approximation

Strong convergence

Strong convergence to strong solution (uncoditional)
Euler system admits a smooth solution ⇒ [%,m, S ] is the unique
smooth solution and convergence is strong and unconditional (no
need for subsequence) in L1

Strong convergence to smooth limit (unconditional)
The limit [%,m,S ] is of class C 1 ⇒ the limit is the unique strong
solution of the Euler system and convergence is strong and
unconditional (no need for subsequence) in L1

Strong convergence to weak solution (up to a subsequence)
EF, M.Hofmanová (2019):

The limit [%,m,S ] is a weak solution of the Euler system ⇒
convergence is strong in L1



Weak convergence of consistent approximation

Weak convergence

If consistent approximation DOES NOT converge strongly, the following
must be satisfied:

the limit Euler system does not admit a strong solution

the limit [%, S ,m] is not C 1 smooth

the limit [%, S ,m] IS NOT a weak solution of the Euler system

Visualization of weak convergence?

Oscillations. Weakly converging sequence may develop oscillations.
Example:

sin(nx)→ 0 weakly as n→∞

Concentrations.

nθ(nx)→ δ0 weakly-(*) in M(R)

if

θ ∈ C∞c (R), θ ≥ 0,

∫
R

θ = 1



Statistical description of oscillations – Young measures

Young measure

b(%n,mn, Sn)→ b(%,m, S) weakly-(*) in L∞((0,T )× Ω)

(up to a subsequence) for any b ∈ Cc(Rd+2)

Young measure V – a parametrized family of probability measures
{Vt,x}(t,x)∈(0,T )×Ω on the phase space Rd+2:

b(%,m, S)(t, x) =
〈
Vt,x ; b(%̃, m̃, S̃)

〉
for a.a. (t, x)

Visualizing Young measure

visualizing Young measure ⇔ computing b(%,m, S)

Problems

b(%n,mn,Sn) converge only weakly

extracting subsequences

only statistical properties relevant ⇒ knowledge of the “tail” of the
sequence of approximate solutions absolutely necessary



(S)–convergence

(S)–convergent approximate sequence

An approximate sequence {Un}∞n=1 is (S)− convergent if for any

b ∈ Cc(RD):

Correlation limit

lim
N→∞

1

N

N∑
n=1

∫
Q

b(Un)b(Um)dy exists for any fixed m

Correlation disintegration

lim
N→∞

1

N2

N∑
n,m=1

∫
Q

b(Un)b(Um) dy

= lim
M→∞

1

M

N∑
m=1

(
lim

N→∞

1

N

N∑
n=1

∫
Q

b(Un)b(Um) dy

)



Basic properties of (S)–convergence, I

Equivalence to convergence of ergodic (Cesàro means)

{Un}∞n=1 (S)–convergent ⇔ 1

N

N∑
n=1

b(Un)→ b(U) strongly in L1(Q)

(S)– limit (parametrized measure)

Un
(S)→ V, {Vy}y∈Q , Vy ∈ P(RD),

〈
Vy ; b(Ũ)

〉
= b(U)(y)

Convergence in Wasserstein distance∫
Q

|Un|p dy ≤ c uniformly for n = 1, 2, . . . , p > 1

Un
(S)→ V ⇒

∫
Q

∣∣∣∣∣dWs

[
1

N

N∑
n=1

δUn(y);Vy

]∣∣∣∣∣
s

dy → 0 as N →∞, s < p



Basic properties of (S)–convergence, II

Statistically equivalent sequences

{Un}∞n=1

(S)
≈ {Vn}∞n=1,

⇔ for any ε > 0

#
{
k ≤ N

∣∣∣ ∫Q |Un − Vn| dy > ε
}

N
→ 0 as N →∞.

Robustness

{Un}∞n=1

(S)
≈ {Vn}∞n=1 ⇒ Un

(S)→ V ⇔ Vn
(S)→ V

Corollary

Un → U in L1(Q) ⇒ Un
(S)→ δU(y)



Basic properties of (S)–convergence III

Stationarity∫
Q

B(Uk1 , . . . ,Ukj )dy =

∫
Q

B(Uk1+n, . . . ,Ukj+n)dy

Birkhoff–Khinchin Theorem

{Un}∞n=1 stationary, b ∈ B(Rd) Borel measurable

∫
Q

b(U0) <∞

⇒

1

N

N∑
n=1

b(Un) converges for a.a. y ∈ Q

⇒

Un is (S)–convergent



Asymptotically stationary consistent approximation

Asymptotically stationary sequence

{Un}∞n=1 is asymptotically stationary if for any b ∈ BC(RD) there holds:

Correlation limit

lim
N→∞

1

N

N∑
n=1

∫
Q

b(Un)b(Um) dy exists

for any fixed m

Asymptotic correlation stationarity∣∣∣∣∫
Q

[
b(Uk1 )b(Uk2 )− b(Uk1+n)b(Uk2+n)

]
dy

∣∣∣∣ ≤ ω(b, k)

for any 1 ≤ k ≤ k1 ≤ k2, and any n ≥ 0

ω(b, k)→ 0 as k →∞



Sufficient conditions for (S)–convergence

Asymptotically stationary sequence

{Un}∞n=1 asymptotically stationary ⇒ {Un}∞n=1 (S)–convergent

Subsequence principle [Balder]∫
Q

F (|Un|) dy ≤ 1 uniformly for n→∞,

F : [0,∞)→ [0,∞) continuous, lim
r→∞

F (r) =∞

⇒

there is an (S)–convergent subsequence {Unk }
∞
k=1



Application to consistent approximation of the Euler system

(S)–convergent consistent approximation

Un = [%n,mn, Sn] Q = (0,T )× Ω

Un
(S)→ V

DMV solution

V is a dissipative measure valued solutions of the Euler system

Convergence in Wasserstein distance∫ T

0

∫
Ω

∣∣∣∣∣dWs

[
1

N

N∑
n=1

δUn(y);Vy

]∣∣∣∣∣
s

dx dt → 0 as N →∞

1 ≤ s <
2γ

γ + 1



Deterministic convergence

Strong solution

Euler system admits strong solution ⇒ V(t,x) = δ[%,m,S](t,x)

Regular limit[
% = 〈V; %̃〉 , m = 〈V; m̃〉 , S =

〈
V; S̃

〉]
∈ C 1

⇒

[%,m, S ] strong solution of Euler, V(t,x) = δ[%,m,S](t,x)

Convergence to weak solution

[
% = 〈V; %̃〉 , m = 〈V; m̃〉 , S =

〈
V; S̃

〉]
weak solution to Euler system

⇒

V(t,x) = δ[%,m,S](t,x)


