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Euler system for a barotropic inviscid fluid

Equation of continuity

Oto + divam =10
Momentum equation

mg@m

3tm + diVX (

>+pr( )=0, p(0) =a¢", a>0, y>1

Impermeability boundary conditions or periodic boundary conditions

m-nlon =0, or Q= ([-1,1]|{_1.1;)¢, d =2,3

Initial conditions

0(0,) = g0, m(0,-) = mg




Admissible solutions — energy dissipation

+ P(e), P'(e)e—P(o) = p(0)
m2 .
%%—FP(Q) if o>0
P(o) if [ m| =0 is convex |.s.c

oo if p=0,lm|#0

Energy balance (conservation)

8:E + divy (5%) + divy (,;%) -0

Energy dissipation

0e€ + divi(Eu) + divi(pu) < [0

2
E:/de, O:E <0, E(0+):/ {EM‘FP(E)O):l dx
Q al2 o



Known facts about Euler equations

Well/ill posedness

Local in time existence of unique smooth solutions for smooth initial
data

Blow—up (shock wave) in a finite time for a generic class of initial
data

Existence of infinitely many weak solution for any continuous initial
data

Existence of “many” initial data that give rise to infinitely many
weak solutions satisfying the energy inequality

Existence of smooth initial data that give rise to infinitely many weak
solutions satisfying the energy inequality

Weak—strong uniqueness in the class of admissible weak solutions




Dissipative solutions
Equation of continuity
de0 + divem =0, 9(0,-) = 0o
Momentum balance

mg@m

Orm + divy ( ) + Vip(0) = —dive (Rv + RpI), m(0,-) =mg

Energy inequality

d 1 |mo?
—E(t) <0, E(t) < E, E = F —
HEO <0 EW <6 B [ M

E= (/Q B%HD(Q)} dx+/§d%trace[mv]+/ﬁdﬁmp>

Turbulent defect measures

+P(on)| ax

R, € L=(0, T; MT(Q RLL)), Ry € L0, T; MT(Q))




Basic properties of dissipative solutions

Well posedness, weak strong uniqueness
m Existence. Dissipative solutions exist globally in time for any finite
energy initial data
m Compatibility. Any C! dissipative solution [¢,m], ¢ > 0 is a classical
solution of the Euler system

m Weak—strong uniqueness. If [g,m] is a classical solution and [, m]
a dissipative solution starting from the same initial data, then
R, =R,=0and p=9, m=m.

m Semiflow selection. There exists a measurable selection of
dissipative solution that forms a semigroup




Stability properties
Stability - energy balance

1 |m0 ,,|

P(00,n
3 oon + P(¢o,n)

%En(t) S 07 En(t) S EO,n + €1,n, EO,n = / |:

Consistency - equation of continuity, momentum equation

ath + dimen = €2,n, Qn(O, ) = Q0,n

mn®mn

n

8trnn + diVx ( ) + pr(gn) = €3,n, mn(07 ) = Mo,n

Convergence (up to a subsequence), €1, e, €3, —0 =
on — 0 weakly-(*) in L(0, T; L7(Q))
m, — m weakly-(*) in L>(0, T; L%(Q; R%))

1|m,
e [iim

‘ 2

+ P(.Qn):| — & in Lx?voeak(ov T;MJr(ﬁ))

o, m, E= / d€ is a dissipative solution
Q



Komlos (KX) convergence

Komlos theorem
{Un}721 bounded in L'(Q)
=
1 & _
ZUnk—>Ua.a. in Qas N — oo

k=1
Conclusion for the approximate solutions

N
%Zan —0in L*((0, T) x Q) as N — oo
k=1

m, — min L'((0, T) x Q) as N — oo

Imoc* + P(Qn,k):| —-Eel'((0,T)xQ) aa. in(0,T)xQ




K—convergence of Young measures [Balder]

Young measure

{U,}32, bounded in LY(Q) ~ v/ = Sy,

=

N

1 .

N E vik — vt narrowly a.a. in Q as N — oo
k=1

Lévy—Prokhorov distance

forany 1 < g < o0.




Energy defect

Energy defect

Oscillation defect

- {”'"' + P )] € 1}((0, T) x Q)

2

Concentration defect

E-EelL™0, T, M (Q)

Total energy defect

¥ P(g)} - %trace[%v] Py € L7(0, T MY ()




Strong convergence

Strong convergence
oscillation defect =0 =
00— 0in L'((0, T) x Q), m, = min L}'((0, T) x Q; RY)
Equi—integrability
concentration defect =0 =
m, ® m,

o, equi—integrable, ———" equi—integrable

n

Convergence to a strong solution

total energy defect =0 =

0n — 0in L7((0, T) x Q), m, — m in L31((0, T) x ©; RY

[0, m] is a strong solution of the Euler system




Weak convergence

Conditional result (EF, M.Hofmanova 2019)

total energy defect = 0 on a neighborhood of the boundary 0Q

[0, m] is a weak solution to the Euler system

=

total energy defect = 0in (0, T) x Q

convergence is strong in (0, T) x Q

Corollary

total energy defect = 0 on a neighborhood of the boundary 0Q

convergence is only weak in some part of Q

=

[0, m] a weak solution of the Euler system




Numerical scheme, |

Mesh

d
= |J KK =[]0, hil+xx, 0<Ah < h < h i=1,...,d0<Ar<1
KeT i=1

Function spaces

Qn = {v e L°°(T%) ’ vk = VK}

My NTY) = Qp, NMypv=)" 1Ki/ vdx.
ier Kl Uk




Numerical scheme, Il

Notation
vO'(x) = 5iT+ v(x +dn), v"(x) = §|Lrg+ v(x — dn)
7(x) = LOIEVOD g = vt ) v ()

Upwind

Numerical flux

Filr,v) = Uplrv] = Il =7 v -n— 2 (h 4+ 1w -n)) 1],




Numerical scheme, Il

Time discretization

k
DtV

Numerical scheme

/ Dtghgph dx — Z/ Fh(gh,uh [[¢n]ldo =0 for all ph € O,

ceé

| Delelu) -0, ax= 3 [ Fulelubuf)- kel o

ce€f

—Z/ p()n - [[,]] do = —hﬁZ/ uf]] - ke a1 do

ceEV Y oceE” Y

for all ¢, € Qu(T% R), B> -1




Properties of numerical solutions, |

Positivity of the discrete density
oh >0

Discrete energy balance

/[ of|uf |2+P(Qh] dx+2/(ha

oce€

_Tt/QP”(ﬁﬂDtg dx — Z/P”
1| Dot dx—fZ/ £YP Uk - n| [ H

ceEV

([ut]]" +»° [[u;]r) do

k

h (h“+|@.n|) do




Properties of numerical solutions, 1l

Consistency

,
—/92@(07 ) dx=/ / [Qhars0+@hUh-szo}dxdt
Q 0 Td

T
+/ / ei(t, h,p)dxdt
o Jrd

for any p € C3([0, T) x T9)

—/ ohul - (0, -)dx
Td

T
= / / OnUp - Orp + onup @ up @ Vi + p(gh)divxgo] dxdt

—hﬁ/ Z/ uh N7l dadt—|—/ / (t, h, ) dxdt

o€e€

for any @ € C3([0, T) x T¢; RY)




Conclusion

Basic properties of the numerical scheme

m Unconditional convergence to a dissipative solution (up to a
subsequence)

m Strong (pointwise) convergence to the strong solution as long as the
latter exists

m Pointwise convergence of Cesaro averages of Young measures




