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Euler system of gas dynamics

Mass conservation

∂t%+ divxm = 0

Momentum balance – Newton’s Second Law

∂tm + divx

[
m⊗m

%

]
+∇xp = 0

Energy balance – First Law of Thermodynamics

∂tE + divx

[
(E + p)

m

%

]
= 0

Boundary conditions

m · n|∂Ω = 0



Constitutive relations – Second Law of Thermodynamics

Pressure, internal energy, entropy

E =
1

2

|m|2

%︸ ︷︷ ︸
kinetic energy

+ %e︸︷︷︸
internal energy

, p = (γ − 1)%e︸ ︷︷ ︸
EOS (incomplete)

Entropy

s = S
(

p

%γ

)
, S = %s︸ ︷︷ ︸

total entropy

Boyle–Mariotte Law:

p = %ϑ, e =
1

γ − 1
ϑ, s = log

(
ϑ

1
γ−1

%

)

Entropy balance (inequality) – Second Law of Thermodynamics

∂tS + divx

[
S

m

%

]
= (≥)0



Thermodynamic stability

Conservative–entropy variables

density %, momentum m, total entropy S , [%,m, S ]

Thermodynamic stability – energy

E = E(%,m, S) : Rd+2 → [0,∞]

E = (%,m, S) =∞ if % < 0, E(0,m, S) = lim
%→0+

E(%,m, S)

convex, lower semi–continuous on Rd+2

Thermodynamic stability in standard variables

positive compressibility
∂p(%, ϑ)

∂%
> 0

positive specific heat at constant volume
∂e(%, ϑ)

∂ϑ
> 0



Known facts about solvability of Euler system

Classical solutions

Smooth initial state gives rise to smooth solution on a (generically) finite
time interval Tmax, singularities (shocks) develop after Tmax

Weak solutions

Admissible (weak + entropy inequality) weak solutions exist globally in
time. There is a “vast” class of initial data for which the problem admits
infinitely many admissible weak solutions, the system is ill–posed in the
class of admissible weak solutions

Generalized - oscillatory solutions

There are various concepts of generalized solutions: measure–valued
solutions, dissipative measure–valued solutions, etc. They can be seen as
limits of consistent approximations. They are “inseparable” from the
process how they were obtained.



Consistent approximation

Approximate field equations (in the distributional sense)

∂t%n + divxmn = e1
n

∂tmn + divx

[
mn ⊗mn

%n

]
+∇xp(%n, Sn) = e2

n

∂tE(%n,mn, Sn) + divx

[
(E + p) (%n,mn, Sn)

mn

%n

]
= e3

n

∂tSn + divx

[
Sn

mn

%n

]
≥ e4

n

Vanishing consistency errors

e1
n , e2

n , e4
n → 0 in the distributional sense∫

Ω

e3
n dx → 0 uniformly in time

Stability:∫
Ω

E(%n,mn, Sn) dx ≤ c, sn =
Sn

%n
≥ −c uniformly in time



Consistent approximation - basic properties

Examples of consistent approximations

Vanishing dissipation limit from the Navier–Stokes–Fourier system
to the Euler system

Limits of entropy (energy) preserving numerical schemes,
Lax–Friedrichs scheme, Rusanov scheme, Brenner model based
scheme (EF, M.Lukáčová, H. Mizerová)

Convergence of consistent approximation

%n → %, Sn → S weakly-(*) in L∞(0,T ; Lγ(Ω))

mn → m weakly-(*) in L∞(0,T ; L
2γ
γ+1 (Ω;Rd))

the limit [%,m,S ] is a generalized (dissipative) solution of the Euler
system

up to a suitable subsequence!



Convergence of consistent approximation

Strong convergence

Strong convergence to strong solution
Euler system admits a smooth solution ⇒ [%,m, S ] is the unique
smooth solution and convergence is strong and unconditional (no
need for subsequence) in L1

Strong convergence to smooth limit
The limit [%,m,S ] is of class C 1 ⇒ the limit is the unique strong
solution of the Euler system and convergence is strong and
unconditional (no need for subsequence) in L1

Strong convergence to weak solution
EF, M.Hofmanová (2019):

The limit [%,m,S ] is a weak solution of the Euler system ⇒
convergence is strong in L1



Weak convergence of consistent approximation

Weak convergence

If consistent approximation DOES NOT converge strongly, the following
must be satisfied:

the limit Euler system does not admit a strong solution

the limit [%, S ,m] is not C 1 smooth

the limit [%, S ,m] IS NOT a weak solution of the Euler system

Visualization of weak convergence?

Oscillations. Weakly converging sequence may develop oscillations.
Example:

sin(nx)→ 0 weakly as n→∞

Concentrations.

nθ(nx)→ δ0 weakly-(*) in M(R)

if

θ ∈ C∞c (R), θ ≥ 0,

∫
R

θ = 1



Statistical description of oscillations – Young measures

Young measure

b(%n,mn, Sn)→ b(%,m, S) weakly-(*) in L∞((0,T )× Ω)

(up to a subsequence) for any b ∈ Cc(Rd+2)

Young measure V – a parametrized family of probability measures
{Vt,x}(t,x)∈(0,T )×Ω on the phase space Rd+2:

b(%,m, S)(t, x) =
〈
Vt,x ; b(%̃, m̃, S̃)

〉
for a.a. (t, x)

Visualizing Young measure

visualizing Young measure ⇔ computing b(%,m, S)

Problems

b(%n,mn,Sn) converge only weakly

extracting subsequences

only statistical properties relevant ⇒ knowledge of the “tail” of the
sequence of approximate solutions absolutely necessary



Probability – Strong Law of Large Numbers

Cesàro averages

Banach–Saks Theorem, Komlos Theorem:

1

N

N∑
n=1

b(%n,mn,Sn)→ b(%,m,S) strongly in L1 and a.a.

(up to a subsequence) for any b ∈ Cc(Rd+2)

Reformulation in terms of Young measure

1

N

N∑
k=1

δ[%n,mn,Sn ](t,x) → Vt,x a.a. and in L1((0,T )× Ω;P),

where P is the Polish space of probability measures on Rd+1 and
convergence is in the sense of Wasserstein (Monge–Kantorowich) distance



Breaking the curse of subsequence

Stationary approximation

[%n,mn,Sn] ≈ Un, Q ≡ (0,T )× Ω, {Un}∞n=1 is stationary

⇔∫
Q

B(Uk1 , . . . ,Ukj ) =

∫
Q

B(Uk1+n, . . . ,Ukj+n)

for any B ∈ Cc(R jd), and [k1, . . . , kj ], and any n ≥ 0

Asymptotically stationary approximate sequences

An approximate sequence is asymptotically stationary if it approaches
asymptotically (to be specified) a stationary sequence



Asymptotic properties of stationary processes

Birkhoff–Khinchin Theorem

{Un}∞n=1 stationary, b ∈ B(Rd) (Borel measurable)∫
Q

b(U0) <∞

⇒

1

N

N∑
n=1

b(Un) converges for a.a. y ∈ Q



Asymptotically stationary approximation

Asymptotically stationary approximate sequence

An approximate sequence {Un}∞n=1 is asymptotically stationary if for any b
and any subsequence nk the following limits exist:

lim
N→∞

1

N

N∑
k=1

b(Unk ) in the sense of weak-(*) topology on L∞(Q)

lim
N→∞

1

N2

∫
Q

n∑
k=1,m=1

b(Unk )B(Umk )

Note carefully

the limits may be different for different subsequence (but in fact they
are not)

the first limit is in the weak-(*) not strong topology

the second limit is limit of correlations



Conclusion

Generation of Young measure

Asymptotically stationary approximate sequences generate unconditionally
(no need of subsequence) a unique Young measure

Convergence of Cesàro averages

If [%n,mn, Sn] is an asymptotically stationary approximate sequence, then

1

N

N∑
n=1

b(%n,mn, Sn)→ b(%,m, S) strongly in L1(Q)

Visualization of Young measure

The Young measure generated by asymptotically stationary approximate
sequence can be computed (visualized) as a strong limit in L1(Q) of
approximate distribution measures:

1

N

N∑
n=1

δ[%n,mn,Sn ](t,x) → Vt,x in Monge–Kantorowich distance


