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Abstract

The goal of the course is to present the recent development of the mathematical fluid dynamics
in the framework of classical fluid mechanics phenomenological models. In particular, we discuss
the Navier-Stokes (viscous) and the Euler (inviscid) systems modelling the motion of a compressible
fluid. The theory is developed from fundamental physical principles, the necessary mathematical tools
introduced at the moment when needed. In particular, we discuss various concepts of solutions and
their relevance in applications. Particular interest is devoted to well-posedness of the initial-value
problems and their approximations including possibly certain numerical schemes.
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1 Continuum fluid mechanics

Leonhard Euler
[1707–1783]

Our goal is to present a phenomenological theory of fluids in motion - fluid
dynamics - based on the principles of classical continuum mechanics. Ac-
cordingly, a fluid is described my means of observable macroscopic quantities
as mass density, bulk velocity, internal energy depending on the time t and
the reference spatial coordinate x ∈ RN . Although the physically relevant
values are N = 1, 2, 3, we mostly focus on the most complex case N = 3. If
not stated otherwise, the Eulerian reference system will be used attached to
the physical domain occupied by the fluid in contrast with the Lagrangean
description related to the hypothetical fluid particles and their trajectories -
streamlines - in the physical space.

1.1 Mass density, velocity, mass conservation

The distribution of a fluid at a given time t is given by the mass density % = %(t, x) - a non-negative scalar
function - such that the integral ∫

B

%(t, x) dx = M(B)

gives the total mass of the fluid contained in a given set B at the time t.
The motion of (hypothetical) fluid particles is determined by the velocity field u(t, x) ∈ RN . The

trajectory of a bulk of fluid occupying at the initial instant t = 0 the set B is given by

X(t, B), t ≥ 0, where
∂

∂t
X(t, x) = u(t,X(t, x)), X(0, x) = x, x ∈ B.

The individual trajectories t 7→ X(t, x) are called streamlines. The velocity field must enjoy certain
regularity in the x− variable for the streamlines to be well defined on a time interval I, specifically

∇xu ∈ L1(I;L∞loc(R
N , RN)). (1.1)

Remark 1.1. As we shall see below, the question whether or solutions of a fluid model enjoy the desired
regularity (1.1) is mostly an open problem, in particular in higher space dimensions, see the review paper
by Fefferman [12]. This partially explains why the Eulerian rather than Lagrangean description is used in
the mathematical theory.

1.1.1 Eulerian vs. Lagrangean description
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Joseph-Louis Lagrange
[1736–1813]

Given a velocity field u generating a family of streamlines X = X(t, x) in
the physical space Ω, a quantity Q can be expressed in terms of the Eulerian
variables as

Q = QE(t, x), t ∈ I, x ∈ X(t, B),

or, in the Lagrangean variables

Q = QL(t, Y ), t ∈ I, Y ∈ B,

where
QL(t, Y ) = QE(t,X(t, Y )) or QL(t,X−1(t, x)) = QE(t, x).

In particular, the time derivative in the Lagrangean setting corresponds to the material derivative in the
Euler coordinates:

∂tQL(t, Y ) = ∂tQE(t,X(t, x)) +∇xQE(t,X(t, x)) · u(t,X(t, x)).

At first glance it may seem that the Lagrangean description is simpler; whence more suitable for a
mathematical treatment. On the other hand, transforming spatial gradients requires invertibility of the
mapping X and therefore certain regularity of the velocity field that is often out of reach of the available
analytical methods.

1.1.2 Mass transport

Consider a piece B of the physical space Ω ⊂ RN containing a fluid of the density % moving with the
(Eulerian) velocity u = u(t, x).

The physical principle of mass conservation asserts: The change of the total mass of the fluid
contained in B during a time interval t1 < t2,∫

B

%(t2, x) dx dt−
∫
B

%(t1, x) dx dt,

= (equals)
the total out/in flux of the mass through the boundary ∂B

−
∫ t2

t1

∫
∂B

%(t, x)u(t, x) · n(x) dSx dt,

where n denotes the outer norm vector to ∂B.

The above relation must hold for any time interval [t1, t2] and any volume element B. Assuming that all
quantities are sufficiently smooth (differentiable), we may use the Gauss-Green theorem and perform the
limit t2 → t1 to deduce a differential form of the principle of mass conservation - equation of continuity :

∂t%+ divx(%u) = 0. (1.2)
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It is remarkable that the same principle can be derived from an apparently weaker statement∫
I

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt = 0 for any ϕ ∈ C1
c (I × Ω), (1.3)

which is usually termed the weak formulation of (1.2). Indeed it is enough to take ϕε ∈ C∞c (I × Ω) a
suitable approximation of the characteristic function 1[t1,t2]×B and let ε → 0. If ∂B is smooth, one can
consider a family of Lipschitz functions

ϕε(t, x) = min

{
1

ε
dist[x, ∂B]; 1

}
×min

{
1

ε
min{t− t1; t2 − t1}; 1

}
.

1.2 Momentum equation

In order to determine the velocity field u we need a relation between the changes of the momentum %u
and the material forces acting on a volume element of the fluid. We consider two kinds of such forces: (i)
stress forces acting on any surface element shared by two adjacent parts of the fluid, (ii) bulk or volumic
forces. The stress is characterized by the Cauchy stress tensor T producing the stress T · n acting on a
unit surface element characterized by a normal vector n.

Mathematical formulation of Newton’s second law reads∫
B

%u(t2, x) dx−
∫
B

%u(t1, x) dx

= −
∫ t2

t1

∫
∂B

%(t, x)u(t, x) (u(t, x) · n(x)) dSx dt

+

∫ t2

t1

∫
∂B

T(t, x) · n(x) dSx dt+

∫ t2

t1

∫
B

%(t, x)f(t, x) dx dt,

for any B and any t1 < t2.

Remark 1.2. Note that the above relation is vectorial relating N components of the momentum %u to the
stress forces.

Similarly to Section 1.1.2, we may deduce the differential form of Newton’s second law

∂t(%u) + divx(%u⊗ u) = divxT + %f , (1.4)
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or its weak formulation∫
I

∫
Ω

[(%u) · ∂tϕ + %u⊗ u : ∇xϕ] dx dt =

∫
I

∫
Ω

T : ∇xϕ dx dt−
∫
I

∫
Ω

%f ·ϕ dx dt (1.5)

for any ϕ ∈ C1
c (I × Ω;RN).

Remark 1.3. As the density % satisfies the equation of continuity (1.2) we may always write

∂t(%Q) + divx(%Qu) = % (∂tQ+ u · ∇xQ) ,

where the expression on the right hand side is nothing other than the material derivative of a quantity Q
multiplied on the mass density.

1.3 Cauchy stress in fluids, examples of fluid equations

The system of equations (1.2), (1.4) is not closed, a description of the Cauchy stress T is needed in terms
of %, u or other quantities as the case may be. The following statement is often used as a mathematical
definition of fluid.

A fluid is characterized by Stokes’ law

T = S− pI,

where S is viscous stress tensor and p a scalar quantity called pressure.

1.3.1 Inviscid fluids, compressible Euler system

We start with an example of inviscid (or perfect) fluids for which S = 0. In the simplest case, the pressure
is just a function of the density and we obtain

Compressible Euler system

∂t%+ divx(%u) = 0, (1.6)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0. (1.7)

George Gabriel Stokes
[1819–1903]

If N = 1, system (1.6, (1.7) can be rewritten in the Lagrangian (mass)
coordinates by introducing new independent variables

[t, x] 7→ [t, y(t, x) =

∫ x

−∞
%(t, z) dz].
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The Lagrangian velocity v = v(t, y) satisfies

v

(
t,

∫ x

−∞
%(t, z) dz

)
= u(t, x);

whence
∂tv − %u∂yv = ∂tu, %∂yv = ∂xu,

and (1.6) reads
∂tU − ∂yv = 0, (1.8)

while (1.7) gives rise to

∂tv + ∂yp

(
1

U

)
= 0 (1.9)

where U = 1
%

is the specific volume. Problem (1.8), (1.9) is called p-system.

Isaac Newton [1642–1727]

The Euler system formally conserves energy. Taking the scalar product of
(1.7) with u we obtain, by means of straightforward manipulation

∂t

(
1

2
%|u|2

)
+ divx

[(
1

2
%|u|2 + p(%)

)
u

]
− p(%)divxu = 0. (1.10)

Moreover, multiplying (1.6) on b′(%) we deduce the renormalized equation of
continuity

∂tb(%) + divx (b(%)u) + [b′(%)%− b(%)] divxu = 0, (1.11)

which, together with (1.10), gives rise to the total energy balance

∂t

(
1

2
%|u|2 + P (%)

)
+ divx

[(
1

2
%|u|2 + P (%) + p(%)

)
u

]
= 0, with P (%) = %

∫ %

1

p(z)

z2
dz. (1.12)

1.3.2 Viscous fluid, compressible Navier-Stokes system

We consider the simplest possible example of a viscous fluid, where the viscous stress tensor is a linear
function of the velocity gradient. For isotropic fluid, the associated S is given by Newton’s rheological law

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI, (1.13)

where µ and η are scalar quantities taken to be constant here for the sake of simplicity. Accordingly, we
obtain

Compressible Navier-Stokes system

∂t%+ divx(%u) = 0, (1.14)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.15)

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI. (1.16)
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Similarly to (1.12), we write the total energy balance

∂t

(
1

2
%|u|2 + P (%)

)
+ divx

[(
1

2
%|u|2 + P (%) + p(%)

)
u− S(∇xu) · u

]
= −S(∇xu) : ∇xu.

(1.17)

Claude-Louis Navier
[1785–1836]

As an physically admissible system should not produce energy, the source
term S(∇xu) : ∇xu must be non-negative for any admissible process, in par-
ticular

µ ≥ 0, η ≥ 0.

We speak about viscous fluids if µ > 0.

1.4 First law of thermodynamics - complete fluid sys-
tems

As we have seen in the preceding part, the description by means of purely
“mechanical” quantities like % and u is not complete from the physics point
of view; the resulting compressible Navier-Stokes system dissipates (mechanical) energy. For the First
law of thermodynamics to hold, one has to introduce a new quantity called (specific) internal energy
e. Alternatively, we may consider the absolute temperature ϑ and suppose that both p = p(%, ϑ) and
e = e(%, ϑ) are given functions of the state variables %, ϑ. The functional dependence of p and e on % and
ϑ is called equation of state and characterizes the material properties of a given fluid.

Jean Baptiste Joseph
Fourier [1768–1830]

We rewrite the energy balance (1.17) as

∂t

(
1

2
%|u|2

)
+ divx

[(
1

2
%|u|2 + p(%, ϑ)

)
u− S(∇xu) · u

]
= −S(∇xu) : ∇xu + p(%, ϑ)divxu

(1.18)

and append the system by a similar relation for the internal energy

∂t (%e(%, ϑ))+divx [%e(%, ϑ)u]+divxq = S(∇xu) : ∇xu−p(%, ϑ)divxu, (1.19)

where q is a new quantity that represents the diffuse flux of the internal energy.
In accordance with the First law of thermodynamics, the total energy of the
system must be conserved; whence

∂t

[
%

(
1

2
|u|2 + e(%, ϑ)

)]
+ divx

[
%

(
1

2
|u|2 + e(%, ϑ)

)
u + p(%, ϑ)u− S(∇xu) · u + q

]
= 0.

(1.20)

The internal energy flux very often coincides with the heat flux, the latter being given by Fourier’s law

q = −κ∇xϑ. (1.21)
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Thus we have derived

Navier-Stokes-Fourier system

∂t%+ divx(%u) = 0, (1.22)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(∇xu), (1.23)

∂t

[
%

(
1

2
|u|2 + e(%, ϑ)

)]
+ divx

[
%

(
1

2
|u|2 + e(%, ϑ)

)
u + p(%, ϑ)u− S(∇xu) · u + q

]
= 0, (1.24)

with

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI, (1.25)

q = −κ∇xϑ. (1.26)

The “inviscid” version is known as

Complete Euler system

∂t%+ divx(%u) = 0, (1.27)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = 0, (1.28)

∂t

[
%

(
1

2
|u|2 + e(%, ϑ)

)]
+ divx

[
%

(
1

2
|u|2 + e(%, ϑ)

)
u + p(%, ϑ)u

]
= 0. (1.29)

1.5 Second law of thermodynamics

Willard Gibbs
[1839–1903]

The Second law of thermodynamics encodes the time irreversibility of the
fluid evolution characteristic for viscous and heat conducting fluid. We recall
the internal energy balance

%∂te(%, ϑ) + %u · ∇xe(%, ϑ) + divxq = S : ∇xu− pdivxu,

where

%∂te(%, ϑ) + %u · ∇xe(%, ϑ) = %De(%, ϑ) · [∂t%, ∂tϑ] + %u ·De(%, ϑ) · [∇x%,∇xϑ].

Suppose that e and p are interrelated through Gibbs’ equation

ϑDs(%, ϑ) = De(%, ϑ) +D

(
1

%

)
p(%, ϑ), (1.30)
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where s is a new quantity called (specific) entropy. Accordingly,

%∂te(%, ϑ) + %u · ∇xe(%, ϑ) = %De(%, ϑ) · [∂t%, ∂tϑ] + %u ·De(%, ϑ) · [∇x%,∇xϑ]

= ϑ%Ds(%, ϑ) · [∂t%, ∂tϑ] + ϑ%u ·Ds(%, ϑ) · [∇x%,∇xϑ]

+ p(%, ϑ)
1

%
(∂t%+ u · ∇x%)

= ϑ [∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u)]− p(%, ϑ)divxu;

whence (1.19) can be rewritten as

∂t (%s(%, ϑ)) + divx [%s(%, ϑ)u] +
1

ϑ
divxq =

1

ϑ
S(∇xu) : ∇xu,

where, furthermore,
1

ϑ
divxq = divx

(
1

ϑ
q

)
+

1

ϑ2
q · ∇xϑ,

and, consequently, we end up with the entropy balance equation

∂t (%s(%, ϑ)) + divx [%s(%, ϑ)u] + divx

(
1

ϑ
q

)
=

1

ϑ

[
S(∇xu) : ∇xu−

q · ∇xϑ

ϑ

]
. (1.31)

If q = −κ∇xϑ is given by Fourier’s law, the entropy production rate represented by the right-hand side
of (1.31) is non-negative as long as κ ≥ 0. In other words, the entropy is produced in the course of the
process in accordance with the Second law of thermodynamics.

2 Various concepts of solutions to the equations and systems

of mathematical fluid dynamics

Jacques Hadamard
[1865–1963]

A typical problem for an evolutionary equation is the initial-value or Cauchy
problem. Knowing the state of the system at an initial time, say t = 0, solve
the evolutionary equation for this initial data. If the physical system (fluid) is
confined to a bounded domain, the boundary behavior must be prescribed. To
avoid the difficulties created by the influence boundaries on the fluid motion,
we focus on problems posed on the whole physical space RN or on the periodic
(flat) torus

T N =
(
[0, 1]|{0,1}

)N
.

In the latter case, we simply imposed the periodic boundary conditions, that
may be seen as a useful though not very realistic approximation. Evolutionary
problems are expected to be well posed in the sense of Hadamard:

• solutions exist for any physically admissible choice of the initial data;

• solutions are uniquely determined by the initial data;

• solutions depend in a continuous way on the initial data.

Our goal is to address these issues for the evolutionary equations arising in fluid dynamics.
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2.1 Possible blow-up of smooth solutions

Solutions of non-linear problems similar to the compressible Euler system (1.6), (1.7) may develop singu-
larities in a finite time no matter how smooth and/or small the data are. Note that “small” here means
sufficiently close to the equilibrium state % = const, u = 0.

The classical example of blow up is provided by the 1-D Burgers equation

∂tV + V ∂xV = 0, V (0) = V0. (2.1)

Indeed it is easy to observe that smooth solutions must satisfy

V (t, x+ V0(x)t) = V0(x), t ≥ 0. (2.2)

Obviously, if V0(x1) > V0(x2) for some x1 < x2, we get

x = x1 + tV0(x1) = x2 + tV0(x2) for t =
x2 − x1

V0(x1)− V0(x2)
> 0; whence V (t, x) =

{
V0(x1)
V0(x2)

Now we show how this construction can be adapted to the compressible Euler system. We restrict
ourselves to the case of one space dimension, where (1.6), (1.7) can be rewritten in the Lagrangean
coordinates as the p−system (1.8), (1.9), namely

∂ts− ∂xv = 0 (2.3)

∂tv − ∂xP (s) = 0, P ′ > 0. (2.4)

Bernhard Riemann
[1826–1866]

This system can be written in terms of the so-called Riemann invariants,
namely √

P ′(s)∂ts−
√
P ′(s)∂xv = 0

∂tv −
√
P ′(s)

√
P ′(s)∂xP (s) = 0.

Introducing Z(s) =
∫ s

0

√
P ′(z) sz we get

∂tZ − A(Z)∂xv = 0

∂tv − A(Z)∂xZ = 0,

or

∂tR1 − A
(
R1 +R2

2

)
∂xR1 = 0

∂tR2 + A

(
R1 +R2

2

)
∂xR2 = 0,

where we have introduced the Riemann invariants

R1 = v + Z, R2 = Z − v.
Setting either R1 or R2 constant, we end up with a non-linear scalar equation of type (2.1).

We conclude that solutions of the compressible Euler system (1.6), (1.7) may, and indeed do, develop
singularities for a generic class of smooth initial data.

Remark 2.1. Let us point out that similar construction fails for the compressible Navier–Stokes system
(1.14–1.16). As shown by Kazhikhov [17], this problem admits global in time smooth solutions for smooth
initial data if N = 1. Similar results for N = 2, 3 are not known, see however Kazhikhov and Vaigant [28].
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2.2 Classical - strong solutions

Ideally, a system of partial differential equations should admit strong or classical solutions possessing all the
necessary derivatives and enjoying certain continuity to attain the initial data. Sometimes we speak about
strong solutions if all derivatives involved in equations exist in the generalized sense as integrable functions.
Once the existence of a classical solution is established, the questions of uniqueness and/or continuous
dependence on the data are usually an easy task given the high regularity of solutions. Unfortunately,
classical solutions of most problems in mathematical fluid dynamics are known to exist only on short
time intervals - local eistence - or globally in time but for the initial data that are sufficiently close to an
equilibrium solution - global existence for “small” data.

2.2.1 Local existence for the compressible Euler and Navier-Stokes system

Consider the Euler/Navier-Stokes system describing the motion of a compressible fluid introduced in
Section 1.3.2:

∂t%+ divx(%u) = 0, (2.5)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (2.6)

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI, (2.7)

with µ = η = 0 for the inviscid (Euler) system, and µ > 0 for the viscous (Navier-Stokes) fluid. For the
sake of simplicity, we consider the periodic boundary conditions, meaning the physical space Ω = T N is
the flat torus, and prescribe the initial state

%(0, ·) = %0, u(0, ·) = u0, (2.8)

where %0 and u0 are as smooth as needed, and %0 > 0 to the degenerate vacuum regime. Problem (2.5–2.8)
is known to be locally well posed in the Sobolev scale Wm,2(Ω) for m large enough, see e.g. Majda [20],
Kleinerman and Majda [18].

Theorem 2.2. Let p ∈ C∞(0,∞), p′(%) > 0 for % > 0, µ ≥ 0, η ≥ 0, and

%0 > 0, %0 ∈ Wm,2(Ω), u0 ∈ Wm,2(Ω;RN) for m >

[
N

2

]
+ 1.

Then there exists a positive time T > 0 such that problem (2.5–2.8) admits a strong solution [%,u] in
(0, T )× Ω, unique in the class

% ∈ C([0, T ];Wm,2(Ω)), ∂t% ∈ C([0, T ];Wm−1,2(Ω)),

u ∈ C([0, T ];Wm,2(Ω;RN)), ∂tu ∈ C([0, T ];Wm−k,2(Ω;RN)),

k = 1 if µ = η = 0, k = 2 if µ > 0 or η > 0.
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Remark 2.3. Obviously, the solution [%,u] is as smooth as we wish thanks to the Sobolev embedding
relation

W k,2(Ω) ↪→ C(Ω), k >

[
N

2

]
.

Sergej Lvovic Sobolev
[1908–1989]

The Sobolev spaces, based on the concept of generalized derivatives and
Lebesgue integration, form a natural framework for the so called energy
method used in the proof of local existence. The a priori bounds are usually
established in the Sobolev framework rather than the framework of spaces of
classical continuous and Hölders continuous functions. The desired regularity
is then obtained by means of the embedding theorems. We refer to the mono-
graphs by Adams [1], Maz’ya [23], or Ziemer [29] for the basic properties of
the Sobolev spaces.

2.2.2 Rewriting the Euler system as symmetric hyperbolic

Let us show very briefly the leading idea behind the proof of Theorem 2.2,
namely how to rewrite the Euler problem as a symmetric hyperbolic system.
To this end, we make a simplifying but still physically relevant assumption
that the pressure p is given by the isentropic constitutive relation p(%) = a%γ,
γ > 1. With the new choice of independent variables

r =

√
2aγ

γ − 1
%
γ−1
2 ,

we may rewrite the Euler system in the form

∂tr + u · ∇xr +
γ − 1

2
rdivxu = 0 (2.9)

∂tu + u · ∇xu + r∇xr = 0. (2.10)

To obtain suitable a priori estimates, we differentiate the equations ([N/2] + 1)−times with respect to
the x−variable and then multiply (2.9) on ∂αx %, and (2.10) on ∂αxu, α = [N/2] + 1. We obtain the relation

d

dt

∫
Ω

|∂αx %|
2 + |∂αxu|2 dx ≤ c+

(∫
Ω

|∂αx %|
2 + |∂αxu|2 dx

)M
, M > 0

from we deduce local–in–time boundedness of the Sobolev norm

‖∂αx %‖L2(Ω) + ‖∂αxu‖2
L2(Ω) .

This operation requires the embedding relation

Wα,2 ↪→ C for α >
N

2
.
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2.2.3 Global existence for small initial data

The Navier-Stokes system admits global-in-time solutions provided the initial data are close enough to
an equilibrium state. Here, we present a possible result in this direction that was essentially shown by
Matsumura and Nishida [21], [22] for N = 3.

Theorem 2.4. Let p ∈ C∞(0,∞), p′(%) > 0 for % > 0, µ > 0, η ≥ 0. Let a positive constant % > 0 be
given.

Then there exists ε > 0 such that for any initial data

%0 ∈ W 3,2(Ω), u0 ∈ W 3,2(Ω;R3),

∫
Ω

(%0 − %) dx = 0,

‖%0 − %‖W 3,2(Ω) + ‖u0‖W 3,2(Ω;R3) < ε,

the Navier–Stokes problem (2.5–2.8) admits a unique strong solution [%,u] defined on the time interval
(0,∞),

% ∈ C([0, T ];W 3,2(Ω)), ∂t% ∈ C([0, T ];W 2,2(Ω)),

u ∈ C([0, T ];W 3,2(Ω;R3)), ∂tu ∈ C([0, T ];W 1,2(Ω;R3))

such that
%(t, ·)→ % in W 3,2(Ω), u(t, ·)→ 0 in W 3,2(Ω;R3) as t→∞.

Remark 2.5. Solutions in Theorem 2.4 are more regular provided we increase accordingly the regularity
of the initial data.

A similar result for the inviscid Euler system is not available. As we shall see below, solutions of the
compressible Euler system develop singularities in a finite lap of time for a fairly generic class of smooth
and even small initial data.

2.3 Weak solutions

Weak solutions satisfy the equations in the sense of distributions. A single equation in the weak formulation
is replaced by an (infinite) family of integral identities satisfied by sufficiently smooth test functions. The
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weak formulation of the Euler/Navier Stokes system (1.14), (1.15) reads∫ T

0

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt = 0,

for any test function ϕ ∈ C1
c ((0, T )× Ω),∫ T

0

∫
Ω

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt =

∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any test function ϕ ∈ C1
c ((0, T )× Ω;RN).

Note that for the Euler system S ≡ 0 and therefore less regularity for the weak solution is required. It
follows from the weak formulation that

t 7→
∫

Ω

%(t, ·)ϕ dx and t 7→
∫

Ω

(%u)(t, ·) · ϕ dx

can be seen as continuous scalar function of time for any test function ϕ. Accordingly, it is more convenient
to write the weak formulation in the form[∫

Ω

%ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2
t=τ1

=

∫ T

0

∫
Ω

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN).

(2.11)

Remark 2.6. Note that the weak formulation (2.11) already includes satisfaction of the initial conditions.
Observe that it is more natural to formulate the initial state in terms of the momentum %u rather that the
velocity u as the former is always weakly continuous.

2.3.1 Weak solutions to the compressible Euler system

The class of weak solutions is obviously larger than that of classical solutions as basically no smoothness is
required. The price to pay is a dramatic lost of well posedness as the following result shows (see Chiodaroli
[5], EF [13]).
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Theorem 2.7. Let p ∈ C3(0,∞) and let T > 0 be given. Let the initial data belong to the class

%0 ∈ C3(Ω), %0 > 0, u0 ∈ C3(Ω;RN), Ω = T N , N = 2, 3.

Then the compressible Euler system (1.6), (1.7 admits infinitely many weak solutions emanating from
the initial state [%0,u0 and belonging to the class

% ∈ L∞((0, T )× Ω), % > 0, u ∈ L∞((0, T )× Ω;RN).

Theorem 2.7 can be shown by the method of convex integration developed recently in the context of
fluid mechanics by DeLellis and Székelyhidi [9], [8], [10]. It shows that on one hand the class of weak
solutions, at leats for the inviscid fluid flows, is large enough to provide positive existence results, on the
other hand it is too large to ensure uniqueness.

Remark 2.8. We emphasize that results similar to Theorem 2.7 for viscous fluids, meaning for the
Navier-Stokes system, are not known.

2.4 Dissipative (weak) solutions

The solutions, the existence of which is claimed in Theorem 2.7, are produced in a rather non-constructive
way by adding oscillatory components to a quantity called sub-solution. As a result, they typically produce
energy, meaning violate the energy balance (1.12). Thus we may try to eliminate them by adding a weak
counterpart of the energy balance as an integral part of the definition of weak solution.

We say the [%,u] is a dissipative weak solution to the Euler/Navier Stokes system if, in addition to the
weak formulation (2.11), the total energy inequality∫

Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

(2.12)

holds for a.a. τ ∈ (0, T ).

Remark 2.9. Recall that for the Euler system S(∇xu) ≡ 0 and (2.12) simply says that the total energy
of the system is non-increasing in time.

Remember that the Navier-Stokes system is already dissipative so adding inequality in (2.12) does not
violate any physical principle. In addition, we have extrapolated this argument also to the “conservative”
Euler system.
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2.5 Relative energy

The dissipative solutions introduced in the previous section satisfy an extended version of the energy
inequality (2.12) known as relative energy inequality. We introduce the relative energy functional

E
(
%,u

∣∣∣r,U) =

∫
Ω

[
1

2
%|u−U|2 + P (%)− P ′(r)(%− r)− P (r)

]
dx. (2.13)

If
% 7→ p(%) is strictly increasing in (0,∞),

then the pressure potential P is strictly convex and E represents a kind of (non-symmetric) distance
function between [%,u] and [r,U].

Seeing that

E
(
%,u

∣∣∣r,U)
=

∫
Ω

(
1

2
%|u|2 + P (%)

)
dx−

∫
Ω

%u ·U dx+

∫
Ω

%|U|2 dx−
∫

Ω

P ′(r)% dx+

∫
Ω

p(r) dx

we easily observe that wa may evaluate the time difference[
E
(
%,u

∣∣∣r,U)]t=τ
t=0

as soon as [%,u] is a dissipative (weak) solution to the Euler/Navier-Stokes system, and [r,U] is a pair of
sufficiently smooth “test functions”, r > 0. Indeed we successively compute

• [∫
Ω

(
1

2
%|u|2 + P (%)

)
dx

]t=τ
t=0

+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt ≤ 0

in accordance with the energy inequality (2.12), keeping in mind that S ≡ 0 for the Euler system;

• taking U as a test function in the weak formulation of the momentum equation:[∫
Ω

%u ·U dx

]t=τ2
t=τ1

=

∫ T

0

∫
Ω

[%u · ∂tU + %u⊗ u : ∇xU + p(%)divxU] dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xU dx dt;

• taking 1
2
|U|2 and P ′(r) as test functions in the weak formulation of the equation of continuity:[∫

Ω

%
1

2
|U|2 dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%U · ∂tU + %u ·U · ∇xU] dx dt,

and [∫
Ω

%P ′(r) dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%P ′′(r)∂tr + P ′′(r)%u · ∇xr] dx dt.
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Summing up the previous observations we obtain

Relative energy inequality

[
E
(
%,u

∣∣∣r,U)]t=τ
t=0

+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx

≤
∫ τ

0

∫
Ω

% [∂tU + u · ∇xU] · (U− u) dx dt

+

∫ τ

0

∫
Ω

[S(∇xu) : ∇xU− p(%)divxU] dx dt

−
∫ τ2

τ1

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%u · ∇xr] dx dt,

(2.14)

where we have used the identity
p′(r) = rP ′′(r).

3 Weak vs. strong solutions

Our goal in this section is to show the weak-strong uniqueness property for the dissipative solutions of
the Euler/Navier-Stokes system. In other words, the weak and strong solutions emanating from the same
initial data coincided as long as the latter exists.

3.1 Weak-strong uniqueness

Thomas Hakon Grönwall
[1908–1989]

Suppose that the Euler/Navier-Stokes system admits a strong solution [% =
r,u = U] on a time interval (0, T ), r > 0. Let [%,u] be a dissipative weak
solution of the same problem with the same initial data. Taking [r,U] as test
functions in the relative energy inequality (2.14), and using the fact that

∂tU + U · ∇xU = −1

r
∇xp(r) +

1

r
divxS(∇xU),
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we obtain

E
(
%,u

∣∣∣r,U) (τ) +

∫ τ

0

∫
Ω

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dx

≤
∫ τ

0

∫
Ω

%|∇xU||u−U|2 dx

−
∫ τ

0

∫
Ω

%P ′′(r)∇xr · (U− u) dx dt

−
∫ τ

0

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%u · ∇xr + p(%)divxU] dx dt

+

∫ τ

0

∫
Ω

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt.

Furthermore, as r satisfies
∂tr + U · ∇xr = −rdivxU,

we get, performing several by-parts integrations,

−
∫ τ

0

∫
Ω

%P ′′(r)∇xr · (U− u) dx dt

−
∫ τ

0

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%u · ∇xr + p(%)divxU] dx dt

= −
∫ τ

0

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%U · ∇xr + p(%)divxU] dx dt

= −
∫ τ

0

∫
Ω

divxU
(
p(%)− p′(r)(%− r)− p(r)

)
dx dt.

Thus we conclude that

E
(
%,u

∣∣∣r,U) (τ) +

∫ τ

0

∫
Ω

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dx

≤
∫ τ

0

∫
Ω

%|∇xU||u−U|2 dx

−
∫ τ

0

∫
Ω

divxU
(
p(%)− p′(r)(%− r)− p(r)

)
dx dt

+

∫ τ

0

∫
Ω

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt.

(3.1)

3.1.1 Weak-strong uniqueness for the Euler system

Relation (3.1) implies % = r, u = U by means of the standard Gronwall lemma. More specifically, in the
case of the Euler system, the strong solution must be at least globally Lipschitz and we need

p(%)− p′(r)(%− r)− p(r) to be dominated by P (%)− P ′(r)(%− r)− P (r).
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Note that this is true provided, for instance,

p ∈ C[0,∞) ∩ C2(0,∞), p′(%) > 0 for % > 0, lim inf
%→∞

p′(%) > 0, lim inf
%→∞

P (%)

p(%)
> 0. (3.2)

We have shown the following result.

Theorem 3.1. Let the pressure p satisfy (3.2). Let the compressible Euler system (1.6), (1.7) admits
a solution [%̃, ũ], %̃ > 0 that is Lipschitz in [0, T ] × Ω, Ω = T N , N = 1, 2, 3. Let [%,u], % ≥ 0 be a
dissipative weak solution of the same problem,

%(0, ·) = %̃(0, ·), %u(0, ·) = %̃ũ(0, ·).

Then
% = %̃, u = ũ a.a. in (0, T )× Ω.

3.1.2 Weak-strong uniqueness for the Navier-Stokes system

If viscosity is present, we have to handle the last integral in (3.1), namely∫ τ

0

∫
Ω

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt.

Clearly, this integral can be dominated by the relative entropy functional on the set, where

0 < % ≤ % ≤ %,

where %, % are positive constants.
Now, we distinguish two cases: (i) % is large % ≥ %, (ii) % is small 0 ≤ % ≤ %. If % is large, specifically

% > 2 max{r}, we get

|
(

1− %

r

)
(u−U)| ≤ c1|

√
%||√%(u−U)| ≤ c2

(
%+ %|u−U|2

)
,

where the right-hand side is dominated by the relative energy functional.
If % is small, specifically % ≤ % < 1

2
min{r}, then∣∣∣∣∣

∫
%≤%

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt

∣∣∣∣∣
≤ δ

∫ τ

0

∫
Ω

|u−U|2 dx+ c(δ)

∫
%≤%
|divxS(∇xU)|2

(
1− %

r

)2

dx dt

≤ δ

∫ τ

0

∫
Ω

%|u−U|2 + (S(∇xu)− S(∇xU)) : (∇xu−∇xU) dx

+ c(δ)

∫
%≤%
|divxS(∇xU)|2

(
1− %

r

)2

dx dt

21



for any δ > 0, where the last integral can be absorbed by the left-hand side of (3.1) provided δ > 0 is
small enough.

We have shown an analogue of Theorem 3.1 for the Navier-Stokes system.

Theorem 3.2. Let the pressure p satisfy (3.2). Let the compressible Navier-Stokes system (1.14–1.16)
admits a solution [%̃, ũ], %̃ > 0 that is Lipschitz in [0, T ]× Ω, Ω = T N ,

u ∈ L1(0, T ;W 2,∞(Ω;RN)), N = 1, 2, 3.

Let [%,u], % ≥ 0 be a dissipative weak solution of the same problem,

%(0, ·) = %̃(0, ·), %u(0, ·) = %̃ũ(0, ·).

Then
% = %̃, u = ũ a.a. in (0, T )× Ω.

3.2 Wild dissipative solutions of the Euler system

In the light of the weak-strong uniqueness result established in Theorem 3.2, it may seem that imposing
the energy inequality eliminates the “wild” solutions, the existence of which is claimed in Theorem 2.7.
However, this is true only to certain extent as shown in the following result, see [13].

Theorem 3.3. Let Ω = T N , N = 2, 3, T > 0, and let p ∈ C3(0,∞). Let

%0 ∈ C3(Ω), %0 > 0 in Ω,

be a given density distribution.

Then there exists u0,
u0 ∈ L∞(Ω;RN)

such that the corresponding initial-value problem for the Euler system (1.6), (1.7) admits infinitely
many dissipative (weak) solutions in (0, T )× Ω.

Remark 3.4. Note carefully that there is no contradiction with the weak-strong uniqueness result as the
initial velocity u0 is not regular. We also repeat that a similar result in the context of viscous fluids,
specifically for the compressible Navier-Stokes, is not available.
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3.2.1 Admissible weak solutions to the compressible Euler system

In the context of hyperbolic conservation law, it is customary to strengthen the global energy inequality
to a local one introduced in (1.12). We may say that [%,u] is an admissible weak solution to the Euler
system if [∫

Ω

%ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2
t=τ1

=

∫ T

0

∫
Ω

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN)[∫

Ω

[
1

2
%|u|2 + P (%)

]
ϕ dx

]t=τ
t=0

≥
∫ τ

0

∫
Ω

[(
1

2
%|u|2 + P (%)

)
∂tϕ

]
dx dt

+

∫ τ

0

∫
Ω

[(
1

2
%|u|2 + P (%) + p(%)

)
u · ∇xϕ

]
dx dt

for a.a. 0 ≤ τ ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω), ϕ ≥ 0.

(3.3)

Note that the notion of admissible weak solution is stronger than the dissipative weak solution as a
local version of the energy inequality is required. Still the following result holds, see Chiodaroli [5].

Theorem 3.5. Let Ω = T N , N = 2, 3, and let p ∈ C3(0,∞). Let

%0 ∈ C3(Ω), %0 > 0 in Ω,

be a given density distribution.

Then there exist T > 0 and u0,
u0 ∈ L∞(Ω;RN),

such that the corresponding initial-value problem for the Euler system (1.6), (1.7) admits infinitely
many admissible weak solutions in (0, T )× Ω.

The previous result is local in time. However, we also have the following, see [13].
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Theorem 3.6. Let Ω = T N , N = 2, 3, p ∈ C3(0,∞), % > 0, and T > 0 be given.

Then there exists ε > 0 such that for any

%0 ∈ C2(Ω), |%0 − %| < ε in Ω

there is u0,
u0 ∈ L∞(Ω;RN),

such that the corresponding initial-value problem for the Euler system (1.6), (1.7) admits infinitely
many admissible weak solutions in (0, T )× Ω.

In the light of the above results it may still seem that one could save the game by taking smooth initial
data and working in the class of admissible solutions for the Euler system. Unfortunately, even in this
case the presence of “wild solutions” cannot be avoided, see Chiodaroli, DeLellis, Kreml [6].

Theorem 3.7. Let Ω = R2, N = 2, 3, p ∈ C3(0,∞).

Then there exist such initial data

%0 ∈ W 1,∞(Ω), u0 ∈ W 1,∞(Ω;R2), %0 > 0 uniformly in R2

such that the corresponding initial-value problem for the Euler system (1.6), (1.7) admits infinitely
many admissible weak solutions in (0,∞)× Ω.

Remark 3.8. Note that the initial data belong to the class, where the weak-strong uniqueness holds. Thus
the corresponding solution is smooth (Lipschitz) on some interval [0, Tcrit), looses regularity at Tcrit and
bifurcates into branches of admissible “ wild” solutions after the critical time.

4 Stability of the solution set

Our goal is to identify stability properties of the solution set, in particular, the available a priori bounds
and weak sequential stability of families of solutions.

4.1 A priori bounds

A priori bounds reflect the piece of information transferred on the solutions from the data. Optimally, the
solutions may stay at least as regular as the data for any positive time but this is may not be true in general.

24



As a matter of fact, only little regularity is known to survive for the compressible Euler/Navier-Stokes
system characterized by the energy estimates.

4.1.1 Energy estimates

Dissipative solutions of the Euler/Navier-Stokes system satisfy the global energy inequality (2.12),∫
Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx,

(4.1)

which, on condition that the initial energy∫
Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

is bounded, give rise to a priori bounds

sup
t∈(0,T )

‖√%u(t, ·)‖L2(Ω;RN ) ≤ c(data)

sup
t∈(0,T )

‖P (%)(t, ·)‖L1(Ω;R) ≤ c(data)
(4.2)

that are the same for the Euler and Navier-Stokes system. For the sake of simplicity, suppose that the
pressure p is given by the isentropic state equation

p(%) = a%γ, a > 0, γ > 1, (4.3)

in which case the pressure potential P (%) can be taken in the form

P (%) =
a

γ − 1
%γ,

and the second estimate in (4.2) reads

sup
t∈(0,T )

‖%(t, ·)‖Lγ(Ω;R) ≤ c(data). (4.4)

We remark that (4.2), (4.4) are basically all available a priori estimates for the compressible Euler system.

4.1.2 Estimates based on dissipation

For the Navier-Stokes system, we get an important extra bound∥∥∥∥∇xu +∇t
xu−

2

N
divxuI

∥∥∥∥
L2((0,T )×Ω;RN×N )

≤ c(data). (4.5)
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As u satisfies the periodic boundary conditions, it is easy to deduce from (4.5) that

‖∇xu‖L2((0,T )×Ω;RN×N ) ≤ c(data). (4.6)

Now, we show that (4.6), together with (4.4) and the mass conservation principle∫
Ω

%(t, ·) dx =

∫
Ω

%0 dx = M0 > 0 (4.7)

that can be easily deduced from (2.11), imply that∫ T

0

‖u(t, ·)‖2
W 1,2(Ω;RN ) dt ≤ c(data). (4.8)

The desired estimate will follow from a version of Poincaré’s inequality that may be of independent interest.

Lemma 4.1. Let 0 ≤ r ≤ k be a bounded measurable function such that∫
Ω

r dx ≥M > 0.

Then

‖v‖L2(Ω) ≤ c(k,M)

[∫
Ω

r|v|2 dx+

∫
Ω

|∇xv|2 dx

]
for any v ∈ W 1,2(Ω).

Proof: Assuming a contrary we construct a sequence {vn}∞n=1 ⊂ W 1,2(Ω) such that

‖vn‖L2(Ω) = 1 and ‖vn‖L2(Ω) ≥ n

[∫
Ω

rn|vn|2 dx+

∫
Ω

|∇xvn|2 dx

]
,

where rn satisfies the hypotheses of the lemma. Using compactness of the Sobolev embeddingW 1,2(Ω) ↪→↪→
Lq(Ω), q < 6 if N ≤ 3, we may suppose

vn → v in L2(Ω), ∇xvn → 0 in L2(Ω;RN); whence v = v 6= 0− a constant. (4.9)

On the other hand, by the same token

|vn|2 → |v|2 = |v|2 in Lq(Ω), q < 3, rn → r weakly-(*) in L∞(Ω),

∫
Ω

r dx > M > 0,

and ∫
Ω

rn|vn|2 dx→ 0 =

∫
Ω

r|v|2 dx > M |v|2

in contrast with (4.9)
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Thus, in order to apply Lemma 4.1, it is enough to check that (4.4), (4.7) implies the existence of k ≥ 0
such that

rk = min{%, k} satisfies

∫
Ω

rk dx ≥M0.

To see this, we write

M0 =

∫
Ω

% dx =

∫
Ω

rk dx+

∫
%≥k

% dx =

∫
Ω

rk dx+

∫
%≥k

%1−γ%γ dx

≤
∫

Ω

rk dx+ k1−γc(data).

4.2 Stability of strong solutions for the Euler system

The a priori bounds (4.2) based on finiteness of the total energy available for the Euler system are rather
poor but almost optimal. Indeed we do not expect to get any bounds on the derivatives that would prevent
formation of shocks characteristic for the inviscid fluids, see e.g. Smoller [26]. Thus we concentrate on
families of (weak) solutions to the Euler system satisfying solely (4.2), For technical reasons, it will be
more convenient to work with the density % and the momentum m = %u as independent variables. The
Euler system then reads

∂t%+ divxm = 0, (4.10)

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = 0, (4.11)

with the convention that m = 0 whenever % = 0 for the convective term in (4.11) to be well defined.
We consider the dissipative solutions of (4.10), (4.11), namely[∫

Ω

%ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt, (4.12)[∫
Ω

m · ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[
m · ∂tϕ+

m⊗m

%
: ∇xϕ

]
dx dt (4.13)

+

∫ τ2

τ1

∫
Ω

p(%)divxϕ dx dt,[∫
Ω

1

2

|m|2

%
+ P (%) dx

]t=τ
t=0

≤ 0. (4.14)

4.2.1 Weak sequential stability

Suppose we have a family {%ε,mε}ε>0 of solutions to (4.12–4.14) defined in a space-time cylinder (0, T )×
Ω. The energy estimates just yield all nonlinearities uniformly bounded in the (non-reflexive) space
L1((0, T ) × Ω), or, better, in L∞(0, T ;L1(Ω)). There are two disturbing phenomena that may occur to
bounded sequences in L1.
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• Oscillations. A sequence {hε}ε>0 behaves like

hε(t, x) ≈ h

(
t

ε
,
x

ε

)
for some h periodic in t and x.

• Concentrations. A sequence {hε}ε>0 behaves like

hε(t, x) ≈ 1

εN+1
h

(
t

ε
,
x

ε

)
for some h ∈ C∞c ({|(t, x)| < 1}).

Both phenomena may, of course, occur simultaneously. In the subsequent analysis, oscillations in the
family {%ε,mε}ε>0 will be controlled by the equations (4.12), (4.13), while concentrations will be handled
by means of the energy inequality (4.14). It is important to observe that all non-linearities in (4.12), (4.13)
are dominated by the energy for large values of arguments, specifically∣∣∣∣m⊗m

%

∣∣∣∣ ≤ c

(
1

2

|m|2

%

)
, p(%) ≤ cP (%) for all % >> 1. (4.15)

As the space L1((0, T )× Ω) is embedded in the space of signed measures M([0, T ]× Ω) that happens
to be the dual to C([0, T ]× Ω), we may assume that

%ε → {%} weakly-(*) in M([0, T ]× Ω),

mε → {m} weakly-(*) in M([0, T ]× Ω;RN),

p(%ε)→ {p} weakly-(*) in M([0, T ]× Ω),

P (%ε)→ {P} weakly-(*) in M([0, T ]× Ω),

mε ⊗mε

%ε
→ {M} weakly-(*) in M([0, T ]× Ω;RN×N)

passing to suitable subsequences as the case may be.
Consequently, we may let ε→ 0 in (4.12), (4.13) obtaining

−
∫

Ω

%0ϕ dx =

∫ T

0

∫
Ω

[{%}∂tϕ+ {m} · ∇xϕ] dx dt,

for all ϕ ∈ C1
c ([0, T )× Ω),

(4.16)

−
∫

Ω

m0 · ϕ dx =

∫ T

0

∫
Ω

[{m} · ∂tϕ+ {M} : ∇xϕ+ {p}divxϕ] dx dt,

for all ϕ ∈ C1
c ([0, T )× Ω;RN),

(4.17)

where %0, m0 stand for the limit of the initial data.
As a matter of fact, the limit for %ε, mε can be “improved”. It follows from (4.4) that

%ε → % weakly-(*) in L∞(0, T ;Lγ(Ω)),
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where, obviously, % can be identified with {%}. Similarly,

mε =
√
%ε

mε√
%ε
,

where, by virtue of (4.2), {
mε√
%ε

}
ε>0

is bounded in L∞(0, T ;L2(Ω));

whence, applying Hölder’s inequality and (4.4), we may infer that

mε →m(≡ {m}) weakly-(*) in L
2γ
γ−1 (Ω;RN)).

Finally, we may consider

ϕδ = ψδ(t)ϕ, ϕ ∈ C1([0, T ]× Ω)

ψδ ∈ C∞(R), ψ′δ ≤ 0, ψδ(t) =

{
1 for t ≤ τ,
0 fort ≥ τ + δ

as a test function in (4.16), (4.17) and perform the limit δ → 0 to conclude that∫
Ω

%ϕ(τ, ·) dx−
∫

Ω

%0ϕ dx =

∫ τ

0

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω),

(4.18)

∫
Ω

m · ϕ(τ, ·) dx−
∫

Ω

m0 · ϕ dx =

∫ τ

0

∫
Ω

[m · ∂tϕ+ {M} : ∇xϕ+ {p}divxϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω;RN),

(4.19)

where τ correspond to the Lebesgue points of the mappings

t 7→ %(t, ·) ∈ Lγ(Ω), t 7→m(t, ·) in L2γ/(γ−1)(Ω;RN).

Finally, we may apply the same arguments to the energy inequality (4.14) deducing∫
Ω

[
N

2
trace{M}+ {P}

]
(τ, ·) dx ≤

∫
Ω

E0 dx for a.a. τ ∈ (0, T ), (4.20)

where E0 denotes the limit of the initial energy, and∫
Ω

[
N

2
trace{M}+ {P}

]
(τ, ·) dx = lim

δ→0

1

2δ

∫ τ+δ

τ−δ

∫
Ω

[
N

2
trace{M}+ {P}

]
dx dt (4.21)

for a.a. τ ∈ (0, T ), where the limit is understood in the space of measures M(Ω).
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4.2.2 Oscillations - Young measures

There is an efficient tool to describe oscillations in weakly convergent sequences - the associated Young
measure. We report the following fundamental result, see Pedregal [25, Chapter 6, Theorem 6.2] (also Ball
[3]).

Theorem 4.1. Let {vn}∞n=1, vn : Q ⊂ RN → RM be a sequence of functions bounded in L1(Q;RM),
where Q is a domain in RN .

Then there exist a subsequence (not relabeled) and a parameterized family {νy}y∈Q of probability mea-
sures on RM depending measurably on y ∈ Q with the following property:

For any Caratheodory function Φ = Φ(y, z), y ∈ Q, z ∈ RM such that

Φ(·,vn)→ Φ weakly in L1(Q),

we have

Φ(y) =

∫
RM

ψ(y, z) dνy(z) for a.a. y ∈ Q.

Our goal is to rewrite the limit system in terms of the Young measure associated to the family [%ε,mε] ∈
R1+N . Accordingly, the Young measure is a parameterized family of probability measures supported on
the set [0,∞)×RN (the densities are supposed non-negative)

νt,x : (t, x) ∈ (0, T )× Ω→ P([0,∞)×RN), ν ∈ L∞weak−(∗)((0, T )× Ω;P(R1+N)),

with the barycenter

〈νt,x; %〉 = %(t, x), 〈νt,x; m〉 = m(t, x) for a.a. (t, x) ∈ (0, T )× Ω.

For a function H = H(%,m) we define

H(%,m)(t, x) ≡ 〈νt,x;H(%,m)〉 for a.a. (t, x) ∈ (0, T )× Ω. (4.22)

provided the latter exists.

Remark 4.2. Here, we should distinguish between

〈νt,x;F (%,m〉

meaning the application of the Young measure to the Borel function F : R1×RN → R, and the composition

F (%,m) : (0, T )× Ω→ R.
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From Theorem 4.1 we know that H(%,m) is well defined L1−function (meaning for a.a. (t, x)) provided

H(%ε,mε)→ H(%,m) weakly in L1((0, T )× Ω). (4.23)

We show that H(%,m) can be defined through formula (4.22), meaning that the function H(%,m),
[%,m] ∈ R1+N is νt,x integrable for a.a. (t, x), and the function

(t, x) 7→ 〈νt,x;H(%,m)〉 is integrable in (0, T )× Ω,

whenever ∫ T

0

∫
Ω

|H(%ε,mε)| dx dt ≤ c(data) uniformly for ε→ 0. (4.24)

Note that (4.24) in general does not imply (4.23).
Since the Lebesgue integral is absolutely convergent, it is enough to consider |H|, or, equivalently, to

assume that H ≥ 0. We take a family of cut-off functions

Tk(Z) = min{Z, k}.

As Tk(H) are bounded, the functions Tk(H) are νt,x integrable for a.a. (t, x),

(t, x) 7→ 〈νt,x;Tk(H(%,m))〉 ∈ L1((0, T )× Ω),

‖(t, x) 7→ 〈νt,x;Tk(H(%,m))〉‖L1((0,T )×Ω) ≤ c(data)

uniformly for k →∞. However,

Tk(H(%,m))↗ H(%,m) for any [%,m] ∈ RN+1 as k →∞;

whence, by monotone convergence theorem, H is νt,x integrable (the integral may equal∞). On the other
hand,

Tk(H(%,m))↗ H(%,m) in L1((0, T )× Ω);

whence
〈νt,x;Tk(H(s,v))〉 → H(%,m)(t, x) = 〈νt,x;H(%,m)〉 for a.a. (t, x).

Thus 〈νt,x;H(%,m)〉 is finite for a.a. (t, x) ∈ (0, T )× Ω.

Remark 4.3. The function H(%,m) - the limit of Tk(H(%,m)) for k → ∞ is known as the biting limit
of {H(%ε,uε)}ε>0, cf. Ball and Murat [4].

We infer that
weak-(*) limit in M of H(%ε,mε) ≡ {H} = H(%,m) +DH (4.25)

for any H such that ∫ T

0

∫
Ω

|H(%ε,mε)| dx dt ≤ c(data),
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where DH ∈M([0, T ]×Ω) is called concentration defect measure. From the previous discussion, we deduce
a useful estimate for the concentration defect measure DH , namely,

‖DH‖M(Q) = sup
‖ϕ‖C(Q)≤1

∫
Q

DHϕ dx dt

≤ lim
k→∞

(
lim
ε→0

∫
|H(%ε,mε)|≥k, (t,x)∈Q

(|H(%ε,mε)| − k) dx dt

) (4.26)

Consequently, equations (4.18), (4.19) can be written in the form∫
Ω

%ϕ(τ, ·) dx−
∫

Ω

%0ϕ dx =

∫ τ

0

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω),

(4.27)

∫
Ω

m · ϕ(τ, ·) dx−
∫

Ω

m0 · ϕ dx

=

∫ τ

0

∫
Ω

[
m · ∂tϕ+

(
m⊗m

%

)
: ∇xϕ+ p(%)divxϕ+ Dm : ∇xϕ

]
dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω;RN),

(4.28)

together with the energy inequality∫
Ω

[
1

2

(
|m|2
%

)
+ P (%) +D

]
(τ, ·) dx ≤

∫
Ω

E0 dx for a.a. τ ∈ (0, T ), (4.29)

where D ∈ L∞(0, T ) is the energy concentration defect satisfying, in view of (4.15), (4.26),∫ τ

0

∫
Ω

|Dm| dx dt ≤ c

∫ τ

0

D(t) dt for a.a. τ ∈ (0, T ). (4.30)

4.2.3 Measure-valued solutions

At this stage, we may forget the way how the Young and dissipative measures were obtained and define
measure-valued solution of the Euler system (4.10), (4.11) as the pair

• the parameterized measure νt,x ∈ L∞weak−(∗)

(
(0, T )× Ω;P([0,∞)×RN)

)
;

• the dissipation defect D ∈ L∞(0, T )

satisfying ∫
Ω

〈ντ,x; %〉ϕ dx−
∫

Ω

〈ν0,x; %〉ϕ dx =

∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tϕ+ 〈νt,x; m〉 · ∇xϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω);

(4.31)
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∫
Ω

〈ντ,x; m〉 · ϕ dx−
∫

Ω

〈ν0,x; m〉 · ϕ dx

=

∫ τ

0

∫
Ω

[
〈νt,x; m〉 · ∂tϕ+

〈
νt,x;

m⊗m

%

〉
: ∇xϕ+ 〈νt,x; p(%)〉 divxϕ+ Dm : ∇xϕ

]
dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω;RN),

(4.32)

∫
Ω

〈
ντ,x;

1

2

(
|m|2

%

)
+ P (%)

〉
dx+D(τ)

≤
∫

Ω

〈
ν0,x;

1

2

(
|m|2

%

)
+ P (%)

〉
dx for a.a. τ ∈ (0, T ),

(4.33)

where ∫ τ

0

∫
Ω

|Dm| dx dt ≤ c

∫ τ

0

D(t) dt for a.a. τ ∈ (0, T ). (4.34)

Remark 4.4. Note that the measure ν0 plays the role of “initial conditions”. If we assume that the data
were controlled in the limit ε→ 0, the initial measure coincides with

u0,x = δ%0(x);m0(x) for a.a. x ∈ Ω.

Remark 4.5. The function

H : [%,m] 7→ |m|
2

%

is defined as
H[%, 0] = 0 for all % ∈ R, H[%,m] =∞ for % ≤ 0, m 6= 0.

Then H is convex, lower-semi continuous and can be approximated from below by a sequence of continuous
functions.

4.2.4 Weak-strong uniqueness in the class of measure-valued solutions

The proof of the weak-strong uniqueness property in the context of measure-valued solutions follows the
same lines as in Section 3. We introduce an analogue of the relative energy:

E
(
ν = νt,x(%,m)

∣∣∣ r,U)
=

∫
Ω

〈
νt,x;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx

(4.35)

for C1−smooth functions r and U.
Next, we successively compute∫

Ω

〈ντ,x; m〉 ·U dx−
∫

Ω

〈ν0; m〉 ·U0 dx

=

∫ τ

0

∫
Ω

[
〈νt,x; m〉 · ∂tU +

〈
νt,x;

m⊗m

%

〉
: ∇xU + 〈νt,x; p(%)〉 divxU

]
dx dt

+

∫ τ

0

∫
Ω

Dm : ∇xU dx dt;
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∫
Ω

1

2
〈ντ,x; %〉 |U|2 dx− 1

2

∫
Ω

〈ν0,x; %〉 |U|2 dx

=

∫ τ

0

∫
Ω

[〈νt,x; %〉U · ∂tU + 〈νt,x; m〉 ·U · ∇xU] dx dt;

and ∫
Ω

〈ντ,x; %〉P ′(r) dx−
∫

Ω

〈ν0,x; %〉P ′(r) dx

=

∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tP ′(r) + 〈νt,x; m〉 · ∇xP
′(r)] dx dt.

Summing up the previous relations, we obtain a measure-valued analogue of the relative energy in-
equality (2.14):[∫

Ω

〈
νt,x;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx

]t=τ
t=0

+D(τ)

≤ −
∫ τ

0

∫
Ω

[
〈νt,x; m〉 · ∂tU +

〈
νt,x;

m⊗m

%

〉
: ∇xU + 〈νt,x; p(%)〉 divxU

]
dx dt

+

∫ τ

0

∫
Ω

[〈νt,x; %〉U · ∂tU + 〈νt,x; m〉 ·U · ∇xU] dx dt

−
∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tP ′(r) + 〈νt,x; m〉 · ∇xP
′(r)− r∂tP ′(r)] dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt,

(4.36)

where, furthermore, the expression on the right-hand side can be rewritten as∫ τ

0

∫
Ω

[p(r)− 〈νt,x; p(%)〉] divxU dx dt

+

∫ τ

0

∫
Ω

〈νt,x; %U−m〉 · [∂tU + U · ∇xU] dx dt

−
∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tP ′(r) + 〈νt,x; m〉 · ∇xP
′(r)− r∂tP ′(r) + p(r)divxU] dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt+

∫ τ

0

∫
Ω

〈
νt,x;

(m− %U)⊗ (%U−m)

%

〉
: ∇xU dx dt.

Now we assume in addition that r, U is a smooth solution of the Euler system,

∂tr + U · ∇xr = −rdivxU, ∂tU + U · ∇xU = −p
′(r)

r
∇xr.
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Consequently,[∫
Ω

〈
νt,x;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx

]t=τ
t=0

+D(τ)

≤
∫ τ

0

∫
Ω

[p(r) + 〈νt,x; %〉 p′(r)− 〈νt,x; p(%)〉] divxU dx dt

+

∫ τ

0

∫
Ω

[r∂tP
′(r)− p(r)divxU] dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt+

∫ τ

0

∫
Ω

〈
νt,x;

(m− %U)⊗ (%U−m)

%

〉
: ∇xU dx dt

(4.37)

= −
∫ τ

0

∫
Ω

〈
νt,x; p(%)− p′(r)(%− r)− p(r)

〉
divxU dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt+

∫ τ

0

∫
Ω

〈
νt,x;

(m− %U)⊗ (%U−m)

%

〉
: ∇xU dx dt.

Thus, in view of (4.34), the integral on the right-hand side of (4.37) can be “absorbed” by the left-hand
side by means of a Gronwall argument as soon as∫

Ω

〈
ν0;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx,

meaning
ν0,x = δr(x),r(x)U(x) for a.a. x ∈ Ω.

We have obtained the following results, cf. Gwiazda, Swierczewska-Gwiazda, Wiedemann [16].

Theorem 4.6. Let %, U be a C1 solution of the compressible Euler system (1.6), (1.7) in [0, T ]×Ω. Let
{νt,x}(t,x)∈(0,T )×Ω, be a measure-valued solution of the same system (in terms of % and the momentum
m), with a dissipation defect D and such that

ν0,x = δr(0,x),rU(0,x) for a.a. x ∈ Ω.

Then D = 0 and
νt,x = δr(t,x),rU(t,x) for a.a. (t, x) ∈ (0, T )× Ω.

Remark 4.7. Regularity of the strong solution can be relaxed to globally Lipschitz in (0, T )×Ω by a simple
density argument.

Remark 4.8. A similar result holds for the compressible Navier-Stokes system, see [14].

We point out that not all measure-valued solutions to the compressible Euler system can be identified
as asymptotic limits of families of weak solutions, see [7] for a counterexample.
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5 Weak sequential stability of solutions to the Navier-Stokes

system

Our goal will be to show that, in contrast with the Euler system, a family of (weak, dissipative) solutions
{%ε,uε}ε>0 to the compressible Navier-Stokes system is weakly compact provided the initial data are. In
particular, any accumulation point of such a family is again a weak (dissipative) solution of the same
problem.

5.1 Integrability

We recall the a priori bounds that follow directly from the energy inequality, see Section 4.1:

sup
t∈(0,T )

‖%ε(t, ·)‖Lγ(Ω) ≤ c(data),

sup
t∈(0,T )

‖√%εuε(t, ·)‖L2(Ω;RN ) ≤ c(data)

sup
t∈(0,T )

‖%εuε(t, ·)‖L2γ/(γ+1)(Ω;RN ) ≤ c(data)∫ T

0

‖uε(t, ·)‖2
W 1,2(Ω;RN ) dt ≤ c(data).

(5.1)

We get immediately
sup
t∈(0,T )

‖p(%ε)(t, ·)‖L1(Ω) ≤ c(data), (5.2)

and, by virtue of Hölder’s inequality,

‖%εuε ⊗ uε‖Lp(Ω;RN×N ) ≤ ‖
√
%ε‖L2γ(Ω)‖

√
%εuε‖L2(Ω;RN )‖uε‖Lq(Ω;RN ),

where
1

p
=

1

2γ
+

1

2
+

1

q
, q =

{
≥ 1 arbitrary finite if N = 2,
6 if N = 3

,

where q corresponds to the Sobolev embedding relation,

W 1,2(Ω) ↪→ Lq(Ω).

Consequently, we may take p > 1 and conclude

‖%εuε ⊗ uε‖L2(0,T ;Lp(Ω;RN )) ≤ c(data) if γ =

{
> 1 if N = 2,
γ > 3

2
if N = 3,

(5.3)

in which case

1 ≤ p <
2γ

γ + 1
if N = 2, 1 ≤ p ≤ 6γ

4γ + 3
.
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5.2 Pressure estimates

It remains to “improve” the space integrability of the pressure. This may impose even more restrictions
on the adiabatic exponent γ, however, fortunately, it is not the case. In order to simplify the presentation,
we start with the case

γ > 3.

The idea is to express the pressure by means of the momentum equation (1.15). Formally, we obtain

∇xp(%) = divxS− divx(%u⊗ u)− ∂t(%u)

whence

∆xp(%) = divxdivx (S− %u⊗ u)− ∂tdivx(%u),

and, consequently,

p(%) = divx∆
−1
x divx (S− %u⊗ u)− ∂t∆−1

x divx[%u] +
1

|Ω|

∫
Ω

p(%) dx dx.

Note that the first term on the right-hand side is under control in view of (5.1), (5.3), however, we do not
have any information on

∂t∆
−1
x divx[%u].

To overcome this problem, we multiply the identity by % and perform by parts integration obtaining∫ T

0

∫
Ω

p(%)% dx dt

=

∫ T

0

∫
Ω

%divx∆
−1
x divx (S− %u⊗ u) dx dt+

1

|Ω|

∫ T

0

∫
Ω

% dx

∫
Ω

p(%) dx dt

−
[∫

Ω

%∆−1
x divx[%u] dx

]t=T
t=0

+

∫ T

0

∫
Ω

∆−1
x divx[%u]∂t% dx dt

=

∫ T

0

∫
Ω

%divx∆
−1
x divx (S− %u⊗ u) dx dt+

1

|Ω|

∫ T

0

∫
Ω

% dx

∫
Ω

p(%) dx dt

−
[∫

Ω

%∆−1
x divx[%u] dx

]t=T
t=0

+

∫ T

0

∫
Ω

[%u] · ∇x∆
−1
x divx[%u] dx dt,

(5.4)

where all integrals now contain only spatial derivatives. Seeing that the pseudodifferential operators
divx∆

−1
x divx preserve the Lp−norm, we may estimate the pressure integral∫ T

0

∫
Ω

p(%)% dx ≈
∫ T

0

∫
Ω

%γ+1 dx dt ≈
∫ T

0

∫
Ω

p(%)
γ+1
γ dx dt

using the energy bounds (5.1–5.3) deduced in the preceding section. Indeed, if γ > 3, N = 3, relations
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(5.1) imply

sup
t∈(0,T )

‖%εuε(t, ·)‖L3/2(Ω;R3) ≤ c(data),∫ T

0

‖%εuε ⊗ uε‖L3/2(Ω;R3×3) ≤ c(data)∫ T

0

‖%εu‖2
L2(Ω;R3) ≤ c(data),

therefore, using the Sobolev embedding

W 1,3/2(Ω) ↪→ L3(Ω)

we easily observe that all integrals on the right-hand side of (5.4) remain bounded in terms of the initial
data. Consequently, we may conclude∫ T

0

∫
Ω

p(%ε)
γ+1
γ dx dt ≤ c(data) provided γ > 3. (5.5)

Of course, the same holds also for N = 2.
To carry out this programme in the context of weak solutions, it is enough to consider the quantity

ϕ = ∇x∆
−1
x

(
%ε −

1

|Ω|

∫
Ω

%ε dx

)
(5.6)

in the weak formulation (2.11) for the momentum equation.

5.3 Refined pressure estimates, renormalized equation of continuity

For γ < 3, we may need to replace (5.6) by

ϕ = ∇x∆
−1
x

(
%βε −

1

|Ω|

∫
Ω

%βε dx

)
, β > 0,

which gives rise to a term
∂t%

β

in the formal calculations. We therefore need to express the time derivative of a composition b(%) of %
with a non-linear function b. Formally, the relevant relation may be derived by multiplying the equation
of continuity on b′(%):

∂tb(%) + divx (b(%)u) + [b′(%)%− b(%)] divxu = 0 (5.7)

or, in the weak formulation,[∫
Ω

b(%)ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[b(%)∂tϕ+ b(%)u · ∇xϕ] dx dt

+

∫ τ2

τ1

∫
Ω

[b(%)− b′(%)%] divxuϕ dx dt

for any ϕ ∈ C∞c ([0, T ]× Ω).

(5.8)
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Equation (5.7) or (5.8) is called renormalized equation of continuity. Renormalization plays an impor-
tant role in the theory of weak solutions to the transport equations, see the pioneering work by DiPerna
and Lions [11], or the more recent development by Ambrosio [2].

The weak formulation (5.8) can be derived for weak solutions of the equation of continuity enjoying
certain integrability properties. In particular, if

u ∈ Lq(0, T ;W 1,p(Ω)), % ∈ Lq′(0, T ;W 1,p′(Ω)),
1

p
+

1

p′
= 1,

1

q
+

1

q′
= 1.

In general, satisfaction of (5.8) has to be included as an integral part of the definition of weak solutions
to the compressible Navier-Stokes system.

The basic idea employed in [11] was to apply mollifiers to the continuity equation. Such an operation
can be performed even at the level of weak solutions if we realize that mollifying via spatial convolution
is just taking a special class of test functions. More specifically, consider a family of regularizing kernels
{κδ}δ>0,

κδ(z) =
1

δN
κ

(
|z|
δ

)
, κ ∈ C∞c (R), supp κ ⊂ (−1, 1),

κ ≥ 0, κ(−y) = k(y), κ(y) decreasing for y ≥ 0,

∫
R

κ(y) dy = 1.

We report the following technical result usually attributed to Friedrichs, see [15, Lemma 10.12].

Lemma 5.1. Let
hδ = κδ ∗ divx(rU)− divx ([κδ ∗ r]U) ,

where {κδ}δ>0 is a family of regularizing kernels, and where the symbol ∗ denotes convolution in the
x−variable. Let

r ∈ Lp(Ω), U ∈ W 1,p′(Ω),
1

p
+

1

p′
= 1, p > 1 finite.

Then
‖hδ‖L1(Ω) ≤ c‖r‖Lp(Ω)‖U‖W 1,p′ (Ω), and hδ → 0 in L1(Ω) as δ → 0.

As a direct application of Friedrich’s lemma, we may show that

• %, u satisfying the equation of continuity in the weak sense satisfy also its renormalized version as
long as

% ∈ L2((0, T )× Ω), U ∈ L2(0, T ;W 1,2(Ω;RN)).

• the density component of % of a renormalized solution is strongly continuous in time,

t 7→ %(t, ·) is a continuous mapping from [0, T ] to L1(Ω).

To see the first property, just regularize the equation of continuity by κδ (use κδ(y − ·) as a test
function):

∂t[%]δ + divx ([%]δu) = divx ([%]δu)− [divx (%u)]δ ,
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where [h]δ = κδ ∗ h. As now everything is smooth, we get easily

∂tb ([%]δ) + divx (b ([%]δu)) + (b′ ([%]δ) [%]δ − b ([%]δ)) divxu

= b′ ([%]δ) (divx ([%]δu)− [divx (%u)]δ) .

Now, at least for b′ bounded we may let δ → 0 to obtain the desired result.
In order to see strong continuity, consider b(%) for b, b′ bounded, b′ > 0. As b(%) satisfies the renormal-

ized equation, we conclude that

b ∈ Cweak([0, T ];Lp(Ω)) for any 1 ≤ p <∞

provided b is defined through limits of integral averages∫
Ω

b(%)(τ, ·)ϕ dx = lim
δ→0

1

2δ

∫ δ

−δ

∫
Ω

b(%)(τ, ·)ϕ dx dt, τ ∈ [0, T ],

with the corresponding one-sided limits at the extremal points τ = 0, T . Regularizing (5.8) by means of a
family of convolution kernels, we get, for b = b(%),

∂t[b]δ + divx ([b]δu) = [(b(%)− b′(%)%)divxu]δ ,

where the right-hand side is a function belonging to L2(0, T ;Ck(Ω)) for any k finite. Thus [b]δ is Hölder
continuous in time ranging in the space of smooth functions.

Now, we may perform “second renormalization” deducing

∂t[b]
2
δ + divx

(
[b]2δu

)
= 2[b]δ [(b(%)− b′(%)%)divxu]δ − [b]2δdivxu.

Taking the limit for δ → 0 we get that

•
[b]δ(t, ·)→ b(t, ·) in L1(Ω), [b]2δ(t, ·)→ b2(t, ·) in L1(Ω) for any t ∈ [0, T ];

•
[b]δ → b in Cweak(0, T ;L1(Ω)), [b]2δ → b2 in Cweak(0, T ;L1(Ω)).

Remark 5.1. As a matter of fact,

[b]2δ → b2 in Cweak(0, T ;L1(Ω)),

however, since we also have strong point-wise convergence, b2 = b2.

Thus for t→ τ , we get

b(t, ·)→ b(τ, ·) weakly in L2(Ω),

∫
Ω

b2(t, ·) dx→
∫

Ω

b2(τ, ·) dx;

whence b is strongly continuous. This implies strong continuity of %.
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5.4 Weak compactness and continuity of the convective terms

Here again, for the sake of simplicity, we assume that γ > 3, and, to handle the most difficult case, N = 3.
In view of the uniform bounds established in the preceding section, all non-linearities appearing in the
weak formulation (2.11) are equi-integrable - weakly precompact in L1((0, T )× Ω), consequently, passing
to suitable subsequences as the case may be, we deduce

%ε → % in Cweak([0, T ];Lγ(Ω)), uε → u weakly in L2(0, T ;W 1,2(Ω)), (5.9)

where [∫
Ω

%ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2
t=τ1

=

∫ T

0

∫
Ω

[
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

]
dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN),

(5.10)

together with the energy inequality∫
Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

(5.11)

for a.a. τ ∈ (0, T ), where bars denote the weak limit of compositions. In addition, using convexity of the
functions

[%,m] 7→ |m|
2

%
, % 7→ P (%),

we may deduce from (5.11) that∫
Ω

[
1

2

|%u|2

%
+ P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

(5.12)

for a.a. τ ∈ (0, T ). Note that, in contrast with the Euler system studied in Section 4, there are no
concentration term. Our goal in the remaining part of this section will be to show that all “bars” can be
removed in (5.11–5.12).

We start with a simple observation that Lγ(Ω) is compactly embedded into the dual W−1,2(Ω) of the
Sobolev space W 1,2(Ω) as soon as γ > 6

5
as

W 1,2(Ω) ↪→↪→ (compactly) in Lq(Ω), 1 ≤ q < 6.
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Consequently, (5.9) implies
%ε → % (strongly) in L2(0, T ;W−1,2(Ω)),

and
%εuε → %u in Cweak(0, T ;L2γ/(γ+1)(Ω;R3)), (5.13)

in other words %u = %u. Now, keeping in mind that γ > 3, we get 2γ
γ+1

> 3
2
, and repeating the same

arguments we deduec from (5.9), (5.13) that

%εuε ⊗ uε → u⊗ u weakly in L2(0, T ;L3/2(Ω;R3×3).

Thus (5.10), (5.12) give rise to[∫
Ω

%ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2
t=τ1

=

∫ T

0

∫
Ω

[
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

]
dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN),∫

Ω

[
1

2

|%u|2

%
+ P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx for a.a. τ ∈ (0, T ).

(5.14)

Thus it remains to show that
p(%) = p(%).

Note that this relation for strictly convex pressure is equivalent to the strong (a.a. pointwise) convergence
of the sequence of densities. As we have no information on boundedness of derivatives of %ε, this is a
non-trivial task.

5.5 Strong convergence of the density

We first observe that %, u satisfy the equation of continuity. Next, as γ > 3, we have % ∈ L∞(0, T ;L3(Ω))
and u ∈ L2(0, T ;W 1,2(Ω); whence the regularization method delineated in Section 5.3 can be applied to
recover the renormalized equation of continuity (5.8) for the limit solution, in particular,[∫

Ω

% log(%)ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[% log(%)∂tϕ+ % log(%)u · ∇xϕ] dx dt

−
∫ τ2

τ1

∫
Ω

%divxuϕ dx dt

for any ϕ ∈ C∞c ([0, T ]× Ω).

(5.15)
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By the same token, we have the same equation at the ε−level:[∫
Ω

%ε log(%ε)ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[%ε log(%ε)∂tϕ+ %ε log(%ε)uε · ∇xϕ] dx dt

−
∫ τ2

τ1

∫
Ω

%εdivxuεϕ dx dt

for any ϕ ∈ C∞c ([0, T ]× Ω);

whence, letting ε→ 0,[∫
Ω

% log(%)ϕ dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[
% log(%)∂tϕ+ % log(%)u · ∇xϕ

]
dx dt

−
∫ τ2

τ1

∫
Ω

%divxuϕ dx dt

for any ϕ ∈ C∞c ([0, T ]× Ω).

(5.16)

Subtracting (5.15) from (5.16) we conclude[∫
Ω

[
% log(%)− % log(%)

]
dx

]t=τ2
t=τ1

=

∫ τ2

τ1

∫
Ω

[
%divxu− %divxu

]
dx dt. (5.17)

Note that % 7→ % log(%) is strictly convex, therefore

% log(%)− % log(%) ≥ 0,

whereas
% log(%)− % log(%) = 0

is in fact equivalent to the desired strong convergence of {%ε}ε>0. Thus supposing the initial data converge
strongly, meaning

%0 log(%0)− %0 log(%0),

we need to know more about the quantity %divxu− %divxu.
Fortunately, or rather miraculously, we have the relation

p(%)%− p(%)% =

(
4

3
µ+ η

)(
%divxu− %divxu

)
(5.18)

discovered by P.-L.Lions [19], called usually the effective viscous flux identity. As the pressure is non-
decreasing, we immediately deduce

p(%)%− p(%)% = lim
ε→0

(p(%ε)− p(%))(%ε − %) ≥ 0

yielding the desired sign of the right-hand side of (5.17).
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5.5.1 Effective viscous flux

Our goal will be to show the effective viscous flux identity (5.18). It can be deduced from the Navier-Stokes
system in a similar way we have obtained the pressure estimates in Section 5.2. Specifically, we take

ϕ = ∇x∆
−1
x

[
%ε −

1

|Ω|

∫
Ω

%ε dx

]
as a test function in the momentum equation obtaining∫ T

0

∫
Ω

[
p(%ε)%ε −

(
4

3
µ+ η

)
%εdivxuε

]
dx dt

= −
∫ T

0

∫
Ω

%εdivx∆
−1
x divx [%εuε ⊗ uε] dx dt+

1

|Ω|

∫ T

0

∫
Ω

%ε dx

∫
Ω

p(%ε) dx dt

−
[∫

Ω

%ε∆
−1
x divx[%εuε] dx

]t=T
t=0

+

∫ T

0

∫
Ω

[%εuε] · ∇x∆
−1
x divx[%εuε] dx dt.

(5.19)

Similarly, applying the same treatment to the limit equation with

ϕ∇x∆
−1
x

[
%− 1

|Ω|

∫
Ω

% dx

]
we get ∫ T

0

∫
Ω

[
p(%)%−

(
4

3
µ+ η

)
%divxu

]
dx dt

= −
∫ T

0

∫
Ω

%divx∆
−1
x divx [%u⊗ u] dx dt+

1

|Ω|

∫ T

0

∫
Ω

% dx

∫
Ω

p(%) dx dt

−
[∫

Ω

%∆−1
x divx[%u] dx

]t=T
t=0

+

∫ T

0

∫
Ω

[%u] · ∇x∆
−1
x divx[%u] dx dt.

(5.20)

Consequently, the effective viscous flux identity (5.18) will follow provided we show that

lim
ε→0

∫ T

0

∫
Ω

[%εuε] · ∇x∆
−1
x divx[%εuε] dx dt−

∫ T

0

∫
Ω

%εdivx∆
−1
x divx [%εuε ⊗ uε] dx dt

=

∫ T

0

∫
Ω

[%u] · ∇x∆
−1
x divx[%u] dx dt−

∫ T

0

∫
Ω

%divx∆
−1
x divx [%u⊗ u] dx dt,

which can be conveniently rewritten as

lim
ε→0

∫ T

0

∫
Ω

uε ·
[
%ε∇x∆

−1
x divx[%εuε]− %εuεdivx∆

−1
x divx[%ε]

]
dx dt

=

∫ T

0

∫
Ω

u ·
[
%∇x∆

−1
x divx[%u]− %udivx∆

−1
x divx[%]

]
dx dt.
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Now, repeating the same argument as when showing compactness of convective terms, we observe that
it is enough to show[

%ε∇x∆
−1
x divx[%εuε]− %εuεdivx∆

−1
x divx[%ε]

]
→
[
%∇x∆

−1
x divx[%u]− %udivx∆

−1
x divx[%]

]
(5.21)

in L2(0, T ;W−1,2(Ω;R3). To this end, we need the following general result.

Lemma 5.2. Let

Vn → V weakly in Lp(Ω;RN), Wn →W weakly in Lq(Ω;RN),
1

p
+

1

q
=

1

r
< 1.

Then
V i
n∂xi∆

−1∂xj [W
j
n]−W i

n∂xi∆
−1∂xj [V

j
n ]→ V i∂xi∆

−1∂xj [W
j]−W i∂xi∆

−1∂xj [V
j]

in Lr(Ω).

Lemma 5.2 follows from the celebrated Div-Curl Lemma by Murat and Tartar, see [24], [27].

Lemma 5.3. Let Q ⊂ RN be an open set. Assume

Un → U weakly in Lp(Q;RN),

Vn → V weakly in Lq(Q;RN),

where
1

p
+

1

q
=

1

r
< 1.

In addition, let

div Un ≡ ∇ ·Un,

curl Vn ≡ (∇Vn −∇TVn)

 be precompact in

{
W−1,s(Q),
W−1,s(Q;RN×N),

for a certain s > 1. Then
Un ·Vn → U ·V weakly in Lr(Q).

Proof of Lemma 5.2:
Simply write

V i
n∂xi∆

−1∂xj [W
j
n]−W i

n∂xi∆
−1∂xj [V

j
n ]

=
(
V i
n − ∂xi∆−1∂xj [V

j
n ]
)
∂xi∆

−1∂xj [W
j
n]−

(
W i
n − ∂xi∆−1∂xj [W

j
n]
)
∂xi∆

−1∂xj [V
j
n ],

and observe that
∂xi∆

−1∂xj [V
j
n ], ∂xi∆

−1∂xj [W
j
n], i = 1, . . . , N

represent N components of a gradient (whence curl = 0), while(
V i
n − ∂xi∆−1∂xj [V

j
n ]
)
,
(
W i
n − ∂xi∆−1∂xj [W

j
n]
)
, i = 1, . . . , N
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are solenoidal.

Now, seeing that %ε satisfy (5.9), (5.13), where

1

γ
+
γ + 1

2γ
=

1

q
< 1, Lq(Ω) ↪→↪→ W−2,2(Ω),

the convergence in (5.21) takes place in Lp(0, T ;W−2,2(Ω)) for any 1 ≤ p <∞. Next, as γ > 3, we get[
%ε∇x∆

−1
x divx[%εuε]− %εuεdivx∆

−1
x divx[%ε]

]
∈ L2(0, T ;Lr(Ω;R3)), r =

6γ

12 + γ
>

6

5
;

whence
Lr(Ω) ↪→↪→ W−α,2(Ω) for a certain α < 1,

and, by interpolation, the convergence in (5.21) holds in the desired Hilbert space L2(0, T ;W−1,2(Ω;R3)).
Thus we have completed the proof of the effective viscous flux identity (5.18) and we may infer that

%ε → % in L1((0, T )× Ω), in particular p(%) = p(%).

Thus we have shown the following result.

Theorem 5.2. Let p(%) = a%γ, a > 0, γ > 3, N = 3. Let

{%ε}ε>0, {uε}ε>0

be a family of dissipative weak solutions to the compressible Navier-Stokes system in (0, T ) × Ω, with
the initial data

%0,ε ∈ Lγ(Ω), %0,ε > 0, %0,εu0,ε ∈ L2γ/(γ+1)(Ω;R3),

%0,ε → %0 in Lγ(Ω),

∫
Ω

%0,ε|u0,ε|2 dx ≤ c.

Then
%ε → % in L1((0, T )× Ω), uε → u weakly in L2(0, T ;W 1,2(Ω)),

where [%,u] is a dissipative weak solution to the compressible Navier-Stokes system.
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[8] C. De Lellis and L. Székelyhidi, Jr. On admissibility criteria for weak solutions of the Euler equations.
Arch. Ration. Mech. Anal., 195(1):225–260, 2010.
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[26] J. Smoller. Shock waves and reaction-diffusion equations. Springer-Verlag, New York, 1967.

[27] L. Tartar. Compensated compactness and applications to partial differential equations. Nonlinear
Anal. and Mech., Heriot-Watt Sympos., L.J. Knopps editor, Research Notes in Math 39, Pitman,
Boston, pages 136–211, 1975.

[28] V. A. Vaigant and A. V. Kazhikhov. On the existence of global solutions to two-dimensional Navier-
Stokes equations of a compressible viscous fluid (in Russian). Sibirskij Mat. Z., 36(6):1283–1316,
1995.

[29] W.P. Ziemer. Weakly differentiable functions. Springer-Verlag, New York, 1989.

48


