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Abstract

We give an overview of recent result concerning mathematical modeling of
compressible fluids. We discuss various concepts of solutions and their relevance
in applications. Particular interest is devoted to well-posedness of the initial-value
problems and their approximations.
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1 Continuum fluid mechanics

Our goal is to discuss a phenomenological theory of fluid dynamics based on observable
macroscopic quantities as mass density, velocity, internal energy etc. These will depend
on the reference spatial coordinate x ∈ RN , and, as we are interested in fluids in
motion, on the time t ∈ R. If not stated otherwise, the Eulerian reference system will
be used attached to the physical domain occupied by the fluid. This is in contrast
with the Lagrangean description in fluid mechanics, where the motion is related to the
hypothetical fluid particles and their trajectories - streamlines - in the physical space.

1.1 Mass density, velocity, mass conservation

The mass distribution of a fluid at a given instant t is determined by the mass density
% = %(t, x) - a non-negative scalar function such that the integral∫

B

%(t, x) dx = M(B)

gives the total mass of the fluid contained in a given set B at the time t.
The motion of (hypothetical) fluid particles is determined by the velocity field

u(t, x) ∈ RN , here typically N = 1, 2, 3. The trajectory of a bulk of fluid occupy-
ing at the initial instant t = 0 the set B is given by

X(t, B), t ≥ 0, where
∂

∂t
X(t, x) = u(t,X(t, x)), X(0, x) = x, x ∈ B.

The individual trajectories t 7→ X(t, x) are called streamlines. The velocity field must
enjoy certain regularity in the x− variable for the streamlines to be well defined on a
time interval I, specifically

∇xu ∈ L1(I;L∞loc(R
N)).

1.1.1 Eulerian vs. Lagrangean description

Given a velocity field u generating a family of streamlines X = X(t, x) in the physical
space Ω, a quantity Q can be expressed in terms of the Eulerian variables as

Q = QE(t, x), t ∈ I, x ∈ X(t, B),

or, in the Lagrangean variables

Q = QL(t, Y ), t ∈ I, Y ∈ B,

where
QL(t, Y ) = QE(t,X(t, Y )) or QL(t,X−1(t, x)) = QE(t, x).
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In particular, the time derivative in the Lagrangean setting corresponds to the material
derivative in the Euler coordinates:

∂tQL(t, Y ) = ∂tQE(t,X(t, x)) +∇xQE(t,X(t, x)) · u(t,X(t, x)).

At first glance it may seem that the Lagrangean description is simpler; whence more
suitable for a mathematical treatment. On the other hand, transforming spatial gra-
dients requires invertibility of the mapping X and therefore certain regularity of the
velocity field that is often out of reach of the available analytical methods.

1.1.2 Mass transport

Consider a piece B of the physical space containing a fluid of the density % moving with
the (Eulerian) velocity u = u(t, x).

The physical principle of mass conservation asserts: The change of the total
mass of the fluid contained in B during a time interval t1 < t2,∫

B

%(t2, x) dx dt−
∫

B

%(t1, x) dx dt,

equals
the total out/in flux of the mass through the boundary ∂B

−
∫ t2

t1

∫
∂B

%u(t, x) · n dSx dt,

where n denotes the outer normal vector to ∂B. The above relation must hold for
any time interval [t1, t2] and any volume element B. Assuming that all quantities
are sufficiently smooth, we may use the Gauss-Green theorem and perform the limit
t2 → t1 to deduce a differential form of the principle of mass conservation - equation of
continuity :

∂t%+ divx(%u) = 0. (1.1)

It is remarkable that the same principle can be derived from an apparently weaker
statement ∫

I

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt = 0 for any ϕ ∈ C1
c (I × Ω), (1.2)

which is usually termed the weak formulation of (1.1). Indeed it is enough to take
ϕε ∈ C∞

c (I × Ω) a suitable approximation of the characteristic function 1[t1,t2]×B and
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let ε→ 0. If ∂B is smooth, one can consider a family of Lipschitz functions

ϕε(t, x) = min

{
1

ε
dist[x, ∂B]; 1

}
×min

{
1

ε
min{t− t1; t2 − t1}; 1

}
.

1.2 Momentum equation

In order to determine the velocity field u we need a relation between the changes of
the momentum %u and the material forces acting on a volume element of the fluid. We
consider two kinds of such forces: (i) stress forces acting on any surface element shared
by two adjacent parts of the fluid, (ii) bulk or volume forces. The stress is characterized
by the Cauchy stress tensor T producing the stress T · n acting on a unit surface
element characterized by a normal vector n.

Mathematical formulation of Newton’s second law reads∫
B

%u(t2, x) dx−
∫

B

%u(t1, x) dx

= −
∫ t2

t1

∫
∂B

%u u · n dSx dt+

∫ t2

t1

∫
∂B

T · n dSx dt+

∫ t2

t1

∫
B

%f dx dt,

for any B and any t1 < t2.

Similarly to Section 1.1.2, we may deduce the differential form of Newton’s second
law

∂t(%u) + divx(%u⊗ u) = divxT + %f , (1.3)

or its weak formulation∫
I

∫
Ω

[(%u) · ∂tϕ+ %u⊗ u : ∇xϕ] dx dt =

∫
I

∫
Ω

T : ∇xϕ dx dt−
∫

I

∫
Ω

%f · ϕ dx dt

(1.4)
for any ϕ ∈ C1

c (I × Ω;RN).

1.3 Cauchy stress in fluids, examples of fluid equations

The system of equations (1.1), (1.3) is not closed, a description of the Cauchy stress
T is needed in terms of %, u or other quantities as the case may be. The following
statement is often used as a mathematical definition of fluid.
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A fluid is characterized by Stokes’ law

T = S− pI,

where S is viscous stress tensor and p a scalar quantity called pressure.

1.3.1 Inviscid fluids, compressible Euler system

We start with an example of inviscid (or perfect) fluids for which S = 0. In the simplest
case, the pressure is just a function of the density and we obtain

Compressible Euler system

∂t%+ divx(%u) = 0, (1.5)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0. (1.6)

If N = 1, system (1.5, (1.6) can be rewritten in the Lagrangian (mass) coordinates
by introducing new independent variables

[t, x] 7→ [t, y(t, x) =

∫ x

−∞
%(t, z) dz].

The Lagrangian velocity v = v(t, y) satisfies

v

(
t,

∫ x

−∞
%(t, z) dz

)
= u(t, x);

whence
∂tv − %u∂yv = ∂tu, %∂yv = ∂xu,

and (1.5) reads
∂tU − ∂yv = 0, (1.7)

while (1.6) gives rise to

∂tv + ∂yp

(
1

U

)
= 0 (1.8)

where U = 1
%

is the specific volume. Problem (1.7), (1.8) is called p-system.
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The Euler system formally conserves energy. Taking the scalar product of (1.6) with
u we obtain, by means of straightforward manipulation

∂t

(
1

2
%|u|2

)
+ divx

[(
1

2
%|u|2 + p(%)

)
u

]
− p(%)divxu = 0. (1.9)

Moreover, multiplying (1.5) on b′(%) we deduce the renormalized equation of continuity

∂tb(%) + divx (b(%)u) + [b′(%)%− b(%)] divxu = 0, (1.10)

which, together with (1.9), gives rise to the total energy balance

∂t

(
1

2
%|u|2 + P (%)

)
+divx

[(
1

2
%|u|2 + P (%) + p(%)

)
u

]
= 0, with P (%) = %

∫ %

1

p(z)

z2
dz.

(1.11)

1.3.2 Viscous fluid, compressible Navier-Stokes system

We consider the simplest possible example of a viscous fluid, where the viscous stress
tensor is a linear function of the velocity gradient. For isotropic fluid, the associated S
is given by Newton’s rheological law

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI, (1.12)

where µ and η are scalar quantities taken to be constant here for the sake of simplicity.
Accordingly, we obtain

Compressible Navier-Stokes system

∂t%+ divx(%u) = 0, (1.13)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.14)

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI. (1.15)

Similarly to (1.11), we write the total energy balance

∂t

(
1

2
%|u|2 + P (%)

)
+ divx

[(
1

2
%|u|2 + P (%) + p(%)

)
u− S(∇xu) · u

]
= −S(∇xu) : ∇xu.

(1.16)
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As a physically admissible system should not produce energy, the source term S(∇xu) :
∇xu must be non-negative for any admissible process, in particular

µ ≥ 0, η ≥ 0.

We speak about viscous fluids if µ > 0.

1.4 First law of thermodynamics - complete fluid systems

As we have seen in the preceding part, the description by means of purely “mechanical”
quantities like % and u is not complete from the physics point of view; the resulting
compressible Navier-Stokes system dissipates (mechanical) energy. For the First law of
thermodynamics to hold, one has to introduce a new quantity called (specific) internal
energy e. Alternatively, we may consider the absolute temperature ϑ and suppose that
both p = p(%, ϑ) and e = e(%, ϑ) are given functions of the state variables %, ϑ. The
functional dependence of p and e on % and ϑ is called equation of state and characterizes
the material properties of a given fluid.

We rewrite the energy balance (1.16) as

∂t

(
1

2
%|u|2

)
+ divx

[(
1

2
%|u|2 + p(%, ϑ)

)
u− S(∇xu) · u

]
= −S(∇xu) : ∇xu + p(%, ϑ)divxu

(1.17)

and append the system by a similar relation for the internal energy

∂t (%e(%, ϑ)) + divx [%e(%, ϑ)u] + divxq = S(∇xu) : ∇xu− p(%, ϑ)divxu, (1.18)

where q is a new quantity that represents the diffuse flux of the internal energy. In
accordance with the First law of thermodynamics, the total energy of the system must
be conserved; whence

∂t

[
%

(
1

2
|u|2 + e(%, ϑ)

)]
+ divx

[
%

(
1

2
|u|2 + e(%, ϑ)

)
u + p(%, ϑ)u− S(∇xu) · u + q

]
= 0.

(1.19)

The internal energy flux very often coincides with the heat flux, the latter being
given by Fourier’s law

q = −κ∇xϑ. (1.20)

Thus we have derived
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Navier-Stokes-Fourier system

∂t%+ divx(%u) = 0, (1.21)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(∇xu), (1.22)

∂t

[
%

(
1

2
|u|2 + e(%, ϑ)

)]
+ divx

[
%

(
1

2
|u|2 + e(%, ϑ)

)
u + p(%, ϑ)u− S(∇xu) · u + q

]
= 0,

(1.23)

with

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI, (1.24)

q = −κ∇xϑ. (1.25)

The “inviscid” version is known as

Complete Euler system

∂t%+ divx(%u) = 0, (1.26)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = 0, (1.27)

∂t

[
%

(
1

2
|u|2 + e(%, ϑ)

)]
+ divx

[
%

(
1

2
|u|2 + e(%, ϑ)

)
u + p(%, ϑ)u

]
= 0. (1.28)

1.5 Second law of thermodynamics

The Second law of thermodynamics encodes the time irreversibility of the fluid evolution
characteristic for viscous and heat conducting fluid. We recall the internal energy
balance

%∂te(%, ϑ) + %u · ∇xe(%, ϑ) + divxq = S : ∇xu− pdivxu,

where

%∂te(%, ϑ) + %u · ∇xe(%, ϑ) = %De(%, ϑ) · [∂t%, ∂tϑ] + %u ·De(%, ϑ) · [∇x%,∇xϑ].
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Suppose that e and p are interrelated through Gibbs’ equation

ϑDs(%, ϑ) = De(%, ϑ) +D

(
1

%

)
p(%, ϑ), (1.29)

where s is a new quantity called (specific) entropy. Accordingly,

%∂te(%, ϑ) + %u · ∇xe(%, ϑ) = %De(%, ϑ) · [∂t%, ∂tϑ] + %u ·De(%, ϑ) · [∇x%,∇xϑ]

= ϑ%Ds(%, ϑ) · [∂t%, ∂tϑ] + ϑ%u ·Ds(%, ϑ) · [∇x%,∇xϑ]

+ p(%, ϑ)
1

%
(∂t%+ u · ∇x%)

= ϑ [∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u)]− p(%, ϑ)divxu;

whence (1.18) can be rewritten as

∂t (%s(%, ϑ)) + divx [%s(%, ϑ)u] +
1

ϑ
divxq =

1

ϑ
S(∇xu) : ∇xu,

where, furthermore,
1

ϑ
divxq = divx

(
1

ϑ
q

)
+

1

ϑ2
q · ∇xϑ,

and, consequently, we end up with the entropy balance equation

∂t (%s(%, ϑ)) + divx [%s(%, ϑ)u] + divx

(
1

ϑ
q

)
=

1

ϑ

[
S(∇xu) : ∇xu−

q · ∇xϑ

ϑ

]
. (1.30)

If q = −κ∇xϑ is given by Fourier’s law, the entropy production rate represented by
the right-hand side of (1.30) is non-negative as long as κ ≥ 0. In other words, the
entropy is produced in the course of the process in accordance with the Second law of
thermodynamics.

2 Various concepts of solutions to the equations and

systems of mathematical fluid dynamics

A typical problem for an evolutionary equation is the initial-value or Cauchy problem.
Knowing the state of the system at an initial time, say t = 0, solve the evolutionary
equation for this initial data. If the physical system (fluid) is confined to a bounded
domain, the boundary behavior must be prescribed. To avoid the difficulties created
by the influence boundaries on the fluid motion, we focus on problems posed on the
whole physical space RN or on the periodic (flat) torus

T N =
(
[0, 1]|{0,1}

)N
.
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In the latter case, we simply imposed the periodic boundary conditions, that may be
seen as a useful though not very realistic approximation. Evolutionary problems are
expected to be well posed :

• Solution exist for any physically admissible choice of the initial data;

• solutions are uniquely determined by the initial data;

• solutions depend in a continuous way on the initial data.

Our goal is to address these issues for the evolutionary equations arising in fluid dy-
namics.

2.1 Classical - strong solutions

Ideally, a system of partial differential equations should admit strong or classical solu-
tions possessing all the necessary derivatives and enjoying certain continuity to attain
the initial data. Sometimes we speak about strong solutions if all derivatives involved
in equations exist in the generalized sense as integrable functions. Once the existence
of a classical solution is established, the questions of uniqueness and/or continuous de-
pendence on the data are usually an easy task given the high regularity of solutions.
Unfortunately, classical solutions of most problems in mathematical fluid dynamics are
known to exist only on short time intervals - local eistence - or globally in time but for
the initial data that are sufficiently close to an equilibrium solution - global existence
for “small” data.

2.1.1 Local existence for the compressible Euler and Navier-Stokes system

Consider the Euler/Navier-Stokes system describing the motion of a compressible fluid
introduced in Section 1.3.2:

∂t%+ divx(%u) = 0, (2.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (2.2)

S(∇xu) = µ

(
∇xu +∇t

xu−
2

N
divxu

)
+ ηdivxuI, (2.3)

with µ = η = 0 for the inviscid (Euler) system, and µ > 0 for the viscous (Navier-
Stokes) fluid. For the sake of simplicity, we consider the periodic boundary conditions,
meaning the physical space Ω = T N is the flat torus, and prescribe the initial state

%(0, ·) = %0, u(0, ·) = u0, (2.4)

where %0 and u0 are as smooth as needed, and %0 > 0 to the degenerate vacuum regime.
Problem (2.1–2.4) is known to be locally well posed in the Sobolev scale Wm,2(Ω) for
m large enough, see e.g. Majda [29], Kleinerman and Majda [26].
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Theorem 2.1. Let p ∈ C∞(0,∞), p′(%) > 0 for % > 0, µ ≥ 0, η ≥ 0, and

%0 > 0, %0 ∈ Wm,2(Ω), u0 ∈ Wm,2(Ω;RN) for m >

[
N

2

]
+ 1.

Then there exists a positive time T > 0 such that problem (2.1–2.4) admits a strong
solution [%,u] in (0, T )× Ω, unique in the class

% ∈ C([0, T ];Wm,2(Ω)), ∂t% ∈ C([0, T ];Wm−1,2(Ω)),

u ∈ C([0, T ];Wm,2(Ω;RN)), ∂tu ∈ C([0, T ];Wm−k,2(Ω;RN)),

k = 1 if µ = η = 0, k = 2 if µ > 0 or η > 0.

Remark 2.2. Obviously, the solution [%,u] is as smooth as we wish thanks to the
Sobolev embedding relation

W k,2(Ω) ↪→ C(Ω), k >

[
N

2

]
.

2.1.2 Global existence for small initial data

The Navier-Stokes system admits global-in-time solutions provided the initial data are
close enough to an equilibrium state. Here, we present a possible result in this direction
that was essentially shown by Matsumura and Nishida [30], [31] for N = 3, (cf. also
Valli and Zajaczkowski [39]).
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Theorem 2.3. Let p ∈ C∞(0,∞), p′(%) > 0 for % > 0, µ > 0, η ≥ 0. Let a positive
constant % > 0 be given.

Then there exists ε > 0 such that for any initial data

%0 ∈ W 3,2(Ω), u0 ∈ W 3,2(Ω;R3),

∫
Ω

(%0 − %) dx = 0,

‖%0 − %‖W 3,2(Ω) + ‖u0‖W 3,2(Ω;R3) < ε

the Navier–Stokes problem (2.1–2.4) admits a unique strong solution [%,u] defined
on the time interval (0,∞),

% ∈ C([0, T ];W 3,2(Ω)), ∂t% ∈ C([0, T ];W 2,2(Ω)),

u ∈ C([0, T ];W 3,2(Ω;R3)), ∂tu ∈ C([0, T ];W 1,2(Ω;R3))

such that

%(t, ·) → % in W 3,2(Ω), u(t, ·) → 0 in W 3,2(Ω;R3) as t→∞.

Remark 2.4. Solutions in Theorem 2.3 are more regular provided we increase accord-
ingly the regularity of the initial data.

Remark 2.5. The convergence to the equilibrium state is exponential in time, see
Padula [33].

A similar result for the inviscid Euler system is not available. As we shall see below,
solutions of the compressible Euler system develop singularities in a finite lap of time
for a fairly generic class of smooth and even small initial data.

2.2 Weak solutions

Weak solutions satisfy the equations in the sense of distributions. A single equation in
the weak formulation is replaced by an (infinite) family of integral identities satisfied
by sufficiently smooth test functions. The weak formulation of the Euler/Navier Stokes
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system (1.13), (1.14) reads∫ T

0

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt = 0,

for any test function ϕ ∈ C1
c ((0, T )× Ω),∫ T

0

∫
Ω

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt =

∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any test function ϕ ∈ C1
c ((0, T )× Ω;RN).

Note that for the Euler system S ≡ 0 and therefore less regularity for the weak solution
is required. It follows from the weak formulation that

t 7→
∫

Ω

%(t, ·)ϕ dx and t 7→
∫

Ω

(%u)(t, ·) · ϕ dx

can be seen as continuous scalar function of time for any test function ϕ, see Lemma
7.1 in Appendix. Accordingly, it is more convenient to write the weak formulation in
the form [∫

Ω

%ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2

t=τ1

=

∫ T

0

∫
Ω

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN).

(2.5)

Remark 2.6. Note that the weak formulation (2.5) already includes satisfaction of
the initial conditions. Observe that it is more natural to formulate the initial state in
terms of the momentum %u rather that the velocity u as the former is always weakly
continuous.

2.2.1 Weak solutions to the compressible Euler system

The class of weak solutions is obviously larger than that of classical solutions as basically
no smoothness is required. The price to pay is a dramatic lost of well posedness as the
following result shows (see Chiodaroli [7], EF [17]).
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Theorem 2.7. Let p ∈ C3(0,∞) and let T > 0 be given. Let the initial data belong
to the class

%0 ∈ C3(Ω), %0 > 0, u0 ∈ C3(Ω;RN), Ω = T N , N = 2, 3.

Then the compressible Euler system (1.5), (1.6 admits infinitely many weak solu-
tions emanating from the initial state [%0,u0 and belonging to the class

% ∈ L∞((0, T )× Ω), % > 0, u ∈ L∞((0, T )× Ω;RN).

Theorem 2.7 can be shown by the method of convex integration developed recently
in the context of fluid mechanics by DeLellis and Székelyhidi [11], [10], [12]. It shows
that on one hand the class of weak solutions, at leats for the inviscid fluid flows, is large
enough to provide positive existence results, on the other hand it is too large to ensure
uniqueness.

Remark 2.8. We emphasize that results similar to Theorem 2.7 for viscous fluids,
meaning for the Navier-Stokes system, are not known.

2.3 Dissipative (weak) solutions

The solutions, the existence of which is claimed in Theorem 2.7, are produced in a
rather non-constructive way by adding oscillatory components to a quantity called sub-
solution. As a result, they typically produce energy, meaning violate the energy balance
(1.11). Thus we may try to eliminate them by adding a weak counterpart of the energy
balance as an integral part of the definition of weak solution.

We say the [%,u] is a dissipative weak solution to the Euler/Navier Stokes system
if, in addition to the weak formulation (2.5), the total energy inequality∫

Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

(2.6)

holds for a.a. τ ∈ (0, T ).

Remark 2.9. Recall that for the Euler system S(∇xu) ≡ 0 and (2.6) simply says that
the total energy of the system is non-increasing in time.

15



Remember that the Navier-Stokes system is already dissipative so adding inequality
in (2.6) does not violate any physical principle. In addition, we have extrapolated this
argument also to the “conservative” Euler system.

2.4 Relative energy

The dissipative solutions introduced in the previous section satisfy an extended version
of the energy inequality (2.6) known as relative energy inequality. We introduce the
relative energy functional

E
(
%,u

∣∣∣r,U)
=

∫
Ω

[
1

2
%|u−U|2 + P (%)− P ′(r)(%− r)− P (r)

]
dx. (2.7)

If
% 7→ p(%) is strictly increasing in (0,∞),

then the pressure potential P is strictly convex and E represents a kind of (non-
symmetric) distance function between [%,u] and [r,U].

Seeing that

E
(
%,u

∣∣∣r,U)
=

∫
Ω

(
1

2
%|u|2 + P (%)

)
dx−

∫
Ω

%u ·U dx+

∫
Ω

%|U|2 dx−
∫

Ω

P ′(r)% dx+

∫
Ω

p(r) dx

we easily observe that wa may evaluate the time difference[
E

(
%,u

∣∣∣r,U)]t=τ

t=0

as soon as [%,u] is a dissipative (weak) solution to the Euler/Navier-Stokes system, and
[r,U] is a pair of sufficiently smooth “test functions”, r > 0. Indeed we successively
compute

• [∫
Ω

(
1

2
%|u|2 + P (%)

)
dx

]t=τ

t=0

+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt ≤ 0

in accordance with the energy inequality (2.6), keeping in mind that S ≡ 0 for
the Euler system;

• taking U as a test function in the weak formulation of the momentum equation:[∫
Ω

%u ·U dx

]t=τ2

t=τ1

=

∫ T

0

∫
Ω

[%u · ∂tU + %u⊗ u : ∇xU + p(%)divxU] dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xU dx dt;
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• taking 1
2
|U|2 and P ′(r) as test functions in the weak formulation of the equation

of continuity:[∫
Ω

%
1

2
|U|2 dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%U · ∂tU + %u ·U · ∇xU] dx dt,

and [∫
Ω

%P ′(r) dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%P ′′(r)∂tr + P ′′(r)%u · ∇xr] dx dt.

Summing up the previous observations we obtain

Relative energy inequality

[
E

(
%,u

∣∣∣r,U)]t=τ

t=0
+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx

≤
∫ τ

0

∫
Ω

% [∂tU + u · ∇xU] · (U− u) dx dt

+

∫ τ

0

∫
Ω

[S(∇xu) : ∇xU− p(%)divxU] dx dt

−
∫ τ2

τ1

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%u · ∇xr] dx dt,

(2.8)

where we have used the identity

p′(r) = rP ′′(r).

3 Weak vs. strong solutions

Our goal in this section is to show the weak-strong uniqueness property for the dissipa-
tive solutions of the Euler/Navier-Stokes system. In other words, the weak and strong
solutions emanating from the same initial data coincided as long as the latter exists.

3.1 Weak-strong uniqueness

Suppose that the Euler/Navier-Stokes system admits a strong solution [% = r,u = U]
on a time interval (0, T ), r > 0. Let [%,u] be a dissipative weak solution of the same
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problem with the same initial data. Taking [r,U] as test functions in the relative energy
inequality (2.8), and using the fact that

∂tU + U · ∇xU = −1

r
∇xp(r) +

1

r
divxS(∇xU),

we obtain

E
(
%,u

∣∣∣r,U)
(τ) +

∫ τ

0

∫
Ω

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dx

≤
∫ τ

0

∫
Ω

%|∇xU||u−U|2 dx

−
∫ τ

0

∫
Ω

%P ′′(r)∇xr · (U− u) dx dt

−
∫ τ

0

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%u · ∇xr + p(%)divxU] dx dt

+

∫ τ

0

∫
Ω

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt.

Furthermore, as r satisfies

∂tr + U · ∇xr = −rdivxU,

we get, performing several by-parts integrations,

−
∫ τ

0

∫
Ω

%P ′′(r)∇xr · (U− u) dx dt

−
∫ τ

0

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%u · ∇xr + p(%)divxU] dx dt

= −
∫ τ

0

∫
Ω

[(%− r)P ′′(r)∂tr + P ′′(r)%U · ∇xr + p(%)divxU] dx dt

= −
∫ τ

0

∫
Ω

divxU
(
p(%)− p′(r)(%− r)− p(r)

)
dx dt.

Thus we conclude that

E
(
%,u

∣∣∣r,U)
(τ) +

∫ τ

0

∫
Ω

(S(∇xu)− S(∇xU)) : (∇xu−∇xU) dx

≤
∫ τ

0

∫
Ω

%|∇xU||u−U|2 dx

−
∫ τ

0

∫
Ω

divxU
(
p(%)− p′(r)(%− r)− p(r)

)
dx dt

+

∫ τ

0

∫
Ω

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt.

(3.1)
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3.1.1 Weak-strong uniqueness for the Euler system

Relation (3.1) implies % = r, u = U by means of the standard Gronwall lemma. More
specifically, in the case of the Euler system, the strong solution must be at least globally
Lipschitz and we need

p(%)− p′(r)(%− r)− p(r) to be dominated by P (%)− P ′(r)(%− r)− P (r).

Note that this is true provided, for instance,

p ∈ C[0,∞)∩C2(0,∞), p′(%) > 0 for % > 0, lim inf
%→∞

p′(%) > 0, lim inf
%→∞

P (%)

p(%)
> 0. (3.2)

We have shown the following result.

Theorem 3.1. Let the pressure p satisfy (3.2). Let the compressible Euler system
(1.5), (1.6) admits a solution [%̃, ũ], %̃ > 0 that is Lipschitz in [0, T ]× Ω, Ω = T N ,
N = 1, 2, 3. Let [%,u], % ≥ 0 be a dissipative weak solution of the same problem,

%(0, ·) = %̃(0, ·), %u(0, ·) = %̃ũ(0, ·).

Then
% = %̃, u = ũ a.a. in (0, T )× Ω.

3.1.2 Weak-strong uniqueness for the Navier-Stokes system

If viscosity is present, we have to handle the last integral in (3.1), namely∫ τ

0

∫
Ω

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt.

Clearly, this integral can be dominated by the relative entropy functional on the set,
where

0 < % ≤ % ≤ %,

where %, % are positive constants.
Now, we distinguish two cases: (i) % is large % ≥ %, (ii) % is small 0 ≤ % ≤ %. If % is

large, specifically % > 2 max{r}, we get

|
(
1− %

r

)
(u−U)| ≤ c1|

√
%||√%(u−U)| ≤ c2

(
%+ %|u−U|2

)
,

where the right-hand side is dominated by the relative energy functional.
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If % is small, specifically % ≤ % < 1
2
min{r}, then∣∣∣∣∣

∫
%≤%

[(
1− %

r

)
divxS(∇xU) · (u−U)

]
dx dt

∣∣∣∣∣
≤ δ

∫ τ

0

∫
Ω

|u−U|2 dx+ c(δ)

∫
%≤%

|divxS(∇xU)|2
(
1− %

r

)2

dx dt

≤ δ

∫ τ

0

∫
Ω

%|u−U|2 + (S(∇xu)− S(∇xU)) : (∇xu−∇xU) dx

+ c(δ)

∫
%≤%

|divxS(∇xU)|2
(
1− %

r

)2

dx dt

for any δ > 0, where the last integral can be absorbed by the left-hand side of (3.1)
provided δ > 0 is small enough.

We have shown an analogue of Theorem 3.1 for the Navier-Stokes system.

Theorem 3.2. Let the pressure p satisfy (3.2). Let the compressible Navier-Stokes
system (1.13–1.15) admits a solution [%̃, ũ], %̃ > 0 that is Lipschitz in [0, T ] × Ω,
Ω = T N ,

u ∈ L1(0, T ;W 2,∞(Ω;RN)), N = 1, 2, 3.

Let [%,u], % ≥ 0 be a dissipative weak solution of the same problem,

%(0, ·) = %̃(0, ·), %u(0, ·) = %̃ũ(0, ·).

Then
% = %̃, u = ũ a.a. in (0, T )× Ω.

3.2 Wild dissipative solutions of the Euler system

In the light of the weak-strong uniqueness result established in Theorem 3.2, it may
seem that imposing the energy inequality eliminates the “wild” solutions, the existence
of which is claimed in Theorem 2.7. However, this is true only to certain extent as
shown in the following result, see [17].
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Theorem 3.3. Let Ω = T N , N = 2, 3, T > 0, and let p ∈ C3(0,∞). Let

%0 ∈ C3(Ω), %0 > 0 in Ω,

be a given density distribution.

Then there exists u0,
u0 ∈ L∞(Ω;RN)

such that the corresponding initial-value problem for the Euler system (1.5), (1.6)
admits infinitely many dissipative (weak) solutions in (0, T )× Ω.

Remark 3.4. Note carefully that there is no contradiction with the weak-strong unique-
ness result as the initial velocity u0 is not regular. We also repeat that a similar result
in the context of viscous fluids, specifically for the compressible Navier-Stokes, is not
available.

3.2.1 Admissible weak solutions to the compressible Euler system

In the context of hyperbolic conservation law, it is customary to strengthen the global
energy inequality to a local one introduced in (1.11). We may say that [%,u] is an
admissible weak solution to the Euler system if[∫

Ω

%ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2

t=τ1

=

∫ T

0

∫
Ω

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ] dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN)[∫

Ω

[
1

2
%|u|2 + P (%)

]
ϕ dx

]t=τ

t=0

≥
∫ τ

0

∫
Ω

[(
1

2
%|u|2 + P (%)

)
∂tϕ

]
dx dt

+

∫ τ

0

∫
Ω

[(
1

2
%|u|2 + P (%) + p(%)

)
u · ∇xϕ

]
dx dt

for a.a. 0 ≤ τ ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω), ϕ ≥ 0.

(3.3)

Note that the notion of admissible weak solution is stronger than the dissipative
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weak solution as a local version of the energy inequality is required. Still the following
result holds, see Chiodaroli [7].

Theorem 3.5. Let Ω = T N , N = 2, 3, and let p ∈ C3(0,∞). Let

%0 ∈ C3(Ω), %0 > 0 in Ω,

be a given density distribution.

Then there exist T > 0 and u0,

u0 ∈ L∞(Ω;RN),

such that the corresponding initial-value problem for the Euler system (1.5), (1.6)
admits infinitely many admissible weak solutions in (0, T )× Ω.

The previous result is local in time. However, we also have the following, see [17].

Theorem 3.6. Let Ω = T N , N = 2, 3, p ∈ C3(0,∞), % > 0, and T > 0 be given.

Then there exists ε > 0 such that for any

%0 ∈ C2(Ω), |%0 − %| < ε in Ω

there is u0,
u0 ∈ L∞(Ω;RN),

such that the corresponding initial-value problem for the Euler system (1.5), (1.6)
admits infinitely many admissible weak solutions in (0, T )× Ω.

In the light of the above results it may still seem that one could save the game by
taking smooth initial data and working in the class of admissible solutions for the Euler
system. Unfortunately, even in this case the presence of “wild solutions” cannot be
avoided, see Chiodaroli, DeLellis, Kreml [8].
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Theorem 3.7. Let Ω = R2, N = 2, 3, p ∈ C3(0,∞).

Then there exist such initial data

%0 ∈ W 1,∞(Ω), u0 ∈ W 1,∞(Ω;R2), %0 > 0 uniformly in R2

such that the corresponding initial-value problem for the Euler system (1.5), (1.6)
admits infinitely many admissible weak solutions in (0,∞)× Ω.

Remark 3.8. Note that the initial data belong to the class, where the weak-strong
uniqueness holds. Thus the corresponding solution is smooth (Lipschitz) on some inter-
val [0, Tcrit), looses regularity at Tcrit and bifurcates into branches of admissible “ wild”
solutions after the critical time.

4 Stability of the solution set

Our goal is to identify stability properties of the solution set, in particular, the available
a priori bounds and weak sequential stability of families of solutions.

4.1 A priori bounds

A priori bounds reflect the piece of information transferred on the solutions from the
data. Optimally, the solutions may stay at least as regular as the data for any positive
time but this is may not be true in general. As a matter of fact, only little regularity
is known to survive for the compressible Euler/Navier-Stokes system characterized by
the energy estimates.

4.1.1 Energy estimates

Dissipative solutions of the Euler/Navier-Stokes system satisfy the global energy in-
equality (2.6), ∫

Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx,

(4.1)
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which, on condition that the initial energy∫
Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

is bounded, give rise to a priori bounds

sup
t∈(0,T )

‖√%u(t, ·)‖L2(Ω;RN ) ≤ c(data)

sup
t∈(0,T )

‖P (%)(t, ·)‖L1(Ω;R) ≤ c(data)
(4.2)

that are the same for the Euler and Navier-Stokes system. For the sake of simplicity,
suppose that the pressure p is given by the isentropic state equation

p(%) = a%γ, a > 0, γ > 1, (4.3)

in which case the pressure potential P (%) can be taken in the form

P (%) =
a

γ − 1
%γ,

and the second estimate in (4.2) reads

sup
t∈(0,T )

‖%(t, ·)‖Lγ(Ω;R) ≤ c(data). (4.4)

We remark that (4.2), (4.4) are basically all available a priori estimates for the com-
pressible Euler system.

4.1.2 Estimates based on dissipation

For the Navier-Stokes system, we get an important extra bound∥∥∥∥∇xu +∇t
xu−

2

N
divxuI

∥∥∥∥
L2((0,T )×Ω;RN×N )

≤ c(data). (4.5)

As u satisfies the periodic boundary conditions, it is easy to deduce from (4.5) that

‖∇xu‖L2((0,T )×Ω;RN×N ) ≤ c(data). (4.6)

Now, we show that (4.6), together with (4.4) and the mass conservation principle∫
Ω

%(t, ·) dx =

∫
Ω

%0 dx = M0 > 0 (4.7)

that can be easily deduced from (2.5), imply that∫ T

0

‖u(t, ·)‖2
W 1,2(Ω;RN ) dt ≤ c(data). (4.8)

The desired estimate will follow from a version of Poincaré’s inequality that may be of
independent interest.
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Lemma 4.1. Let 0 ≤ r ≤ k be a bounded measurable function such that∫
Ω

r dx ≥M > 0.

Then

‖v‖L2(Ω) ≤ c(k,M)

[∫
Ω

r|v|2 dx+

∫
Ω

|∇xv|2 dx

]
for any v ∈ W 1,2(Ω).

Proof: Assuming a contrary we construct a sequence {vn}∞n=1 ⊂ W 1,2(Ω) such that

‖vn‖L2(Ω) = 1 and ‖vn‖L2(Ω) ≥ n

[∫
Ω

rn|vn|2 dx+

∫
Ω

|∇xvn|2 dx

]
,

where rn satisfies the hypotheses of the lemma. Using compactness of the Sobolev
embedding W 1,2(Ω) ↪→↪→ Lq(Ω), q < 6 if N ≤ 3, we may suppose

vn → v in L2(Ω), ∇xvn → 0 in L2(Ω;RN); whence v = v 6= 0− a constant. (4.9)

On the other hand, by the same token

|vn|2 → |v|2 = |v|2 in Lq(Ω), q < 3, rn → r weakly-(*) in L∞(Ω),

∫
Ω

r dx > M > 0,

and ∫
Ω

rn|vn|2 dx→ 0 =

∫
Ω

r|v|2 dx > M |v|2

in contrast with (4.9)

Thus, in order to apply Lemma 4.1, it is enough to check that (4.4), (4.7) implies
the existence of k ≥ 0 such that

rk = min{%, k} satisfies

∫
Ω

rk dx ≥M0.

To see this, we write

M0 =

∫
Ω

% dx =

∫
Ω

rk dx+

∫
%≥k

% dx =

∫
Ω

rk dx+

∫
%≥k

%1−γ%γ dx

≤
∫

Ω

rk dx+ k1−γc(data).

25



4.2 Stability of strong solutions for the Euler system

The a priori bounds (4.2) based on finiteness of the total energy available for the Euler
system are rather poor but almost optimal. Indeed we do not expect to get any bounds
on the derivatives that would prevent formation of shocks characteristic for the inviscid
fluids, see e.g. Smoller [35]. Thus we concentrate on families of (weak) solutions to the
Euler system satisfying solely (4.2), For technical reasons, it will be more convenient
to work with the density % and the momentum m = %u as independent variables. The
Euler system then reads

∂t%+ divxm = 0, (4.10)

∂tm + divx

(
m⊗m

%

)
+∇xp(%) = 0, (4.11)

with the convention that m = 0 whenever % = 0 for the convective term in (4.11) to be
well defined.

We consider the dissipative solutions of (4.10), (4.11), namely[∫
Ω

%ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt, (4.12)[∫
Ω

m · ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[
m · ∂tϕ+

m⊗m

%
: ∇xϕ

]
dx dt (4.13)

+

∫ τ2

τ1

∫
Ω

p(%)divxϕ dx dt,[∫
Ω

1

2

|m|2

%
+ P (%) dx

]t=τ

t=0

≤ 0. (4.14)

4.2.1 Weak sequential stability

Suppose we have a family {%ε,mε}ε>0 of solutions to (4.12–4.14) defined in a space-time
cylinder (0, T )×Ω. The energy estimates just yield all nonlinearities uniformly bounded
in the (non-reflexive) space L1((0, T ) × Ω), or, better, in L∞(0, T ;L1(Ω)). There are
two disturbing phenomena that may occur to bounded sequences in L1.

• Oscillations. A sequence {hε}ε>0 behaves like

hε(t, x) ≈ h

(
t

ε
,
x

ε

)
for some h periodic in t and x.

• Concentrations. A sequence {hε}ε>0 behaves like

hε(t, x) ≈
1

εN+1
h

(
t

ε
,
x

ε

)
for some h ∈ C∞

c ({|(t, x)| < 1}).
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Both phenomena may, of course, occur simultaneously. In the subsequent analysis,
oscillations in the family {%ε,mε}ε>0 will be controlled by the equations (4.12), (4.13),
while concentrations will be handled by means of the energy inequality (4.14). It is
important to observe that all non-linearities in (4.12), (4.13) are dominated by the
energy for large values of arguments, specifically∣∣∣∣m⊗m

%

∣∣∣∣ ≤ c

(
1

2

|m|2

%

)
, p(%) ≤ cP (%) for all % >> 1. (4.15)

As the space L1((0, T )×Ω) is embedded in the space of signed measures M([0, T ]×
Ω) that happens to be the dual to C([0, T ]× Ω), we may assume that

%ε → {%} weakly-(*) in M([0, T ]× Ω),

mε → {m} weakly-(*) in M([0, T ]× Ω;RN),

p(%ε) → {p} weakly-(*) in M([0, T ]× Ω),

P (%ε) → {P} weakly-(*) in M([0, T ]× Ω),

mε ⊗mε

%ε

→ {M} weakly-(*) in M([0, T ]× Ω;RN×N)

passing to suitable subsequences as the case may be.
Consequently, we may let ε→ 0 in (4.12), (4.13) obtaining

−
∫

Ω

%0ϕ dx =

∫ T

0

∫
Ω

[{%}∂tϕ+ {m} · ∇xϕ] dx dt,

for all ϕ ∈ C1
c ([0, T )× Ω),

(4.16)

−
∫

Ω

m0 · ϕ dx =

∫ T

0

∫
Ω

[{m} · ∂tϕ+ {M} : ∇xϕ+ {p}divxϕ] dx dt,

for all ϕ ∈ C1
c ([0, T )× Ω;RN),

(4.17)

where %0, m0 stand for the limit of the initial data.
As a matter of fact, the limit for %ε, mε can be “improved”. It follows from (4.4)

that
%ε → % weakly-(*) in L∞(0, T ;Lγ(Ω)),

where, obviously, % can be identified with {%}. Similarly,

mε =
√
%ε

mε√
%ε

,

where, by virtue of (4.2),{
mε√
%ε

}
ε>0

is bounded in L∞(0, T ;L2(Ω));

27



whence, applying Hölder’s inequality and (4.4), we may infer that

mε → m(≡ {m}) weakly-(*) in L
2γ

γ−1 (Ω;RN)).

Finally, we may consider

ϕδ = ψδ(t)ϕ, ϕ ∈ C1([0, T ]× Ω)

ψδ ∈ C∞(R), ψ′δ ≤ 0, ψδ(t) =

{
1 for t ≤ τ,
0 fort ≥ τ + δ

as a test function in (4.16), (4.17) and perform the limit δ → 0 to conclude that∫
Ω

%ϕ(τ, ·) dx−
∫

Ω

%0ϕ dx =

∫ τ

0

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω),

(4.18)

∫
Ω

m · ϕ(τ, ·) dx−
∫

Ω

m0 · ϕ dx =

∫ τ

0

∫
Ω

[m · ∂tϕ+ {M} : ∇xϕ+ {p}divxϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω;RN),

(4.19)

where τ correspond to the Lebesgue points of the mappings

t 7→ %(t, ·) ∈ Lγ(Ω), t 7→ m(t, ·) in L2γ/(γ−1)(Ω;RN).

Finally, we may apply the same arguments to the energy inequality (4.14) deducing∫
Ω

[
N

2
trace{M}+ {P}

]
(τ, ·) dx ≤

∫
Ω

E0 dx for a.a. τ ∈ (0, T ), (4.20)

where E0 denotes the limit of the initial energy, and∫
Ω

[
N

2
trace{M}+ {P}

]
(τ, ·) dx = lim

δ→0

1

2δ

∫ τ+δ

τ−δ

∫
Ω

[
N

2
trace{M}+ {P}

]
dx dt

(4.21)
for a.a. τ ∈ (0, T ), where the limit is understood in the space of measures M(Ω).

4.2.2 Oscillations - Young measures

There is an efficient tool to describe oscillations in weakly convergent sequences - the
associated Young measure. We report the following fundamental result, see Pedregal
[34, Chapter 6, Theorem 6.2] (also Ball [3]).
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Theorem 4.1. Let {vn}∞n=1, vn : Q ⊂ RN → RM be a sequence of functions
bounded in L1(Q;RM), where Q is a domain in RN .

Then there exist a subsequence (not relabeled) and a parameterized family {νy}y∈Q

of probability measures on RM depending measurably on y ∈ Q with the following
property:

For any Caratheodory function Φ = Φ(y, z), y ∈ Q, z ∈ RM such that

Φ(·,vn) → Φ weakly in L1(Q),

we have

Φ(y) =

∫
RM

ψ(y, z) dνy(z) for a.a. y ∈ Q.

Our goal is to rewrite the limit system in terms of the Young measure associated to
the family [%ε,mε] ∈ R1+N . Accordingly, the Young measure is a parameterized family
of probability measures supported on the set [0,∞) × RN (the densities are supposed
non-negative)

νt,x : (t, x) ∈ (0, T )× Ω → P([0,∞)×RN), ν ∈ L∞weak−(∗)((0, T )× Ω;P(R1+N)),

with the barycenter

〈νt,x; %〉 = %(t, x), 〈νt,x;m〉 = m(t, x) for a.a. (t, x) ∈ (0, T )× Ω.

For a function H = H(%,m) we define

H(%,m)(t, x) ≡ 〈νt,x;H(%,m)〉 for a.a. (t, x) ∈ (0, T )× Ω. (4.22)

provided the latter exists.

Remark 4.2. Here, we should distinguish between

〈νt,x;F (%,m〉

meaning the application of the Young measure to the Borel function F : R1×RN → R,
and the composition

F (%,m) : (0, T )× Ω → R.
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From Theorem 4.1 we know that H(%,m) is well defined L1−function (meaning for
a.a. (t, x)) provided

H(%ε,mε) → H(%,m) weakly in L1((0, T )× Ω). (4.23)

We show that H(%,m) can be defined through formula (4.22), meaning that the
function H(%,m), [%,m] ∈ R1+N is νt,x integrable for a.a. (t, x), and the function

(t, x) 7→ 〈νt,x;H(%,m)〉 is integrable in (0, T )× Ω,

whenever ∫ T

0

∫
Ω

|H(%ε,mε)| dx dt ≤ c(data) uniformly for ε→ 0. (4.24)

Note that (4.24) in general does not imply (4.23).
Since the Lebesgue integral is absolutely convergent, it is enough to consider |H|,

or, equivalently, to assume that H ≥ 0. We take a family of cut-off functions

Tk(Z) = min{Z, k}.

As Tk(H) are bounded, the functions Tk(H) are νt,x integrable for a.a. (t, x),

(t, x) 7→ 〈νt,x;Tk(H(%,m))〉 ∈ L1((0, T )× Ω),

‖(t, x) 7→ 〈νt,x;Tk(H(%,m))〉‖L1((0,T )×Ω) ≤ c(data)

uniformly for k →∞. However,

Tk(H(%,m)) ↗ H(%,m) for any [%,m] ∈ RN+1 as k →∞;

whence, by monotone convergence theorem, H is νt,x integrable (the integral may equal
∞). On the other hand,

Tk(H(%,m)) ↗ H(%,m) in L1((0, T )× Ω);

whence

〈νt,x;Tk(H(s,v))〉 → H(%,m)(t, x) = 〈νt,x;H(%,m)〉 for a.a. (t, x).

Thus 〈νt,x;H(%,m)〉 is finite for a.a. (t, x) ∈ (0, T )× Ω.

Remark 4.3. The function H(%,m) - the limit of Tk(H(%,m)) for k → ∞ is known
as the biting limit of {H(%ε,uε)}ε>0, cf. Ball and Murat [4].
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We infer that

weak-(*) limit in M of H(%ε,mε) ≡ {H} = H(%,m) +DH (4.25)

for any H such that ∫ T

0

∫
Ω

|H(%ε,mε)| dx dt ≤ c(data),

where DH ∈ M([0, T ] × Ω) is called concentration defect measure. From the previ-
ous discussion, we deduce a useful estimate for the concentration defect measure DH ,
namely,

‖DH‖M(Q) = sup
‖ϕ‖C(Q)≤1

∫
Q

DHϕ dx dt

≤ lim
k→∞

(
lim
ε→0

∫
|H(%ε,mε)|≥k, (t,x)∈Q

(|H(%ε,mε)| − k) dx dt

) (4.26)

Consequently, equations (4.18), (4.19) can be written in the form∫
Ω

%ϕ(τ, ·) dx−
∫

Ω

%0ϕ dx =

∫ τ

0

∫
Ω

[%∂tϕ+ m · ∇xϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω),

(4.27)

∫
Ω

m · ϕ(τ, ·) dx−
∫

Ω

m0 · ϕ dx

=

∫ τ

0

∫
Ω

[
m · ∂tϕ+

(
m⊗m

%

)
: ∇xϕ+ p(%)divxϕ+ Dm : ∇xϕ

]
dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω;RN),

(4.28)

together with the energy inequality∫
Ω

[
1

2

(
|m|2
%

)
+ P (%) +D

]
(τ, ·) dx ≤

∫
Ω

E0 dx for a.a. τ ∈ (0, T ), (4.29)

where D ∈ L∞(0, T ) is the energy concentration defect satisfying, in view of (4.15),
(4.26), ∫ τ

0

∫
Ω

|Dm| dx dt ≤ c

∫ τ

0

D(t) dt for a.a. τ ∈ (0, T ). (4.30)
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4.2.3 Measure-valued solutions

At this stage, we may forget the way how the Young and dissipative measures were
obtained and define measure-valued solution of the Euler system (4.10), (4.11) as the
pair

• the parameterized measure νt,x ∈ L∞weak−(∗)

(
(0, T )× Ω;P([0,∞)×RN)

)
;

• the dissipation defect D ∈ L∞(0, T )

satisfying∫
Ω

〈ντ,x; %〉ϕ dx−
∫

Ω

〈ν0,x; %〉ϕ dx =

∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tϕ+ 〈νt,x;m〉 · ∇xϕ] dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω);

(4.31)∫
Ω

〈ντ,x;m〉 · ϕ dx−
∫

Ω

〈ν0,x;m〉 · ϕ dx

=

∫ τ

0

∫
Ω

[
〈νt,x;m〉 · ∂tϕ+

〈
νt,x;

m⊗m

%

〉
: ∇xϕ+ 〈νt,x; p(%)〉 divxϕ+ Dm : ∇xϕ

]
dx dt,

for a.a. τ ∈ (0, T ), and for all ϕ ∈ C1([0, T ]× Ω;RN),

(4.32)∫
Ω

〈
ντ,x;

1

2

(
|m|2

%

)
+ P (%)

〉
dx+D(τ)

≤
∫

Ω

〈
ν0,x;

1

2

(
|m|2

%

)
+ P (%)

〉
dx for a.a. τ ∈ (0, T ),

(4.33)

where ∫ τ

0

∫
Ω

|Dm| dx dt ≤ c

∫ τ

0

D(t) dt for a.a. τ ∈ (0, T ). (4.34)

Remark 4.4. Note that the measure ν0 plays the role of “initial conditions”. If we
assume that the data were controlled in the limit ε → 0, the initial measure coincides
with

u0,x = δ%0(x);m0(x) for a.a. x ∈ Ω.

Remark 4.5. The function

H : [%,m] 7→ |m|2

%

is defined as

H[%, 0] = 0 for all % ∈ R, H[%,m] = ∞ for % ≤ 0, m 6= 0.
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Then H is convex, lower-semi continuous and can be approximated from below by a
sequence of continuous functions.

4.2.4 Weak-strong uniqueness in the class of measure-valued solutions

The proof of the weak-strong uniqueness property in the context of measure-valued
solutions follows the same lines as in Section 3. We introduce an analogue of the
relative energy:

E
(
ν = νt,x(%,m)

∣∣∣ r,U)
=

∫
Ω

〈
νt,x;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx

(4.35)

for C1−smooth functions r and U.
Next, we successively compute∫

Ω

〈ντ,x;m〉 ·U dx−
∫

Ω

〈ν0;m〉 ·U0 dx

=

∫ τ

0

∫
Ω

[
〈νt,x;m〉 · ∂tU +

〈
νt,x;

m⊗m

%

〉
: ∇xU + 〈νt,x; p(%)〉 divxU

]
dx dt

+

∫ τ

0

∫
Ω

Dm : ∇xU dx dt;

∫
Ω

1

2
〈ντ,x; %〉 |U|2 dx− 1

2

∫
Ω

〈ν0,x; %〉 |U|2 dx

=

∫ τ

0

∫
Ω

[〈νt,x; %〉U · ∂tU + 〈νt,x;m〉 ·U · ∇xU] dx dt;

and ∫
Ω

〈ντ,x; %〉P ′(r) dx−
∫

Ω

〈ν0,x; %〉P ′(r) dx

=

∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tP
′(r) + 〈νt,x;m〉 · ∇xP

′(r)] dx dt.

Summing up the previous relations, we obtain a measure-valued analogue of the
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relative energy inequality (2.8):[∫
Ω

〈
νt,x;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx

]t=τ

t=0

+D(τ)

≤ −
∫ τ

0

∫
Ω

[
〈νt,x;m〉 · ∂tU +

〈
νt,x;

m⊗m

%

〉
: ∇xU + 〈νt,x; p(%)〉 divxU

]
dx dt

+

∫ τ

0

∫
Ω

[〈νt,x; %〉U · ∂tU + 〈νt,x;m〉 ·U · ∇xU] dx dt

−
∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tP
′(r) + 〈νt,x;m〉 · ∇xP

′(r)− r∂tP
′(r)] dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt,

(4.36)

where, furthermore, the expression on the right-hand side can be rewritten as∫ τ

0

∫
Ω

[p(r)− 〈νt,x; p(%)〉] divxU dx dt

+

∫ τ

0

∫
Ω

〈νt,x; %U−m〉 · [∂tU + U · ∇xU] dx dt

−
∫ τ

0

∫
Ω

[〈νt,x; %〉 ∂tP
′(r) + 〈νt,x;m〉 · ∇xP

′(r)− r∂tP
′(r) + p(r)divxU] dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt+

∫ τ

0

∫
Ω

〈
νt,x;

(m− %U)⊗ (%U−m)

%

〉
: ∇xU dx dt.

Now we assume in addition that r, U is a smooth solution of the Euler system,

∂tr + U · ∇xr = −rdivxU, ∂tU + U · ∇xU = −p
′(r)

r
∇xr.

Consequently,[∫
Ω

〈
νt,x;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx

]t=τ

t=0

+D(τ)

≤
∫ τ

0

∫
Ω

[p(r) + 〈νt,x; %〉 p′(r)− 〈νt,x; p(%)〉] divxU dx dt

+

∫ τ

0

∫
Ω

[r∂tP
′(r)− p(r)divxU] dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt+

∫ τ

0

∫
Ω

〈
νt,x;

(m− %U)⊗ (%U−m)

%

〉
: ∇xU dx dt

(4.37)
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= −
∫ τ

0

∫
Ω

〈
νt,x; p(%)− p′(r)(%− r)− p(r)

〉
divxU dx dt

+

∫ τ

0

∫
Ω

|Dm : ∇xU| dx dt+

∫ τ

0

∫
Ω

〈
νt,x;

(m− %U)⊗ (%U−m)

%

〉
: ∇xU dx dt.

Thus, in view of (4.34), the integral on the right-hand side of (4.37) can be “ab-
sorbed” by the left-hand side by means of a Gronwall argument as soon as∫

Ω

〈
ν0;

1

2%

(
|m− %U|2

)
+ P (%)− P ′(r)(%− r)− P (r)

〉
dx,

meaning
ν0,x = δr(x),r(x)U(x) for a.a. x ∈ Ω.

We have obtained the following results, cf. Gwiazda, Swierczewska-Gwiazda, Wiede-
mann [21].

Theorem 4.6. Let %, U be a C1 solution of the compressible Euler system (1.5),
(1.6) in [0, T ]× Ω. Let {νt,x}(t,x)∈(0,T )×Ω, be a measure-valued solution of the same
system (in terms of % and the momentum m), with a dissipation defect D and such
that

ν0,x = δr(0,x),rU(0,x) for a.a. x ∈ Ω.

Then D = 0 and

νt,x = δr(t,x),rU(t,x) for a.a. (t, x) ∈ (0, T )× Ω.

Remark 4.7. Regularity of the strong solution can be relaxed to globally Lipschitz in
(0, T )× Ω by a simple density argument.

Remark 4.8. A similar result holds for the compressible Navier-Stokes system, see
[18].

We point out that not all measure-valued solutions to the compressible Euler sys-
tem can be identified as asymptotic limits of families of weak solutions, see [9] for a
counterexample.

5 Weak sequential stability of solutions to the Navier-

Stokes system

Our goal will be to show that, in contrast with the Euler system, a family of (weak,
dissipative) solutions {%ε,uε}ε>0 to the compressible Navier-Stokes system is weakly
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compact provided the initial data are. In particular, any accumulation point of such a
family is again a weak (dissipative) solution of the same problem.

5.1 Integrability

We recall the a priori bounds that follow directly from the energy inequality, see Section
4.1:

sup
t∈(0,T )

‖%ε(t, ·)‖Lγ(Ω) ≤ c(data),

sup
t∈(0,T )

‖√%εuε(t, ·)‖L2(Ω;RN ) ≤ c(data)

sup
t∈(0,T )

‖%εuε(t, ·)‖L2γ/(γ+1)(Ω;RN ) ≤ c(data)∫ T

0

‖uε(t, ·)‖2
W 1,2(Ω;RN ) dt ≤ c(data).

(5.1)

We get immediately

sup
t∈(0,T )

‖p(%ε)(t, ·)‖L1(Ω) ≤ c(data), (5.2)

and, by virtue of Hölder’s inequality,

‖%εuε ⊗ uε‖Lp(Ω;RN×N ) ≤ ‖√%ε‖L2γ(Ω)‖
√
%εuε‖L2(Ω;RN )‖uε‖Lq(Ω;RN ),

where
1

p
=

1

2γ
+

1

2
+

1

q
, q =

{
≥ 1 arbitrary finite if N = 2,
6 if N = 3

,

where q corresponds to the Sobolev embedding relation,

W 1,2(Ω) ↪→ Lq(Ω).

Consequently, we may take p > 1 and conclude

‖%εuε ⊗ uε‖L2(0,T ;Lp(Ω;RN )) ≤ c(data) if γ =

{
> 1 if N = 2,
γ > 3

2
if N = 3,

(5.3)

in which case

1 ≤ p <
2γ

γ + 1
if N = 2, 1 ≤ p ≤ 6γ

4γ + 3
.
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5.2 Pressure estimates

It remains to “improve” the space integrability of the pressure. This may impose even
more restrictions on the adiabatic exponent γ, however, fortunately, it is not the case.
In order to simplify the presentation, we start with the case

γ > 3.

The idea is to express the pressure by means of the momentum equation (1.14).
Formally, we obtain

∇xp(%) = divxS− divx(%u⊗ u)− ∂t(%u)

whence

∆xp(%) = divxdivx (S− %u⊗ u)− ∂tdivx(%u),

and, consequently,

p(%) = divx∆
−1
x divx (S− %u⊗ u)− ∂t∆

−1
x divx[%u] +

1

|Ω|

∫
Ω

p(%) dx dx.

Note that the first term on the right-hand side is under control in view of (5.1), (5.3),
however, we do not have any information on

∂t∆
−1
x divx[%u].

To overcome this problem, we multiply the identity by % and perform by parts integra-
tion obtaining∫ T

0

∫
Ω

p(%)% dx dt

=

∫ T

0

∫
Ω

%divx∆
−1
x divx (S− %u⊗ u) dx dt+

1

|Ω|

∫ T

0

∫
Ω

% dx

∫
Ω

p(%) dx dt

−
[∫

Ω

%∆−1
x divx[%u] dx

]t=T

t=0

+

∫ T

0

∫
Ω

∆−1
x divx[%u]∂t% dx dt

=

∫ T

0

∫
Ω

%divx∆
−1
x divx (S− %u⊗ u) dx dt+

1

|Ω|

∫ T

0

∫
Ω

% dx

∫
Ω

p(%) dx dt

−
[∫

Ω

%∆−1
x divx[%u] dx

]t=T

t=0

+

∫ T

0

∫
Ω

[%u] · ∇x∆
−1
x divx[%u] dx dt,

(5.4)

where all integrals now contain only spatial derivatives. Seeing that the pseudodif-
ferential operators divx∆

−1
x divx preserve the Lp−norm, we may estimate the pressure

integral ∫ T

0

∫
Ω

p(%)% dx ≈
∫ T

0

∫
Ω

%γ+1 dx dt ≈
∫ T

0

∫
Ω

p(%)
γ+1

γ dx dt
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using the energy bounds (5.1–5.3) deduced in the preceding section. Indeed, if γ > 3,
N = 3, relations (5.1) imply

sup
t∈(0,T )

‖%εuε(t, ·)‖L3/2(Ω;R3) ≤ c(data),∫ T

0

‖%εuε ⊗ uε‖L3/2(Ω;R3×3) ≤ c(data)∫ T

0

‖%εu‖2
L2(Ω;R3) ≤ c(data),

therefore, using the Sobolev embedding

W 1,3/2(Ω) ↪→ L3(Ω)

we easily observe that all integrals on the right-hand side of (5.4) remain bounded in
terms of the initial data. Consequently, we may conclude∫ T

0

∫
Ω

p(%ε)
γ+1

γ dx dt ≤ c(data) provided γ > 3. (5.5)

Of course, the same holds also for N = 2.
To carry out this programme in the context of weak solutions, it is enough to consider

the quantity

ϕ = ∇x∆
−1
x

(
%ε −

1

|Ω|

∫
Ω

%ε dx

)
(5.6)

in the weak formulation (2.5) for the momentum equation.

5.3 Refined pressure estimates, renormalized equation of con-
tinuity

For γ < 3, we may need to replace (5.6) by

ϕ = ∇x∆
−1
x

(
%β

ε −
1

|Ω|

∫
Ω

%β
ε dx

)
, β > 0,

which gives rise to a term
∂t%

β

in the formal calculations. We therefore need to express the time derivative of a com-
position b(%) of % with a non-linear function b. Formally, the relevant relation may be
derived by multiplying the equation of continuity on b′(%):

∂tb(%) + divx (b(%)u) + [b′(%)%− b(%)] divxu = 0 (5.7)
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or, in the weak formulation,[∫
Ω

b(%)ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[b(%)∂tϕ+ b(%)u · ∇xϕ] dx dt

+

∫ τ2

τ1

∫
Ω

[b(%)− b′(%)%] divxuϕ dx dt

for any ϕ ∈ C∞
c ([0, T ]× Ω).

(5.8)

Equation (5.7) or (5.8) is called renormalized equation of continuity. Renormaliza-
tion plays an important role in the theory of weak solutions to the transport equations,
see the pioneering work by DiPerna and Lions [16], or the more recent development by
Ambrosio [2].

The weak formulation (5.8) can be derived for weak solutions of the equation of
continuity enjoying certain integrability properties. In particular, if

u ∈ Lq(0, T ;W 1,p(Ω)), % ∈ Lq′(0, T ;W 1,p′(Ω)),
1

p
+

1

p′
= 1,

1

q
+

1

q′
= 1.

In general, satisfaction of (5.8) has to be included as an integral part of the definition
of weak solutions to the compressible Navier-Stokes system.

The basic idea employed in [16] was to apply mollifiers to the continuity equation.
Such an operation can be performed even at the level of weak solutions if we realize
that mollifying via spatial convolution is just taking a special class of test functions.
More specifically, consider a family of regularizing kernels {κδ}δ>0,

κδ(z) =
1

δN
κ

(
|z|
δ

)
, κ ∈ C∞

c (R), supp κ ⊂ (−1, 1),

κ ≥ 0, κ(−y) = k(y), κ(y) decreasing for y ≥ 0,

∫
R

κ(y) dy = 1.

We report the following technical result usually attributed to Friedrichs, see [20,
Lemma 10.12].

Lemma 5.1. Let
hδ = κδ ∗ divx(rU)− divx ([κδ ∗ r]U) ,

where {κδ}δ>0 is a family of regularizing kernels, and where the symbol ∗ denotes con-
volution in the x−variable. Let

r ∈ Lp(Ω), U ∈ W 1,p′(Ω),
1

p
+

1

p′
= 1, p > 1 finite.

Then

‖hδ‖L1(Ω) ≤ c‖r‖Lp(Ω)‖U‖W 1,p′ (Ω), and hδ → 0 in L1(Ω) as δ → 0.
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As a direct application of Friedrich’s lemma, we may show that

• %, u satisfying the equation of continuity in the weak sense satisfy also its renor-
malized version as long as

% ∈ L2((0, T )× Ω), U ∈ L2(0, T ;W 1,2(Ω;RN)).

• the density component of % of a renormalized solution is strongly continuous in
time,

t 7→ %(t, ·) is a continuous mapping from [0, T ] to L1(Ω).

To see the first property, just regularize the equation of continuity by κδ (use κδ(y−·)
as a test function):

∂t[%]δ + divx ([%]δu) = divx ([%]δu)− [divx (%u)]δ ,

where [h]δ = κδ ∗ h. As now everything is smooth, we get easily

∂tb ([%]δ) + divx (b ([%]δu)) + (b′ ([%]δ) [%]δ − b ([%]δ)) divxu

= b′ ([%]δ) (divx ([%]δu)− [divx (%u)]δ) .

Now, at least for b′ bounded we may let δ → 0 to obtain the desired result.
In order to see strong continuity, consider b(%) for b, b′ bounded, b′ > 0. As b(%)

satisfies the renormalized equation, we conclude that

b ∈ Cweak([0, T ];Lp(Ω)) for any 1 ≤ p <∞

provided b is defined through limits of integral averages∫
Ω

b(%)(τ, ·)ϕ dx = lim
δ→0

1

2δ

∫ δ

−δ

∫
Ω

b(%)(τ, ·)ϕ dx dt, τ ∈ [0, T ],

with the corresponding one-sided limits at the extremal points τ = 0, T . Regularizing
(5.8) by means of a family of convolution kernels, we get, for b = b(%),

∂t[b]δ + divx ([b]δu) = [(b(%)− b′(%)%)divxu]δ ,

where the right-hand side is a function belonging to L2(0, T ;Ck(Ω)) for any k finite.
Thus [b]δ is Hölder continuous in time ranging in the space of smooth functions.

Now, we may perform “second renormalization” deducing

∂t[b]
2
δ + divx

(
[b]2δu

)
= 2[b]δ [(b(%)− b′(%)%)divxu]δ − [b]2δdivxu.

Taking the limit for δ → 0 we get that
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•

[b]δ(t, ·) → b(t, ·) in L1(Ω), [b]2δ(t, ·) → b2(t, ·) in L1(Ω) for any t ∈ [0, T ];

•
[b]δ → b in Cweak(0, T ;L1(Ω)), [b]2δ → b2 in Cweak(0, T ;L1(Ω)).

Remark 5.1. As a matter of fact,

[b]2δ → b2 in Cweak(0, T ;L1(Ω)),

however, since we also have strong point-wise convergence, b2 = b2.

Thus for t→ τ , we get

b(t, ·) → b(τ, ·) weakly in L2(Ω),

∫
Ω

b2(t, ·) dx→
∫

Ω

b2(τ, ·) dx;

whence b is strongly continuous. This implies strong continuity of %.

5.4 Weak compactness and continuity of the convective terms

Here again, for the sake of simplicity, we assume that γ > 3, and, to handle the most
difficult case, N = 3. In view of the uniform bounds established in the preceding
section, all non-linearities appearing in the weak formulation (2.5) are equi-integrable
- weakly precompact in L1((0, T )× Ω), consequently, passing to suitable subsequences
as the case may be, we deduce

%ε → % in Cweak([0, T ];Lγ(Ω)), uε → u weakly in L2(0, T ;W 1,2(Ω)), (5.9)

where [∫
Ω

%ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2

t=τ1

=

∫ T

0

∫
Ω

[
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

]
dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN),

(5.10)
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together with the energy inequality∫
Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

(5.11)

for a.a. τ ∈ (0, T ), where bars denote the weak limit of compositions. In addition,
using convexity of the functions

[%,m] 7→ |m|2

%
, % 7→ P (%),

we may deduce from (5.11) that∫
Ω

[
1

2

|%u|2

%
+ P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

(5.12)

for a.a. τ ∈ (0, T ). Note that, in contrast with the Euler system studied in Section 4,
there are no concentration term. Our goal in the remaining part of this section will be
to show that all “bars” can be removed in (5.11–5.12).

We start with a simple observation that Lγ(Ω) is compactly embedded into the dual
W−1,2(Ω) of the Sobolev space W 1,2(Ω) as soon as γ > 6

5
as

W 1,2(Ω) ↪→↪→ (compactly) in Lq(Ω), 1 ≤ q < 6.

Consequently, (5.9) implies

%ε → % (strongly) in L2(0, T ;W−1,2(Ω)),

and
%εuε → %u in Cweak(0, T ;L2γ/(γ+1)(Ω;R3)), (5.13)

in other words %u = %u. Now, keeping in mind that γ > 3, we get 2γ
γ+1

> 3
2
, and

repeating the same arguments we deduec from (5.9), (5.13) that

%εuε ⊗ uε → u⊗ u weakly in L2(0, T ;L3/2(Ω;R3×3).
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Thus (5.10), (5.12) give rise to[∫
Ω

%ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dx dt,

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω),[∫

Ω

%u · ϕ dx

]t=τ2

t=τ1

=

∫ T

0

∫
Ω

[
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ

]
dx dt

−
∫ T

0

∫
Ω

S(∇xu) : ∇xϕ dx dt

for any 0 ≤ τ1 ≤ τ2 ≤ T and for any test function ϕ ∈ C1
c ([0, T ]× Ω;RN),∫

Ω

[
1

2

|%u|2

%
+ P (%)

]
(τ, ·) dx+

∫ τ

0

∫
Ω

S(∇xu) : ∇xu dx dt

≤
∫

Ω

[
1

2
%0|u0|2 + P (%0)

]
dx for a.a. τ ∈ (0, T ).

(5.14)

Thus it remains to show that

p(%) = p(%).

Note that this relation for strictly convex pressure is equivalent to the strong (a.a.
pointwise) convergence of the sequence of densities. As we have no information on
boundedness of derivatives of %ε, this is a non-trivial task.

5.5 Strong convergence of the density

We first observe that %, u satisfy the equation of continuity. Next, as γ > 3, we have % ∈
L∞(0, T ;L3(Ω)) and u ∈ L2(0, T ;W 1,2(Ω); whence the regularization method delineated
in Section 5.3 can be applied to recover the renormalized equation of continuity (5.8)
for the limit solution, in particular,[∫

Ω

% log(%)ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[% log(%)∂tϕ+ % log(%)u · ∇xϕ] dx dt

−
∫ τ2

τ1

∫
Ω

%divxuϕ dx dt

for any ϕ ∈ C∞
c ([0, T ]× Ω).

(5.15)
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By the same token, we have the same equation at the ε−level:[∫
Ω

%ε log(%ε)ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[%ε log(%ε)∂tϕ+ %ε log(%ε)uε · ∇xϕ] dx dt

−
∫ τ2

τ1

∫
Ω

%εdivxuεϕ dx dt

for any ϕ ∈ C∞
c ([0, T ]× Ω);

whence, letting ε→ 0,[∫
Ω

% log(%)ϕ dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[
% log(%)∂tϕ+ % log(%)u · ∇xϕ

]
dx dt

−
∫ τ2

τ1

∫
Ω

%divxuϕ dx dt

for any ϕ ∈ C∞
c ([0, T ]× Ω).

(5.16)

Subtracting (5.15) from (5.16) we conclude[∫
Ω

[
% log(%)− % log(%)

]
dx

]t=τ2

t=τ1

=

∫ τ2

τ1

∫
Ω

[
%divxu− %divxu

]
dx dt. (5.17)

Note that % 7→ % log(%) is strictly convex, therefore

% log(%)− % log(%) ≥ 0,

whereas
% log(%)− % log(%) = 0

is in fact equivalent to the desired strong convergence of {%ε}ε>0. Thus supposing the
initial data converge strongly, meaning

%0 log(%0)− %0 log(%0),

we need to know more about the quantity %divxu− %divxu.
Fortunately, or rather miraculously, we have the relation

p(%)%− p(%)% =

(
4

3
µ+ η

) (
%divxu− %divxu

)
(5.18)

discovered by P.-L.Lions [28], called usually the effective viscous flux identity. As the
pressure is non-decreasing, we immediately deduce

p(%)%− p(%)% = lim
ε→0

(p(%ε)− p(%))(%ε − %) ≥ 0

yielding the desired sign of the right-hand side of (5.17).

44



Remark 5.2. Strictly speaking, relation (5.18) should be interpreted as

lim
ε→0

∫
Q

(
p(%ε)%ε − p(%)%

)
dx dt =

(
4

3
µ+ η

) ∫
Q

(
%divxu− %divxu

)
dx dt

for any measurable subset Q ⊂ (0, T ) × Ω as the quantity p(%ε)%ε is only bounded in
L1((0, T )× Ω).

5.5.1 Effective viscous flux

Our goal will be to show the effective viscous flux identity (5.18). It can be deduced
from the Navier-Stokes system in a similar way we have obtained the pressure estimates
in Section 5.2. Specifically, we take

ϕ = ∇x∆
−1
x

[
%ε −

1

|Ω|

∫
Ω

%ε dx

]
as a test function in the momentum equation obtaining∫ T

0

∫
Ω

[
p(%ε)%ε −

(
4

3
µ+ η

)
%εdivxuε

]
dx dt

= −
∫ T

0

∫
Ω

%εdivx∆
−1
x divx [%εuε ⊗ uε] dx dt+

1

|Ω|

∫ T

0

∫
Ω

%ε dx

∫
Ω

p(%ε) dx dt

−
[∫

Ω

%ε∆
−1
x divx[%εuε] dx

]t=T

t=0

+

∫ T

0

∫
Ω

[%εuε] · ∇x∆
−1
x divx[%εuε] dx dt.

(5.19)

Similarly, applying the same treatment to the limit equation with a test function

ϕ = ∇x∆
−1
x

[
%− 1

|Ω|

∫
Ω

% dx

]
we get∫ T

0

∫
Ω

[
p(%)%−

(
4

3
µ+ η

)
%divxu

]
dx dt

= −
∫ T

0

∫
Ω

%divx∆
−1
x divx [%u⊗ u] dx dt+

1

|Ω|

∫ T

0

∫
Ω

% dx

∫
Ω

p(%) dx dt

−
[∫

Ω

%∆−1
x divx[%u] dx

]t=T

t=0

+

∫ T

0

∫
Ω

[%u] · ∇x∆
−1
x divx[%u] dx dt.

(5.20)

Remark 5.3. Note that thanks to the periodic boundary conditions, the operator ∆−1
x

commutes with all partial derivatives, in particular,

∂xi
∆−1[v] = ∆−1[∂xi

v], i = 1, . . . , N.
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Consequently, the effective viscous flux identity (5.18) will follow provided we show
that

lim
ε→0

∫ T

0

∫
Ω

[%εuε] · ∇x∆
−1
x divx[%εuε] dx dt−

∫ T

0

∫
Ω

%εdivx∆
−1
x divx [%εuε ⊗ uε] dx dt

=

∫ T

0

∫
Ω

[%u] · ∇x∆
−1
x divx[%u] dx dt−

∫ T

0

∫
Ω

%divx∆
−1
x divx [%u⊗ u] dx dt,

which can be conveniently rewritten as

lim
ε→0

∫ T

0

∫
Ω

uε ·
[
%ε∇x∆

−1
x divx[%εuε]− %εuεdivx∆

−1
x divx[%ε]

]
dx dt

=

∫ T

0

∫
Ω

u ·
[
%∇x∆

−1
x divx[%u]− %udivx∆

−1
x divx[%]

]
dx dt.

Now, repeating the same argument as when showing compactness of convective
terms, we observe that it is enough to show[
%ε∇x∆

−1
x divx[%εuε]− %εuεdivx∆

−1
x divx[%ε]

]
→

[
%∇x∆

−1
x divx[%u]− %udivx∆

−1
x divx[%]

]
(5.21)

in L2(0, T ;W−1,2(Ω;R3). To this end, we need the following general result.

Lemma 5.2. Let

Vn → V weakly in Lp(Ω;RN), Wn → W weakly in Lq(Ω;RN),
1

p
+

1

q
=

1

r
< 1.

Then

V i
n∂xi

∆−1∂xj
[W j

n]−W i
n∂xi

∆−1∂xj
[V j

n ] → V i∂xi
∆−1∂xj

[W j]−W i∂xi
∆−1∂xj

[V j]

in Lr(Ω).

Lemma 5.2 follows from the celebrated Div-Curl Lemma by Murat and Tartar, see
[32], [36].

Lemma 5.3. Let Q ⊂ RN be an open set. Assume

Un → U weakly in Lp(Q; RN),

Vn → V weakly in Lq(Q; RN),

where
1

p
+

1

q
=

1

r
< 1.
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In addition, let

div Un ≡ ∇ ·Un,

curl Vn ≡ (∇Vn −∇TVn)

 be precompact in

{
W−1,s(Q),
W−1,s(Q; RN×N),

for a certain s > 1. Then

Un ·Vn → U ·V weakly in Lr(Q).

Proof of Lemma 5.2:
Simply write

V i
n∂xi

∆−1∂xj
[W j

n]−W i
n∂xi

∆−1∂xj
[V j

n ]

=
(
V i

n − ∂xi
∆−1∂xj

[V j
n ]

)
∂xi

∆−1∂xj
[W j

n]−
(
W i

n − ∂xi
∆−1∂xj

[W j
n]

)
∂xi

∆−1∂xj
[V j

n ],

and observe that

∂xi
∆−1∂xj

[V j
n ], ∂xi

∆−1∂xj
[W j

n], i = 1, . . . , N

represent N components of a gradient (whence curl = 0), while(
V i

n − ∂xi
∆−1∂xj

[V j
n ]

)
,

(
W i

n − ∂xi
∆−1∂xj

[W j
n]

)
, i = 1, . . . , N

are solenoidal.

Now, seeing that %ε satisfy (5.9), (5.13), where

1

γ
+
γ + 1

2γ
=

1

q
< 1, Lq(Ω) ↪→↪→ W−2,2(Ω),

the convergence in (5.21) takes place in Lp(0, T ;W−2,2(Ω)) for any 1 ≤ p < ∞. Next,
as γ > 3, we get[
%ε∇x∆

−1
x divx[%εuε]− %εuεdivx∆

−1
x divx[%ε]

]
∈ L2(0, T ;Lr(Ω;R3)), r =

6γ

12 + γ
>

6

5
;

whence
Lr(Ω) ↪→↪→ W−α,2(Ω) for a certain α < 1,

and, by interpolation, the convergence in (5.21) holds in the desired Hilbert space
L2(0, T ;W−1,2(Ω;R3)).

Thus we have completed the proof of the effective viscous flux identity (5.18) and
we may infer that

%ε → % in L1((0, T )× Ω), in particular p(%) = p(%).
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Thus we have shown the following result.

Theorem 5.4. Let p(%) = a%γ, a > 0, γ > 3, N = 3. Let

{%ε}ε>0, {uε}ε>0

be a family of dissipative weak solutions to the compressible Navier-Stokes system
in (0, T )× Ω, with the initial data

%0,ε ∈ Lγ(Ω), %0,ε > 0, %0,εu0,ε ∈ L2γ/(γ+1)(Ω;R3),

%0,ε → %0 in Lγ(Ω),

∫
Ω

%0,ε|u0,ε|2 dx ≤ c.

Then
%ε → % in L1((0, T )× Ω), uε → u weakly in L2(0, T ;W 1,2(Ω)),

where [%,u] is a dissipative weak solution to the compressible Navier-Stokes system.

6 Concluding remarks

In the light of the recent results of DeLellis and Székelyhidi [10]–[12], the measure
valued solutions discussed in some parts of the above text may offer an alternative to
what we understand as a physically admissible solution to the Euler system or inviscid
fluid problems in general. Note that a possible interpretation or justification to study
inviscid (ideal) problems is that they reflect the properties of viscous (real) fluids in
the regime of low viscosity - high Reynolds number - pertinent to turbulence. Indeed
there are only a few results available concerning basically only 1D problems, see e.g.
Chen and Perepelitsa [5], [6], concerning convergence of solutions to the compressible
Navier-Stokes system to weak solutions of the Euler system. The problems in 1D
geometry seems to enjoy a special structure that allows applications of the technique of
the compensated compactness theory - see DiPerna [13], [14], [15], Murat [32], Tartar
[36].

Recently, there has been a piece of numerical evidence, see Mishra and collaborators
[22], [27], that oscillatory (measure-valued) solutions may appear naturally as limits
of certain numerical schemes. As for numerical schemes compatible with the weak
stability estimates, we refer to the work of Karlsen and Karper [23], [24], [25] or the
recent monograph [19].

We may infer that study of stability and oscillations for systems of partial differ-
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ential equations, not only in fluid mechanics, may definitely shed some light on the
complicated structure of non-linear problems, see Tartar [37], [38].

7 Appendix

7.1 Weak continuity of weak solutions

Lemma 7.1. Let U ∈ L∞(0, T ;Lp(Ω;RN)), p > 1 satisfy

∂tU + divxT = 0, U(0, ·) = U0

in the sense of distributions in (0, T )×Ω for a certain field T ∈ L1(0, T ;Lq(Ω;RN×N)),
q > 1, meaning∫ T

0

∫
Ω

[U · ∂tϕ+ T : ∇xϕ] dx dt = −
∫

Ω

U0 · ϕ(0, ·) dx (7.1)

for any ϕ ∈ C∞
c ([0, T )× Ω;RN).

Then, after redefining on a set of times of Lebesgue measure zero, the function of
time

〈U; Φ〉 := t 7→
∫

Ω

U(t, x) · Φ(x) dx, t ∈ [0, T ]

is continuous in [0, T ] for any Φ ∈ Lp′(Ω;RN), 1
p

+ 1
p′

= 1. In particular,

U ∈ Cweak([0, T ];Lp(Ω;RN)).

Proof:
First observe that the class of admissible test functions in (7.1) can be extended to

compactly supported Lipschitz functions ϕ. Indeed any Lipschitz ϕ can be approxi-
mated by a sequence ϕn of C∞

c functions in such a way that

|ϕn(t, x)|, |∇xϕn(t, x)| ≤M for all (t, x) ∈ [0, T ]× Ω,

ϕn → ϕ, ∇xϕn → ∇xϕ a.a. in (0, T )× Ω.

For 0 < τ < T consider

ϕδ(t, x) = ψδ(t)Φ(x), Φ ∈ C∞
c (Ω;R3),

ψδ(t) =


1 for 0 ≤ t ≤ τ,
−1

δ
(t− τ) + 1 for τ ≤ t ≤ τ + δ,

0 for t ≥ τ + δ


for 0 < δ < T − τ . Accordingly, (7.1) reads

1

δ

∫ τ+δ

τ

∫
Ω

U · Φ dx dt =

∫ τ+δ

0

∫
Ω

T : ∇xΦ ψδ dx+

∫
Ω

U0 · Φ dx. (7.2)
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Letting δ → 0 we conclude that

〈U; Φ〉 ≡
∫

Ω

U(τ, x) · Φ(x) dx =

∫ τ

0

∫
Ω

T : ∇xΦ dx+

∫
Ω

U0 · Φ dx (7.3)

at any right Lebesgue point τ of 〈U; Φ〉, in particular for a.a. τ ∈ (0, T ). The function
on the right-hand side of (7.3) is absolutely continuous in τ and we may therefore
redefine U on a set of times of Lebesgue measure zero in such a way that that

〈U; Φ〉 (τ) ≡
∫

Ω

U(τ, x) · Φ(x) dx =

∫ τ

0

∫
Ω

T : ∇xΦ dx+

∫
Ω

U0 · Φ dx (7.4)

for any 0 ≤ τ ≤ T .
Now, the function 〈U; Φ〉 defined via (7.4) for all Φ is defined on a dense set of

(smooth) functions in Lp(Ω) satisfying

|〈U; Φ〉 (τ)| ≤ c‖Φ‖Lp′ (Ω;RN ) for any Φ ∈ C∞
c (Ω;RN).

Consequently, 〈U; Φ〉 (τ) defines for any τ ∈ [0, T ] a continuous linear form on Lp′ that
can be represented by a function Ũ(τ) ∈ Lp(Ω;RN) satisfying

Ũ(τ) = U(τ, ·) for a.a. τ ∈ (0, T ), sup
t∈[0,T ]

‖Ũ(τ)‖Lγ(Ω;RN ) ≤ c. (7.5)

Thus we may replace U by Ũ changing the former on the set of measure zero as the
case may be.

Finally, we observe that U is weakly continuous, meaning the mapping

t 7→
∫

Ω

U(t, x) · Φ(x) dx

is a continuous function of t ∈ [0, T ] for any Φ ∈ Lp′(Ω;RN). To this end, we consider
an approximate sequence

Φn → Φ in Lp′(Ω;RN), Φn ∈ C∞
c (Ω)

and write∫
Ω

U(t, x) · Φ(x) dx =

∫
Ω

U(t, x) · Φn(x) dx+

∫
Ω

U(t, x) · (Φn(x)− Φ(x)) dx,

where

t 7→
∫

Ω

U(t, x) · Φn(x) dx,

50



and, by Hölder inequality and (7.5),∣∣∣∣∫
Ω

U(t, x) · (Φn(x)− Φ(x)) dx

∣∣∣∣ ≤ ‖U(t, ·)‖Lp(Ω;RN )‖Φn − Φ‖Lp′ (Ω;RN ) → 0,

uniformly in t ∈ [0, T ]. Consequently, the function

t 7→
∫

Ω

U(t, x) · Φ(x) dx

being a uniform limit of continuous functions is continuous.

Lemma 7.2. Let
{
Uε ∈ L∞(0, T ;Lp(Ω;RN))

}
ε>0

, p > 1 be a family of functions sat-
isfying

ess sup
t∈(0,T )

‖Uε‖Lp(Ω;RN ) ≤ c

uniformly for ε→ 0. In addition, suppose that

∂tUε + divxTε = 0, U(0, ·) = U0,ε → U0 weakly in Lp(Ω;RN),

in the sense of distributions in (0, T )×Ω for a certain fields Tε ∈ Lr(0, T ;Lq(Ω;RN×N)),
r, q > 1,

‖Tε‖Lr(0,T ;Lq(Ω;RN×N )) ≤ c,

meaning ∫ T

0

∫
Ω

[Uε · ∂tϕ+ Tε : ∇xϕ] dx dt = −
∫

Ω

U0,ε · ϕ(0, ·) dx (7.6)

for any ϕ ∈ C∞
c ([0, T )× Ω;RN).

Then, after redefining on a set of times of Lebesgue measure zero, the functions of
time

〈Uε; Φ〉 := t 7→
∫

Ω

Uε(t, x) · Φ(x) dx, t ∈ [0, T ]

are continuous in [0, T ] for any Φ ∈ Lp′(Ω;RN), 1
p

+ 1
p′

= 1. Moreover, there exists a

subsequence {Uε}ε>0 such that

Uε → U ∈ Cweak([0, T ];Lp(Ω;RN)),

which means∫
Ω

Uε(t, x) · Φ(x) dx→
∫

Ω

U(t, x) · Φ(x) dx uniformly for t ∈ [0, T ]

for any Φ ∈ Lp′(Ω;RN).
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We already know from Lemma 7.1 that

Uε ∈ Cweak([0, T ];Lp(Ω;RN)),

and, from (7.5),

sup
t∈[0,T ]

‖Uε(t, ·)‖Lp(Ω;RN ) ≤ c uniformly in ε→ 0.

In addition, evoking (7.4),∫
Ω

Uε(τ2, x) · Φ(x) dx−
∫

Ω

Uε(τ1, x) · Φ(x) dx =

∫ τ2

τ1

∫
Ω

Tε : ∇xΦ dx

whenever Φ ∈ C∞
c (Ω;RN). Using Hölder inequality, we obtain∣∣∣∣∫

Ω

Tε : ∇xΦ dx

∣∣∣∣ ≤ ‖Tε‖Lq(Ω;RN×N ) ‖∇xΦ‖Lq′ (Ω;RN×N ) ;

whence, by the same argument,∣∣∣∣∫ τ2

τ1

∫
Ω

Tε : ∇xΦ dx dt

∣∣∣∣ ≤ |τ2 − τ1|1/r′ ‖∇xΦ‖Lq′ (Ω;RN×N ) ‖Tε‖Lr(0,T ;Lq(Ω;RN×N )) .

Thus using the Arzelà-Ascoli theorem we conclude that∫
Ω

Uε(t, x) · Φ(x) dx→ UΦ(t) uniformly for t ∈ [0, T ] (7.7)

for any Φ ∈ C∞
c (Ω;RN).

Now, for a general Φ ∈ Lp′(Ω;RN) we take Φn such that

Φn → Φ in Lp′(Ω;RN), Φn ∈ C∞
c (Ω;RN).

Thus, similarly to the proof of Lemma 7.1, we write∫
Ω

UεΦ dx =

∫
Ω

Uε · (Φ− Φn) dx+

∫
Ω

Uε · Φn dx,

where the former integral on the right-hand side is uniformly small for large n while
the latter converges uniformly to the limit identified in (7.7). We may infer that∫

Ω

Uε(t, x) · Φ(x) dx→ UΦ(t) uniformly for t ∈ [0, T ] (7.8)

for any Φ ∈ Lp′(Ω;RN).
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Finally, the mapping
Φ 7→ UΦ(t)

represents a bounded linear form on the space Lp′(Ω;RN) that can be represented by
a function

U(t, ·) ∈ Lp(Ω;RN) for any t ∈ [0, T ]

via the standard Riesz representation formula

UΦ(t) =

∫
Ω

U(t, ·) · Φ dx.

7.2 Some useful facts from the theory of elliptic equations

Assume that Ω = T N is the flat torus (periodic boundary conditions). Then for any
h ∈ Lp(Ω), 1 < p <∞ such that ∫

Ω

h dx = 0,

the problem
∆xv = h

admits a unique solution in the class

v ∈ W 2,p(Ω),

∫
Ω

v dx = 0.

Moreover,
‖v‖W 2,p(Ω) ≤ c(p)‖h‖Lp(Ω).

For the proof see e.g. the classical reference paper by Agmon, Douglis, and Nirenberg
[1].
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[21] P. Gwiazda, A. Świerczewska-Gwiazda, and E. Wiedemann. Weak-strong unique-
ness for measure-valued solutions of some compressible fluid models. 2015. arxiv
preprint No. 1503.05246.

[22] A. Hiltebrand and S. Mishra. Entropy stable shock capturing space-time dis-
continuous Galerkin schemes for systems of conservation laws. Numer. Math.,
126(1):103–151, 2014.

[23] K. H. Karlsen and T. K. Karper. Convergence of a mixed method for a semi-
stationary compressible Stokes system. Math. Comp., 80(275):1459–1498, 2011.

[24] K. H. Karlsen and T. K. Karper. A convergent mixed method for the Stokes
approximation of viscous compressible flow. IMA J. Numer. Anal., 32(3):725–764,
2012.

[25] T. K. Karper. A convergent FEM-DG method for the compressible Navier-Stokes
equations. Numer. Math., 125(3):441–510, 2013.

[26] S. Klainerman and A. Majda. Singular limits of quasilinear hyperbolic systems
with large parameters and the incompressible limit of compressible fluids. Comm.
Pure Appl. Math., 34:481–524, 1981.

[27] S. Lanthaler and S. Mishra. Computation of measure-valued solutions for the
incompressible Euler equations. Math. Models Methods Appl. Sci., 25(11):2043–
2088, 2015.

55



[28] P.-L. Lions. Mathematical topics in fluid dynamics, Vol.2, Compressible models.
Oxford Science Publication, Oxford, 1998.

[29] A. Majda. Compressible fluid flow and systems of conservation laws in several
space variables, volume 53 of Applied Mathematical Sciences. Springer-Verlag,
New York, 1984.

[30] A. Matsumura and T. Nishida. The initial value problem for the equations of
motion of viscous and heat-conductive gases. J. Math. Kyoto Univ., 20:67–104,
1980.

[31] A. Matsumura and T. Nishida. The initial value problem for the equations of
motion of compressible and heat conductive fluids. Comm. Math. Phys., 89:445–
464, 1983.
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1997.

[35] J. Smoller. Shock waves and reaction-diffusion equations. Springer-Verlag, New
York, 1967.

[36] L. Tartar. Compensated compactness and applications to partial differential equa-
tions. Nonlinear Anal. and Mech., Heriot-Watt Sympos., L.J. Knopps editor, Re-
search Notes in Math 39, Pitman, Boston, pages 136–211, 1975.

[37] L. Tartar. Oscillations and concentration effects in partial differential equations:
why waves may behave like particles. In XVII CEDYA: Congress on Differential
Equations and Applications/VII CMA: Congress on Applied Mathematics (Span-
ish) (Salamanca, 2001), pages 179–219. Dep. Mat. Apl., Univ. Salamanca, Sala-
manca, 2001.

[38] L. Tartar. Mathematical tools for studying oscillations and concentrations: from
Young measures to H-measures and their variants. In Multiscale problems in
science and technology (Dubrovnik, 2000), pages 1–84. Springer, Berlin, 2002.

[39] A. Valli, Alberto and W.M. Zajaczkowski. Navier-Stokes equations for compressible
fluids: global existence and qualitative properties of the solutions in the general
case. Comm. Math. Phys. 103: 259–296, 1986.

56


