Partial differential equations describing the motion of compressible, viscous, and heat conducting fluids

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Instituto de Matemáticas, Universidad de Sevilla, 2 - 5 December 2014

The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078

イロト 不得 トイヨト イヨト 一日 うらつ

Lecture I

- Field equations describing the motion of a compressible and/or heat conducting fluid
- 2 Strong vs weak solutions
- B Dissipative solutions
- 4 Conditional regularity in the viscous case
- **5** Weak solutions in the inviscid case
- 6 Method of convex integration

イロト 不得 トイヨト イヨト 二日

Lecture II

- Singular limits for a compressible, viscous and/or heat conducting fluid equations
- 2 Low Mach number limit
- High Reynolds/Peclet number limit
- Methods based on relative entropy
- **5** Propagation of acoustic waves
- 6 Other effects: stratification

イロト 不得 トイヨト イヨト 二日

Main topics addressed: Rotating fluids

Lecture III

- **1** Compressible viscous fluid description in the rotating frame
- 2 Low Mach number limit
- High Reynolds/Peclet number limit
- 4 High Rossby number limit
- 5 Poincaré waves
- 6 Analysis of oscillations in particular geometries

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Field equations

Mass conservation

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$$

ρ	mas	s density
u	velo	city field

Momentum balance

$\partial_t(\rho \mathbf{u}) + \operatorname{div}_x(\rho \mathbf{u} \otimes \mathbf{u}) = \operatorname{div}_x \mathbb{T} + \rho \mathbf{f}$

\mathbb{T}	_	: [S	-	_	p	•∏																	 							(С	a	uc	h	y	s	tre	es	s
S						•			•			 											• •	 		. '	vi	s	co	u	s	5	st	re	SS	5	te	ns	50	r
f.		•								•			• •				•						•		• •						. e	e>	×t	e	'n	al	f	o	C	e
р										 		 							 		 														P	or	es	รเ	ır	e

Internal energy balance

$\partial_t(\varrho e) + \operatorname{div}_x(\varrho e \mathbf{u}) + \operatorname{div}_x \mathbf{q} = \mathbb{T} : abla_x \mathbf{u}$

е	 	specific internal energy
q	 	internal energy flux

Constitutive relations

Newton's law

$$\mathbb{S}(\nabla_{\mathbf{x}}\mathbf{u}) = \mu\left(\nabla_{\mathbf{x}}\mathbf{u} + \nabla_{\mathbf{x}}^{t}\mathbf{u} - \frac{2}{3}\mathrm{div}_{\mathbf{x}}\mathbf{u}\mathbb{I}\right) + \eta\mathrm{div}_{\mathbf{x}}\mathbf{u}\mathbb{I}, \ \mu, \eta \ge 0$$

Fourier's law

$$\mathbf{q}=-\kappa\nabla_{\!x}\vartheta,\ \kappa\geq 0$$

Gibbs' equation

5

$$artheta \mathsf{Ds}(arrho, artheta) = \mathsf{De}(arrho, artheta) + \mathsf{p}(arrho, artheta) \mathsf{D}\left(rac{1}{arrho}
ight)$$

......(specific) entropy

Thermodynamic stability

$$\frac{\partial p(\varrho, \vartheta)}{\partial \varrho} > 0, \ \frac{\partial e(\varrho, \vartheta)}{\partial \vartheta} > 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Basic principles of thermodynamics

First Law of Thermodynamics

$$\partial_t \left[\varrho \left(\frac{1}{2} |\mathbf{u}|^2 + e \right) \right] + \operatorname{div}_x \left[\varrho \left(\frac{1}{2} |\mathbf{u}|^2 + e \right) \mathbf{u} \right]$$
$$= \operatorname{div}_x(\mathbb{T}\mathbf{u}) + \varrho \mathbf{f} \cdot \mathbf{u}$$

Second Law of Thermodynamics

$$\partial_t(\varrho s) + \operatorname{div}_x(\varrho s \mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}}{\vartheta}\right) = \sigma$$

 σ entropy production rate

イロト 不得 トイヨト イヨト 一日 うらつ

$$\sigma = (\geq) rac{1}{artheta} \left(\mathbb{S} :
abla_x \mathbf{u} - rac{\mathbf{q} \cdot
abla_x artheta}{artheta}
ight) \geq \mathbf{0}$$

Energetically closed systems

No flux boundary conditions

$$\mathbf{q} \cdot \mathbf{n}|_{\partial\Omega} = 0 \text{ or } \nabla_x \vartheta \cdot \mathbf{n}|_{\partial\Omega} = 0$$

Impermeability

$$\mathbf{u} \cdot \mathbf{n}|_{\partial\Omega} = 0$$

No slip vs complete slip

$$[\boldsymbol{u}]_{\mathrm{tan}}|_{\partial\Omega}=0$$
 or $[\mathbb{S}\cdot\boldsymbol{n}]_{\mathrm{tan}}=0$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Total dissipation balance

Total dissipation balance

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \left[\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho \left(e - \Theta s \right) \right] \, \mathrm{d}x + \Theta \int_{\Omega} \sigma \, \mathrm{d}x = \int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \, \mathrm{d}x, \ \Theta > \mathbf{0}$$

Ballistic free energy

$$H_{\Theta}(\varrho, \vartheta) = \varrho\Big(e(\varrho, \vartheta) - \Theta s(\varrho, \vartheta)\Big)$$

Coercivity of the ballistic free energy

 $\varrho \mapsto H_{\Theta}(\varrho, \Theta)$ strictly convex

 $\vartheta \mapsto H_{\Theta}(\varrho, \vartheta)$ decreasing for $\vartheta < \Theta$ and increasing for $\vartheta > \Theta$

イロト 不得 トイヨト イヨト 一日 うらつ

Local well posedness

Several "equivalent" forms of energy balance

Internal energy balance

$$\partial_t(\varrho e) + \operatorname{div}_x(\varrho e \mathbf{u}) + \operatorname{div}_x \mathbf{q} = \left[\mathbb{S}(\nabla_x \mathbf{u}) : \nabla_x \mathbf{u}\right] - \left[p \operatorname{div}_x \mathbf{u}\right]$$

Entropy production

$$\partial_t(\varrho s) + \operatorname{div}_x(\varrho s \mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}}{\vartheta}\right) \equiv \frac{1}{\vartheta} \left(\boxed{\mathbb{S}(\nabla_x \mathbf{u}) : \nabla_x \mathbf{u}} - \frac{\mathbf{q} \cdot \nabla_x \vartheta}{\vartheta} \right)$$

Total energy balance

$$\partial_t \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e \right) + \operatorname{div}_x \left[\left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e \right) \mathbf{u} + \rho \mathbf{u} \right] + \operatorname{div}_x \mathbf{q}$$
$$= - \left[\operatorname{div}_x (\mathbb{S}(\nabla_x \mathbf{u}) \cdot \mathbf{u}) \right]$$

Weak formulation

Second law - entropy inequality

$$\partial_t(\varrho s) + \operatorname{div}_x(\varrho s \mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}}{\vartheta}\right) \geq \frac{1}{\vartheta}\left(\mathbb{S}(\nabla_x \mathbf{u}) : \nabla_x \mathbf{u} - \frac{\mathbf{q} \cdot \nabla_x \vartheta}{\vartheta}\right)$$

First law - total energy balance

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \left[\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e \right] \, \mathrm{d}x = \int_{\Omega} \varrho \mathbf{f} \cdot \mathbf{u} \, \mathrm{d}x$$

Conservative driving force

$$\mathbf{f} = \nabla_{\mathbf{x}} F, \ F = F(\mathbf{x})$$
$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \left[\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e - \varrho F \right] \ \mathrm{d}\mathbf{x} = \mathbf{0}$$

Eduard Feireisl PDE's and fluid motion

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Relative entropy (energy)

Relative entropy functional

$$\begin{split} \mathcal{E}\left(\varrho,\vartheta,\mathbf{u}\ \Big|\ r,\Theta,\mathbf{U}\right) \\ = \int_{\Omega}\left(\frac{1}{2}\varrho|\mathbf{u}-\mathbf{U}|^2 + H_{\Theta}(\varrho,\vartheta) - \frac{\partial H_{\Theta}(r,\Theta)}{\partial\varrho}(\varrho-r) - H_{\Theta}(r,\Theta)\right) \ \mathrm{d}x \end{split}$$

Ballistic free energy

$$H_{\Theta}(\varrho,\vartheta) = \varrho\Big(e(\varrho,\vartheta) - \Theta s(\varrho,\vartheta)\Big)$$

Coercivity of the ballistic free energy

 $\varrho \mapsto H_{\Theta}(\varrho, \Theta)$ strictly convex

 $\vartheta \mapsto H_{\Theta}(\varrho, \vartheta)$ decreasing for $\vartheta < \Theta$ and increasing for $\vartheta > \Theta$

▲ロト ▲母ト ▲目ト ▲目ト 三目 - のへで

Dissipative solutions

Relative entropy inequality

$$\begin{split} & \left[\mathcal{E}\left(\varrho,\vartheta,\mathbf{u}\Big|r,\Theta,\mathbf{U}\right)\right]_{t=0}^{\tau} \\ &+\int_{0}^{\tau}\int_{\Omega}\frac{\Theta}{\vartheta}\left(\mathbb{S}(\vartheta,\nabla_{x}\mathbf{u}):\nabla_{x}\mathbf{u}-\frac{\mathbf{q}(\vartheta,\nabla_{x}\vartheta)\cdot\nabla_{x}\vartheta}{\vartheta}\right)\,\mathrm{d}x\,\mathrm{d}t \\ &\leq\int_{0}^{\tau}\mathcal{R}(\varrho,\vartheta,\mathbf{u},r,\Theta,\mathbf{U})\,\mathrm{d}t \end{split}$$
 for any $r>0,\,\Theta>0,\,\mathbf{U}$ satisfying relevant boundary conditions

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Remainder ($f \equiv 0$)

$$\begin{aligned} \overline{\mathcal{R}(\varrho,\vartheta,\mathbf{u},r,\Theta,\mathbf{U})} \\ &= \int_{\Omega} \left(\varrho \Big(\partial_t \mathbf{U} + \mathbf{u} \cdot \nabla_x \mathbf{U} \Big) \cdot (\mathbf{U} - \mathbf{u}) + \mathbb{S}(\vartheta,\nabla_x \mathbf{u}) : \nabla_x \mathbf{U} \Big) \, \mathrm{d}x \\ &+ \int_{\Omega} \left[\Big(p(r,\Theta) - p(\varrho,\vartheta) \Big) \mathrm{div} \mathbf{U} + \frac{\varrho}{r} (\mathbf{U} - \mathbf{u}) \cdot \nabla_x p(r,\Theta) \right] \, \mathrm{d}x \\ &- \int_{\Omega} \Big(\varrho \Big(s(\varrho,\vartheta) - s(r,\Theta) \Big) \partial_t \Theta + \varrho \Big(s(\varrho,\vartheta) - s(r,\Theta) \Big) \mathbf{u} \cdot \nabla_x \Theta \\ &+ \frac{\mathbf{q}(\vartheta,\nabla_x \vartheta)}{\vartheta} \cdot \nabla_x \Theta \Big) \, \, \mathrm{d}x \\ &+ \int_{\Omega} \frac{r - \varrho}{r} \Big(\partial_t p(r,\Theta) + \mathbf{U} \cdot \nabla_x p(r,\Theta) \Big) \, \mathrm{d}x \end{aligned}$$

Weak solutions - state-of-art

Global existence in the viscous case

Global-in-time weak dissipative solutions of the **Navier-Stokes-Fourier system** exist for any finite energy initial data (under some hypotheses imposed on constitutive relations)

Compatibility

Regular weak solutions are strong solutions

Weak \Rightarrow dissipative

Weak solutions satisfy the relative entropy inequality

Weak-strong uniqueness

Weak (dissipative) and strong solutions emanating from the same (regular) initial data coincide as long as the latter exists. The strong solutions are unique in the class of weak solutions

Conditional regularity

Sufficient condition for regularity

Suppose that a dissipative weak solution to the Navier-Stokes-Fourier system emanating from regular initial data satisfies

 $\|\nabla_{x}\mathbf{u}\|_{L^{\infty}((0,T)\times\Omega)}<\infty.$

Then the solution is regular in (0, T).

Previously cited results are contained in joint publications with Bum Ja Jin [Muan], A. Novotný [Toulon], Y. Sun [Nanjing]

・ロン ・ 理 と ・ ヨ と ・ ヨ ・ うらぐ

Euler-Fourier system

Mass conservation

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$$

Momentum balance

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho \mathbf{u} \otimes \mathbf{u}) + \nabla_x(\varrho \vartheta) = \mathbf{0}$$

Internal energy balance

$$\frac{3}{2} \Big[\partial_t (\varrho \vartheta) + \operatorname{div}_{\mathsf{x}} (\varrho \vartheta \mathsf{u}) \Big] - \Delta \vartheta = - \varrho \vartheta \operatorname{div}_{\mathsf{x}} \mathsf{u}$$

System supplemented with spatially periodic boundary conditions

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Existence of weak solutions

Initial data

$$\varrho_0, \ \vartheta_0, \ \mathbf{u}_0 \in C^3, \ \varrho_0 > 0, \ \vartheta_0 > 0$$

Global existence

For any (smooth) initial data ρ_0 , ϑ_0 , \mathbf{u}_0 the Euler-Fourier system admits infinitely many weak solutions on a given time interval (0, T)

Regularity class

$$\varrho\in \textit{C}^2, \,\, \partial_t\vartheta, \,\, \nabla^2_x\vartheta \,\, \in \textit{L}^{\textit{p}} \,\, \text{for any} \,\, 1\leq \textit{p}<\infty$$

$$\mathbf{u} \in C_{\text{weak}}([0, T]; L^2) \cap L^{\infty}, \text{ div}_x \mathbf{u} \in C^1$$

Joint results with E.Chiodaroli (Zurich) and O.Kreml (Prague)

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Results of DeLellis and Shékelyhidi for the Euler system

Incompressible Euler system

$$\begin{aligned} \operatorname{div}_{x} \mathbf{v} &= \mathbf{0} \\ \partial_{t} \mathbf{v} + \operatorname{div}_{x} \left(\mathbf{v} \otimes \mathbf{v} \right) + \nabla_{x} \Pi &= \mathbf{0} \\ \mathbf{v}(\mathbf{0}, \cdot) &= \mathbf{v}_{0} \end{aligned}$$

Reformulation

$$\begin{split} \operatorname{div}_{\mathbf{x}} \mathbf{v} &= \mathbf{0} \\ \partial_t \mathbf{v} + \operatorname{div}_{\mathbf{x}} \mathbb{U} = \mathbf{0}, \ \mathbb{U} &= R_{\operatorname{sym},0}^{3 \times 3} \\ \mathbf{v}(\mathbf{0}, \cdot) &= \mathbf{v}(T, \cdot) = \mathbf{v}_0 \\ \mathbb{U} &= \mathbf{v} \otimes \mathbf{v} - \frac{1}{3} |\mathbf{v}|^2 \mathbb{I}, \ \Pi = -\frac{1}{3} |\mathbf{v}|^2 \end{split}$$

Prescribed energy

$$\frac{1}{2}|\mathbf{v}|^2(t,\cdot)=e(t,\cdot),\ t\in(0,T)$$

Construction via convex integration

The space of subsolutions

$$\begin{split} X_0 &= \left\{ \mathbf{v} \in C_{\text{weak}}([0, T]; L^2) \mid \mathbf{v}(0, \cdot) = \mathbf{v}(T, \cdot) = \mathbf{v}_0, \\ \operatorname{div}_x \mathbf{v} &= 0, \ \partial_t \mathbf{v} + \operatorname{div}_x \mathbb{U} = 0, \ \mathbf{v}, \ \mathbb{U} \text{ smooth in } (0, T) \\ \frac{3}{2} \lambda_{\max} \left[\mathbf{v} \times \mathbf{v} - \frac{1}{3} |\mathbf{v}|^2 \mathbb{I} - \mathbb{U} \right] < e - \frac{1}{2} |\mathbf{v}|^2 \text{ in } (0, T) \right\} \\ X &= \operatorname{closure}_{C_{\text{weak}}([0, T]; L^2)} X_0 \end{split}$$

Observations

1
$$e = \frac{1}{2} |\mathbf{v}|^2 \Rightarrow \mathbf{v} \times \mathbf{v} - \frac{1}{3} |\mathbf{v}|^2 \mathbb{I} = \mathbb{U}$$

2 e bounded $\Rightarrow \mathbf{v}, \mathbb{U}$ bounded in terms of e

Eduard Feireisl PDE's and fluid motion

◆□> ◆□> ◆三> ◆三> ・三> のへで

Existence of subsolutions

The space X_0 is non-empty. Take $\mathbf{v}_0 \in C^1$, $\operatorname{div}_x \mathbf{v}_0 = 0$, $\mathbb{U} \equiv 0$, *e large enough*

Oscillatory lemma

For any $\mathbf{v} \in X_0$, there exists a sequence $\{\mathbf{w}_n\}_{n=1}^{\infty}$ of smooth functions compactly supported in (0, T) such that $\mathbf{v} + \mathbf{w}_n \in X_0$,

 $\mathbf{w}_n \rightarrow 0$ in $C_{\text{weak}}([0, T]; L^2)$

$$\liminf_{n\to\infty}\int_0^T \|\mathbf{w}_n\|_{L^2}^2 \, \mathrm{d}t \ge c \left(\|\boldsymbol{e}\|_{L^\infty}\right) \int_0^T \int \left(\boldsymbol{e} - \frac{1}{2}|\boldsymbol{v}|^2\right)^2 \, \mathrm{d}t$$

Observations

Oscillatory lemma is "scale" invariant, therefore extendable to "variable coefficients"

2

$$\liminf_{n\to\infty}\int_0^T \|\mathbf{w}_n\|_{L^2}^2 \, \mathrm{d}t = \liminf_{n\to\infty}\int_0^T \left(\|\mathbf{v}+\mathbf{w}_n\|_{L^2}^2 - \|\mathbf{v}\|_{L^2}^2\right) \, \mathrm{d}t$$

000

イロト イヨト イヨト

Application of the convex integration method

$$e = e[\mathbf{v}] = \chi(t) - \frac{3}{2}\varrho\vartheta[\mathbf{v}] - \frac{3}{2}\partial_t\Psi$$

◆□> ◆□> ◆目> ◆目> ◆日> ● ● ●

Convex integration applied to Euler-Fourier system

I. Separation of the density

Fix the function ρ and the potential Ψ to satisfy the equation of continuity

$$\partial_t \varrho + \Delta \Psi = 0$$

II. Temperature

Given ρ , Ψ , and **v** solve

$$\frac{3}{2}\left(\partial_t(\varrho\vartheta) + \operatorname{div}_x\left(\vartheta(\mathbf{v} + \nabla_x\Psi)\right)\right) - \Delta\vartheta = -\varrho\vartheta\operatorname{div}_x\left(\frac{\mathbf{v} + \nabla_x\Psi}{\varrho}\right)$$

to obtain $\vartheta = \vartheta[\mathbf{v}]$ determined uniquely by \mathbf{v} . Use the entropy equation to observe that $\|\vartheta\|_{L^{\infty}}$ is bounded *independently* of \mathbf{v}

- 日本 - (理本 - 王本 - 王本) - 王本

III. Energy

Set

$$e[\mathbf{v}] = \chi(t) - \frac{3}{2}\varrho \vartheta[\mathbf{v}] - \frac{3}{2}\partial_t \Psi$$

and observe, using the parabolic regularity theory, that $\mathbf{v}\mapsto e$ is a compact functional in X_0

IV. Subsolutions

Define a space of subsolutions

$$\begin{split} X_0 &= \left\{ \mathbf{v} \in C_{\text{weak}}([0, T]; L^2) \ \middle| \ \mathbf{v}(0, \cdot) = \mathbf{v}(T, \cdot) = \mathbf{v}_0, \\ \operatorname{div}_x \mathbf{v} &= 0, \ \partial_t \mathbf{v} + \operatorname{div}_x \mathbb{U} = 0, \ \mathbf{v}, \ \mathbb{U} \text{ smooth in } (0, T) \\ \frac{3}{2} \lambda_{\max} \left[\frac{(\mathbf{v} + \nabla_x \Psi) \times (\mathbf{v} + \nabla_x \Psi)}{\varrho} - \frac{1}{3\varrho} |\mathbf{v} + \nabla_x \Psi|^2 \mathbb{I} - \mathbb{U} \right] \\ &< e[\mathbf{v}] - \frac{1}{2\varrho} |\mathbf{v} + \nabla_x \Psi|^2 \text{ in } (0, T) \Big\} \end{split}$$

<ロト < 同ト < 回ト < 回ト = 三日

V. Oscillatory lemma

Show a "variable coefficients" variant of the oscillatory lemma replacing

$$\mathbf{v} pprox rac{\mathbf{v} +
abla_x \Psi}{\sqrt{arrho}}$$

Eduard Feireisl PDE's and fluid motion

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Dissipative solutions to the Euler-Fourier system

Dissipative solutions

Dissipative solutions are weak solutions of the Euler-Fourier system satisfying, in addition, the relative entropy inequality. A dissipative solution coincides with the strong solution emanating from the same initial data (weak-strong uniqueness) as long as the latter exists.

Initial data

$$\varrho_0 \in C^2, \vartheta_0 \in C^2, \ \varrho_0 > 0, \ \vartheta_0 > 0$$

Infinitely many dissipative weak solutions

For any regular initial data ρ_0 , ϑ_0 , there exists a velocity field \mathbf{u}_0 such that the Euler-Fourier problem admits infinitely many dissipative weak solutions in (0, T)

イロト 不得 トイヨト イヨト 二日

Inviscid incompressible limits

Lecture II

- Singular limits for a compressible, viscous and/or heat conducting fluid equations
- Low Mach number limit
- B High Reynolds/Peclet number limit
- Methods based on relative entropy
- **5** Propagation of acoustic waves
- 6 Other effects: stratification

イロト 不得 トイヨト イヨト 二日

Scaled Navier-Stokes-Fourier system

Equation of continuity

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$$

Balance of momentum

$$\partial_{t}(\varrho \mathbf{u}) + \operatorname{div}_{x}(\varrho \mathbf{u} \otimes \mathbf{u}) + \boxed{\frac{1}{\varepsilon^{2}}} \nabla_{x} p(\varrho, \vartheta) = \boxed{\varepsilon^{\vartheta}} \operatorname{div}_{x} \mathbb{S}(\vartheta, \nabla_{x} \mathbf{u})$$
$$\mathbb{S}(\vartheta, \nabla_{x} \mathbf{u}) = \mu(\vartheta) \left(\nabla_{x} \mathbf{u} + \nabla_{x}^{t} \mathbf{u} - \frac{2}{3} \operatorname{div}_{x} \mathbf{u} \right) + \eta(\vartheta) \operatorname{div}_{x} \mathbf{u} \mathbb{I}, \ \mu > 0$$

Entropy production

$$\partial_{t}(\varrho \mathbf{s}(\varrho, \vartheta)) + \operatorname{div}_{\mathsf{x}}(\varrho \mathbf{s}(\varrho, \vartheta) \mathbf{u}) + \boxed{\varepsilon^{b}} \operatorname{div}_{\mathsf{x}}\left(\frac{\mathbf{q}(\vartheta, \nabla_{\mathsf{x}}\vartheta)}{\vartheta}\right)$$
$$= \frac{1}{\vartheta}\left(\boxed{\varepsilon^{2+s}} \mathbb{S}(\vartheta, \nabla_{\mathsf{x}}\mathbf{u}) : \nabla_{\mathsf{x}}\mathbf{u} - \boxed{\varepsilon^{b}} \frac{\mathbf{q}(\vartheta, \nabla_{\mathsf{x}}\vartheta) \cdot \nabla_{\mathsf{x}}\vartheta}{\vartheta}\right)$$
$$\mathbf{q}(\vartheta, \nabla_{\mathsf{x}}\vartheta) = -\kappa(\vartheta)\nabla_{\mathsf{x}}\vartheta, \ \kappa > 0$$

Boundary conditions

Complete slip condition

$$\mathbf{u}\cdot\mathbf{n}|_{\partial\Omega}=\mathbf{0},~[\mathbb{S}\mathbf{n}]\times\mathbf{n}|_{\partial\Omega}=\mathbf{0}$$

No flux

$${\boldsymbol{q}}\cdot{\boldsymbol{n}}|_{\partial\Omega}=0$$

Far-field conditions

$$\mathbf{u} o \mathbf{0}, \ \varrho o \overline{\varrho} > \mathbf{0}, \ \vartheta o \overline{\vartheta} > \mathbf{0} \ \text{as} \ |\mathbf{x}| o \infty$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Scaled relative entropy

Relative entropy functional

$$\begin{split} \mathcal{E}_{\varepsilon}\left(\varrho,\vartheta,\mathbf{u}\ \Big|\ r,\Theta,\mathbf{U}\right) \\ = \int_{\Omega}\left[\frac{1}{2}\varrho|\mathbf{u}-\mathbf{U}|^{2} + \frac{1}{\varepsilon^{2}}\left(H_{\Theta}(\varrho,\vartheta) - \frac{\partial H_{\Theta}(r,\Theta)}{\partial\varrho}(\varrho-r) - H_{\Theta}(r,\Theta)\right)\right] \ \mathrm{d}x \end{split}$$

Ballistic free energy

$$H_{\Theta}(\varrho, \vartheta) = \varrho\Big(e(\varrho, \vartheta) - \Theta s(\varrho, \vartheta)\Big)$$

Coercivity of the ballistic free energy

 $\rho \mapsto H_{\Theta}(\rho, \Theta)$ strictly convex

 $\vartheta \mapsto H_{\Theta}(\varrho, \vartheta)$ decreasing for $\vartheta < \Theta$ and increasing for $\vartheta > \Theta$

Eduard Feireisl

PDE's and fluid motion

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Scaled relative entropy inequality

Relative entropy inequality

$$\begin{split} & \left[\mathcal{E}_{\varepsilon} \left(\varrho, \vartheta, \mathbf{u} \middle| r, \Theta, \mathbf{U} \right) \right]_{t=0}^{\tau} \\ + \int_{0}^{\tau} \int_{\Omega} \frac{\Theta}{\vartheta} \left(\varepsilon^{\alpha} \mathbb{S}(\vartheta, \nabla_{x} \mathbf{u}) : \nabla_{x} \mathbf{u} - \varepsilon^{\beta-2} \frac{\mathbf{q}(\vartheta, \nabla_{x} \vartheta) \cdot \nabla_{x} \vartheta}{\vartheta} \right) \, \mathrm{d}x \, \mathrm{d}t \\ & \leq \int_{0}^{\tau} \mathcal{R}_{\varepsilon}(\varrho, \vartheta, \mathbf{u}, r, \Theta, \mathbf{U}) \, \mathrm{d}t \end{split}$$

for any r > 0, $\Theta > 0$, **U** satisfying relevant boundary conditions

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Uniform bounds

The uniform bounds independent of ε are obtained by means of the choice

$$r = \overline{\varrho}, \ \Theta = \overline{\vartheta}, \ \mathbf{U} = \mathbf{0}$$

in the relative entropy inequality

Uniform bounds for ill-prepared data

$$\begin{split} & \mathrm{ess}\sup_{t\in(0,T)} \left\| \frac{\varrho_{\varepsilon}-\overline{\varrho}}{\varepsilon} \right\|_{L^{2}+L^{q}(\Omega)} \leq c \text{ for some } 1 < q < 2 \\ & \mathrm{ess}\sup_{t\in(0,T)} \left\| \frac{\vartheta_{\varepsilon}-\overline{\vartheta}}{\varepsilon} \right\|_{L^{2}(\Omega)} \leq c, \\ & \mathrm{ess}\sup_{t\in(0,T)} \|\sqrt{\varrho}\mathbf{u}_{\varepsilon}\|_{L^{2}(\Omega;R^{3})} \leq c \end{split}$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Prepared data

Ill-prepared data

$$\varrho(0,\cdot) = \overline{\varrho} + \varepsilon \varrho_{0,\varepsilon}^{(1)}, \ \varrho_{0,\varepsilon}^{(1)} o \varrho_{0}^{(1)} \text{ in } L^{2}(\Omega) \text{ and weakly-(*) in } L^{\infty}(\Omega)$$

$$\vartheta(0,\cdot) = \overline{\vartheta} + \varepsilon \vartheta_{0,\varepsilon}^{(1)}, \ \vartheta_{0,\varepsilon}^{(1)} o \vartheta_0^{(1)} \text{ in } L^2(\Omega) \text{ and weakly-(*) in } L^\infty(\Omega)$$

$$\mathbf{u}(0,\cdot)=\mathbf{u}_{0,\varepsilon}\rightarrow\mathbf{u}_{0} \text{ in } L^{2}(\Omega;R^{3}), \ \mathbf{v}_{0}=\mathbf{H}[\mathbf{u}_{0}]\in\mathcal{W}^{k,2}(\Omega;R^{3}), \ k>\frac{5}{2}$$

Convergence

Hypotheses

$$b > 0, \ 0 < a < \frac{10}{3}$$

Convergence

θ

$$\begin{split} & \mathrm{ess} \sup_{t \in (0,T)} \parallel \varrho_{\varepsilon}(t, \cdot) - \overline{\varrho} \parallel_{L^{2} + L^{q}(\Omega)} \leq \varepsilon c \\ & \sqrt{\varrho_{\varepsilon}} \mathbf{u}_{\varepsilon} \to \sqrt{\overline{\varrho}} \mathbf{v} \text{ in } \boxed{L^{\infty}_{\mathrm{loc}}((0,T]; L^{2}_{\mathrm{loc}}(\Omega; R^{3}))} \\ & \text{ and weakly-(*) in } L^{\infty}(0,T; L^{2}(\Omega; R^{3})) \\ & \frac{\varepsilon - \overline{\vartheta}}{\varepsilon} \to T \text{ in } \boxed{L^{\infty}_{\mathrm{loc}}((0,T]; L^{s}_{\mathrm{loc}}(\Omega; R^{3})), \ 1 \leq s < 2}, \\ & \text{ and weakly-(*) in } L^{\infty}(0,T; L^{2}(\Omega)) \end{split}$$

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ○臣 ○ のへで

Target system

incompressibility $\operatorname{div}_{x} \mathbf{v} = \mathbf{0}, \ \mathbf{v} \cdot \mathbf{n}|_{\partial \Omega} = \mathbf{0}$ Euler system $\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla_x \mathbf{v} + \nabla_x \Pi = 0$ Temperature transport $\partial_t T + \mathbf{v} \cdot \nabla_x T = 0$ **Basic assumption** The incompressible Euler system possesses a strong solution \mathbf{v} on a time interval $(0, T_{\text{max}})$ for the initial data $\mathbf{v}_0 = \mathbf{H}[\mathbf{u}_0]$.

イロト 不得 トイヨト イヨト 一日 うらつ

Linearization

Acoustic equation

$$\varepsilon \partial_t \left(\frac{\varrho_{\varepsilon} - \overline{\varrho}}{\varepsilon} \right) + \operatorname{div}_x(\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}) = 0$$

$$\varepsilon \partial_t (\varrho_\varepsilon \mathbf{u}_\varepsilon) + \nabla_x \left(\partial_\varrho p(\overline{\varrho}, \overline{\vartheta}) \underbrace{\frac{\varrho_\varepsilon - \overline{\varrho}}{\varepsilon}}_{\varepsilon} + \partial_\vartheta p(\overline{\varrho}, \overline{\vartheta}) \underbrace{\frac{\vartheta_\varepsilon - \overline{\vartheta}}{\varepsilon}}_{\varepsilon} \right) = \varepsilon \mathbf{f}_1$$

Transport equation

$$\partial_{t} \left(\overline{\varrho} \partial_{\vartheta} \boldsymbol{s}(\overline{\varrho}, \overline{\vartheta}) \boxed{\frac{\vartheta_{\varepsilon} - \overline{\vartheta}}{\varepsilon}} + \overline{\varrho} \partial_{\varrho} \boldsymbol{s}(\overline{\varrho}, \overline{\vartheta}) \boxed{\frac{\varrho_{\varepsilon} - \overline{\varrho}}{\varepsilon}} \right)$$
$$+ \operatorname{div}_{x} \left[\left(\overline{\varrho} \partial_{\vartheta} \boldsymbol{s}(\overline{\varrho}, \overline{\vartheta}) \boxed{\frac{\vartheta_{\varepsilon} - \overline{\vartheta}}{\varepsilon}} + \overline{\varrho} \partial_{\varrho} \boldsymbol{s}(\overline{\varrho}, \overline{\vartheta}) \boxed{\frac{\varrho_{\varepsilon} - \overline{\varrho}}{\varepsilon}} \right) \mathbf{u}_{\varepsilon} \right] = \varepsilon f_{2}$$

Eduard Feireisl

PDE's and fluid motion

Stability

Another application of the relative entropy inequality

Take

$$r_{\varepsilon} = \overline{\varrho} + \varepsilon R_{\varepsilon}, \ \Theta_{\varepsilon} = \overline{\vartheta} + \varepsilon \mathcal{T}_{\varepsilon}, \ \mathbf{U}_{\varepsilon} = \mathbf{v} + \nabla_{x} \Phi_{\varepsilon}$$

as test functions in the relative entropy inequality

Acoustic equation

$$\varepsilon \partial_t (\alpha R_\varepsilon + \beta \mathcal{T}_\varepsilon) + \omega \Delta \Phi_\varepsilon = 0$$

$$\varepsilon \partial_t \nabla_x \Phi_\varepsilon + \nabla_x (\alpha R_\varepsilon + \beta T_\varepsilon) = 0$$

Transport equation

$$\partial_t (\delta \mathcal{T}_{\varepsilon} - \beta R_{\varepsilon}) + \mathbf{U}_{\varepsilon} \cdot \nabla_x (\delta \mathcal{T}_{\varepsilon} - \beta R_{\varepsilon}) + (\delta \mathcal{T}_{\varepsilon} - \beta R_{\varepsilon}) \mathrm{div}_x \mathbf{U}_{\varepsilon} = 0$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Lighthill's acoustic equation

Wave equation

$$\varepsilon \partial_t Z + \Delta \Phi = 0, \ \varepsilon \partial_t \Phi + Z = 0,$$

Neumann boundary condition

$$\nabla_x \mathbf{\Phi} \cdot \mathbf{n}|_{\partial \Omega} = \mathbf{0},$$

Initial conditions

$$\Phi(0\cdot) = \Phi_0, \ \nabla_x \Phi_0 \approx \mathbf{H}^{\perp}[\mathbf{u}_0]$$
$$Z(0, \cdot) = Z_0 \approx \alpha \varrho_0^{(1)} + \beta \vartheta_0^{(1)}$$

Solution formula

Acoustic potential

$$egin{aligned} \Phi(t,\cdot) &= rac{1}{2} \exp\left(\mathrm{i}\sqrt{-\Delta_N}rac{t}{arepsilon}
ight) \left[\Phi_0 - rac{\mathrm{i}}{\sqrt{-\Delta_N}}Z_0
ight] \ &+ rac{1}{2} \exp\left(-\mathrm{i}\sqrt{-\Delta_N}rac{t}{arepsilon}
ight) \left[\Phi_0 + rac{\mathrm{i}}{\sqrt{-\Delta_N}}Z_0
ight] \end{aligned}$$

Time derivative

$$Z(t, \cdot) = \frac{1}{2} \exp\left(i\sqrt{-\Delta_N}\frac{t}{\varepsilon}\right) \left[i\sqrt{-\Delta_N}[\Phi_0] + Z_0\right] \\ + \frac{1}{2} \exp\left(-i\sqrt{-\Delta_N}\frac{t}{\varepsilon}\right) \left[-i\sqrt{-\Delta_N}[\Phi_0] + Z_0\right]$$

▲ロト ▲御ト ▲注ト ▲注ト 三注 のへで

Strichartz estimates

$$\begin{split} \int_{-\infty}^{\infty} \left\| \exp\left(\pm \mathrm{i}\sqrt{-\Delta}t\right) [h] \right\|_{L^q(R^3)}^p \, \mathrm{d}t &\leq \|h\|_{H^{1,2}(R^3)}^p \\ \frac{1}{2} &= \frac{1}{p} + \frac{3}{q}, \ q < \infty \end{split}$$

Local energy decay

$$\begin{split} \int_{-\infty}^{\infty} \left\| \chi \exp\left(\pm \mathrm{i}\sqrt{-\Delta}t\right) [h] \right\|_{H^{\alpha,2}(R^3)}^2 \, \mathrm{d}t &\leq c(\chi) \|h\|_{H^{\alpha,2}(R^3)}^2 \\ \alpha &\leq \frac{3}{2}, \ \chi \in \mathit{C}^{\infty}_{c}(R^3) \end{split}$$

イロト 不得 トイヨト イヨト 一日 うらつ

Limiting absorption principle

Limiting absorption principle

The cut-off resolvent operator

$$(1+|x|^2)^{-s/2}\circ [-\Delta_N-\mu\pm \mathrm{i}\delta]^{-1}\circ (1+|x|^2)^{-s/2},\ \delta>0,\ s>1$$

can be extended as a bounded linear operator on $L^2(\Omega)$ for $\delta \to 0$ and μ belonging to compact subintervals of $(0, \infty)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Kato's theorem

Theorem

Let A be a closed densely defined linear operator and H a self-adjoint densely defined linear operator in a Hilbert space X. For $\lambda \notin R$, let $R_H[\lambda] = (H - \lambda Id)^{-1}$ denote the resolvent of H. Suppose that

$$\Gamma = \sup_{\lambda \notin R, \ v \in \mathcal{D}(A^*), \ \|v\|_X = 1} \|A \circ R_H[\lambda] \circ A^*[v]\|_X < \infty.$$

Then

$$\sup_{w\in X, \|w\|_{X}=1} \frac{\pi}{2} \int_{-\infty}^{\infty} \|A\exp(-\mathrm{i} tH)[w]\|_{X}^{2} \mathrm{d} t \leq \Gamma^{2}.$$

Frequency localized energy decay

$$\begin{split} \int_{-\infty}^{\infty} \left\| \chi \mathcal{G}(\sqrt{-\Delta_N}) \exp\left(\pm \mathrm{i}\sqrt{-\Delta_N}t\right) [h] \right\|_{H^{\alpha,2}(\Omega)}^2 \, \mathrm{d}t &\leq c(\chi) \|h\|_{L^2(\Omega)}^2 \\ \chi &\in C_c^{\infty}(\Omega), \, \, \mathcal{G} \in C_c^{\infty}(0,\infty) \end{split}$$

Admissible domains

Limiting absorption principle

The operator Δ_N satisfies the limiting absorption principle in Ω

Strichartz estimates on "larger" domain

There is a domain such that $D \cap \{|x| > R\} = \Omega \cap \{|x| > R\}$ and Δ_N satisfies the Strichartz estimates in D

Local decay on "larger" domain

The operator Δ_N satisfies the local energy decay estimates in D

Frequency localized Strichartz estimates

$$\begin{split} \int_{-\infty}^{\infty} \left\| G(-\Delta_N) \exp\left(\pm \mathrm{i} \sqrt{-\Delta_N} t\right) [h] \right\|_{L^q(\Omega)}^p &\leq c(G) \|h\|_{L^2(\Omega)}^p \\ \frac{1}{2} &= \frac{1}{p} + \frac{3}{q}, \ q < \infty, \ G \in C_c^{\infty}(0,\infty) \end{split}$$

Rotating fluids

Lecture III

- Compressible viscous fluid description in the rotating frame
- Low Mach number limit
- High Reynolds/Peclet number limit
- 4 High Rossby number limit
- 5 Poincaré waves
- 6 Analysis of oscillations in particular geometries

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Scaled Navier-Stokes system

Continuity equation

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$$

Momentum equation

$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho \mathbf{u} \otimes \mathbf{u}) + \boxed{\frac{1}{\varepsilon}} \varrho \mathbf{f} \times \mathbf{u} + \boxed{\frac{1}{\varepsilon^{2m}}} \nabla_x p(\varrho)$$
$$= \boxed{\varepsilon^{\alpha}} \operatorname{div}_x \mathbb{S}(\nabla_x \mathbf{u}) + \boxed{\frac{1}{\varepsilon^{2n}}} \varrho \nabla_x G$$

Newtonian viscous stress

$$\mathbb{S}(\nabla_{\mathbf{x}}\mathbf{u}) = \mu \left(\nabla_{\mathbf{x}}\mathbf{u} + \nabla_{\mathbf{x}}^{t}\mathbf{u} - \frac{2}{3}\mathrm{div}_{\mathbf{x}}\mathbf{u}\mathbb{I}\right) + \eta \mathrm{div}_{\mathbf{x}}\mathbf{u}\mathbb{I}, \ \mu > 0$$

f-plane approximation

$$\mathbf{f} = [0, 0, 1], \ \nabla_x G = [0, 0, -1]$$

590

Spatial domain and boundary conditions

Infinite slab $\Omega = R^2 \times (0,1)$ Complete slip boundary conditions $\mathbf{u} \cdot \mathbf{n} = u_3|_{\partial\Omega} = 0, \ [\mathbb{S} \cdot \mathbf{n}]_{\tan}|_{\partial\Omega} = 0$ Far field conditions $\rho \to \tilde{\rho_{\varepsilon}}, \ \mathbf{u} \to \mathbf{0} \ \mathrm{as} \ |x| \to \infty$ Static density distribution $\nabla_{x} p(\tilde{\rho_{\varepsilon}}) = \varepsilon^{2(m-n)} \tilde{\rho_{\varepsilon}} \nabla_{x} G, \ \tilde{\rho_{\varepsilon}} \to 1 \text{ as } \varepsilon \to 0$

イロト 不得 トイヨト イヨト 一日 うらつ

Singular limits

Low Mach number									
Mach number $\approx \varepsilon^m$:									
$compressible\ o incompressible$									
Low Rossby number									
Rossby number $\approx \varepsilon$:									
3D flow \rightarrow 2D flow									
High Reynolds number									
Reynolds number $\approx \varepsilon^{-\alpha}$:									
viscous (Navier-Stokes) \rightarrow inviscid (Euler)									
Low stratification									
$\frac{m}{2} > n \ge 1$									
Eduard Feireisl PDE's and fluid motion									

500

Uniform bounds

Energy inequality

$$\begin{split} \int_{\Omega} \left[\frac{1}{2} \varrho |\mathbf{u}|^2 + \frac{1}{\varepsilon^{2m}} \left(H(\varrho) - H'(\tilde{\varrho_{\varepsilon}})(\varrho - \tilde{\varrho_{\varepsilon}}) - H(\tilde{\varrho_{\varepsilon}}) \right) \right] (\tau, \cdot) \, \mathrm{d}x \\ + \varepsilon^{\alpha} \int_{0}^{\tau} \int_{\Omega} \mathbb{S}(\nabla_{x} \mathbf{u}) : \nabla_{x} \mathbf{u} \, \mathrm{d}x \, \mathrm{d}t \\ \leq \int_{\Omega} \left[\frac{1}{2} \varrho_{0,\varepsilon} |\mathbf{u}_{0,\varepsilon}|^2 + \frac{1}{\varepsilon^{2m}} \left(H(\varrho_{0,\varepsilon}) - H'(\tilde{\varrho_{\varepsilon}})(\varrho_{0,\varepsilon} - \tilde{\varrho_{\varepsilon}}) - H(\tilde{\varrho_{\varepsilon}}) \right) \right] \, \mathrm{d}x \\ H(\varrho) = \varrho \int_{1}^{\varrho} \frac{p(z)}{z^2} \, \mathrm{d}z, \ p(\varrho) \approx \mathsf{a}\varrho^{\gamma}, \ \gamma > \frac{3}{2} \end{split}$$

Ill-prepared initial data

$$\begin{split} \varrho_{0,\varepsilon} &= \tilde{\varrho_{\varepsilon}} + \varepsilon^{m} \varrho_{0,\varepsilon}^{(1)}, \ \varrho_{0,\varepsilon}^{(1)} \to \varrho_{0}^{(1)} \text{ in } L^{2}(\Omega), \ \|\varrho_{0,\varepsilon}^{(1)}\|_{L^{\infty}} \leq c, \\ & \mathbf{u}_{0,\varepsilon} \to \mathbf{u}_{0} \text{ in } L^{2}(\Omega; R^{3}) \end{split}$$

Eduard Feireisl

イロン 人間 とくほど 不足とし 田

Limit system

Limit density deviation

$$\mathrm{ess}\sup_{t\in(0,T)}\|\varrho_{\varepsilon}(t,\cdot)-1\|_{L^{\gamma}_{\mathrm{loc}}(\Omega)}\leq\varepsilon^{m}c$$

Limit velocity

$$\begin{split} \sqrt{\varrho_{\varepsilon}} \mathbf{u}_{\varepsilon} \to \mathbf{v} \left\{ \begin{array}{l} \text{weakly-(*) in } L^{\infty}(0,\,T;\,L^{2}(\Omega;\,R^{3})), \\ \\ \\ \hline \\ \text{strongly in } L^{1}_{\text{loc}}((0,\,T)\times\Omega;\,R^{3}) \end{array} \right\}, \end{split}$$

Euler system

$$\begin{aligned} \partial_t \mathbf{v} + \mathbf{v} \cdot \nabla_x \mathbf{v} + \nabla_x \Pi &= 0 \text{ in } (0, T) \times R^2 \\ \mathbf{v}_0 &= \mathbf{H} \left[\int_0^1 \mathbf{u}_0 \, \mathrm{d}x_3 \right] \end{aligned}$$

Eduard Feireisl

(日) (間) (注) (日) (日)

Relative entropy inequality

Relative entropy

$$\begin{split} \mathcal{E}_{\varepsilon}\left[\varrho,\mathbf{u}\Big|r,\mathbf{U}\right]\\ = \int_{\Omega}\left[\frac{1}{2}\varrho|\mathbf{u}-\mathbf{U}|^{2} + \frac{1}{\varepsilon^{2m}}\Big(H(\varrho) - H'(r)(\varrho-r) - H(r)\Big)\right] \,\mathrm{d}x \end{split}$$

Relative entropy inequality

$$\begin{split} \mathcal{E}_{\varepsilon}\left(\varrho,\mathbf{u}\ \middle|\ r,\mathbf{U}\right)(\tau) + \varepsilon^{\alpha} \int_{0}^{\tau} \int_{\Omega} \left(\mathbb{S}(\nabla_{x}\mathbf{u}) - \mathbb{S}(\nabla_{x}\mathbf{U})\right) : \left(\nabla_{x}\mathbf{u} - \nabla_{x}\mathbf{U}\right) \,\mathrm{d}x \,\mathrm{d}t \\ & \leq \mathcal{E}_{\varepsilon}\left(\varrho_{0,\varepsilon},\mathbf{u}_{0,\varepsilon}\ \middle|\ r(0,\cdot),\mathbf{U}(0,\cdot)\right) + \int_{0}^{\tau} \int_{\Omega} \mathcal{R}(\varrho,\mathbf{u},r,\mathbf{U}) \,\mathrm{d}x \,\mathrm{d}t \end{split}$$

Test functions

$$r>0, \; \mathbf{U}\cdot\mathbf{n}|_{\partial\Omega}=0,\; (r- ilde{arrho_arepsilon})
ightarrow 0,\; \mathbf{U}
ightarrow 0$$
 as $|x|
ightarrow\infty$

Remainder

$$\begin{split} \int_0^\tau \int_\Omega \mathcal{R}(\varrho, \mathbf{u}, r, \mathbf{U}) \, \mathrm{d}x \, \mathrm{d}t \\ &= \int_0^\tau \int_\Omega \varrho \left(\partial_t \mathbf{U} + \mathbf{u} \cdot \nabla_x \mathbf{U} \right) \cdot \left(\mathbf{U} - \mathbf{u} \right) \, \mathrm{d}x \, \mathrm{d}t \\ &+ \varepsilon^\alpha \int_0^\tau \int_\Omega \mathbb{S}(\nabla_x \mathbf{U}) : \nabla_x (\mathbf{U} - \mathbf{u}) \, \mathrm{d}x \, \mathrm{d}t + \frac{1}{\varepsilon} \int_0^\tau \int_\Omega \varrho(\mathbf{f} \times \mathbf{u}) \cdot (\mathbf{U} - \mathbf{u}) \, \mathrm{d}x \, \mathrm{d}t \\ &+ \frac{1}{\varepsilon^{2m}} \int_0^\tau \int_\Omega \left[(r - \varrho) \partial_t H'(r) + \nabla_x \left(H'(r) - H'(\tilde{\varrho_\varepsilon}) \right) \cdot (r\mathbf{U} - \varrho \mathbf{u}) \right] \, \mathrm{d}x \, \mathrm{d}t \\ &- \frac{1}{\varepsilon^{2m}} \int_0^\tau \int_\Omega \operatorname{div}_x \mathbf{U} \left(p(\varrho) - p(r) \right) \, \mathrm{d}x \, \mathrm{d}t + \frac{1}{\varepsilon^{2n}} \int_0^\tau \int_\Omega (\varrho - r) \nabla_x G \cdot \mathbf{U} \, \mathrm{d}x \, \mathrm{d}t \end{split}$$

Eduard Feireisl PDE's and fluid motion

Reformulation

Decomposition

$$r_{\varepsilon} = \frac{\varrho_{\varepsilon} - 1}{\varepsilon^m} = q_{\varepsilon} + s_{\varepsilon}, \ \varrho_{\varepsilon} \mathbf{u}_{\varepsilon} = \mathbf{v}_{\varepsilon} + \mathbf{V}_{\varepsilon}$$

$[q_{arepsilon}, \mathbf{v}_{arepsilon}]$		 non-oscillatory component
$[s_{\varepsilon}, V_{\varepsilon}]$]	 oscillatory component

"Acoustic analogy" - Poincaré waves

$$\varepsilon^{m} \partial_{t} \left[\frac{\varrho_{\varepsilon} - 1}{\varepsilon^{m}} \right] + \operatorname{div}_{x} [\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}] = \mathbf{0}$$
$$\varepsilon^{m} \partial_{t} [\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}] + \varepsilon^{m-1} \mathbf{f} \times [\varrho_{\varepsilon} \mathbf{u}_{\varepsilon}] + \nabla_{x} \left[\frac{\varrho_{\varepsilon} - 1}{\varepsilon^{m}} \right] = \varepsilon \mathbf{f}$$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Test function ansatz

Density deviation $r = \tilde{\varrho_{\varepsilon}} + \varepsilon^{m}(q_{\varepsilon} + s_{\varepsilon})$ Velocity decomposition $U = v_{\varepsilon} + V_{\varepsilon}$ Initial data $\varrho_{0,\varepsilon}^{(1)} = (q_{\varepsilon} + s_{\varepsilon})(0, \cdot), \ u_{0,\varepsilon} = (v_{\varepsilon} + V_{\varepsilon})(0, \cdot)$

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Non-oscillatory - Euler system

Diagnostic equation

$$\omega \mathbf{f} \times \mathbf{v}_{\varepsilon} + \nabla_{\mathbf{x}} q_{\varepsilon} = 0, \ \omega = \varepsilon^{m-1}$$
$$\omega \text{curl} \mathbf{v} = -\Delta q_{\varepsilon}$$

Perturbed Euler system

$$\partial_t \left(\Delta q_{\varepsilon} - \omega^2 q_{\varepsilon}
ight) - rac{1}{\omega}
abla^t q_{\varepsilon} \cdot
abla \left(\Delta q_{\varepsilon} - \omega^2 q_{\varepsilon}
ight) = 0$$

Initial data

$$\left(\Delta q_{\varepsilon} - \omega^2 q_{\varepsilon}\right)(\mathbf{0}, \cdot) = \omega \operatorname{curl}\left[\int_0^1 \mathbf{u}_{\mathbf{0}, \varepsilon} \, \mathrm{d}x_3\right] - \omega^2 \int_0^1 \varrho_{\mathbf{0}, \varepsilon} \, \mathrm{d}x_3$$

◆□> ◆□> ◆三> ◆三> ・三> のへで

Oscillatory - vanishing part

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Fourier representation

Poincaré waves

$$\varepsilon^{m}\partial_{t}\left[\begin{array}{c} s_{\varepsilon}(\xi,k,\omega)\\ \mathbf{V}_{\varepsilon}(\xi,k,\omega) \end{array}\right] = \mathrm{i}\mathcal{A}(\xi,k,\omega)\left[\begin{array}{c} s_{\varepsilon}(\xi,k,\omega)\\ \mathbf{V}_{\varepsilon}(\xi,k,\omega) \end{array}\right]$$

Hermitian matrix

$$\mathrm{i}\mathcal{B}(\omega) \approx \mathcal{A}(\xi, k, \omega) = \begin{bmatrix} 0 & \xi_1 & \xi_2 & k \\ \xi_1 & 0 & \omega \mathrm{i} & 0 \\ \xi_2 & -\omega \mathrm{i} & 0 & 0 \\ k & 0 & 0 & 0 \end{bmatrix}$$

Eigenvalues

$$\lambda_{1,2}(\xi,k,\omega) = \pm \left[\frac{\omega^2 + |\xi|^2 + k^2 + \sqrt{(\omega^2 + |\xi|^2 + k^2)^2 - 4\omega^2 k^2}}{2}\right]^{1/2}$$

$$\lambda_{3,4}(\xi,k,\omega) = \pm \left[\frac{\omega^2 + |\xi|^2 + k^2 - \sqrt{(\omega^2 + |\xi|^2 + k^2)^2 - 4\omega^2 k^2}}{2}\right]^{1/2}$$

Eduard Feireisl

PDE's and fluid motion

Fourier analysis

Frequency cut-off

k fixed,
$$\psi \in C_c^{\infty}(0,\infty), \ 0 \leq \psi \leq 1$$

$$Z(au, x_h, k, \omega) = \mathcal{F}_{\xi o x_h}^{-1} \left[\exp \left(\pm \mathrm{i} \lambda_j(|\xi|, k, \omega) au
ight) \psi(|\xi|) \hat{h}(\xi)
ight], \; au = t/arepsilon^n$$

Fourier transform of radially symmetric function

$$\begin{split} \|Z(\tau t, \cdot, k, \omega)\|_{L^{\infty}(R^{2})} \\ \leq \left\| \mathcal{F}_{\xi \to x_{h}}^{-1} \left[\exp\left(\pm i\lambda_{j}(|\xi|, k, \omega)\tau \right) \psi(|\xi|) \right] \right\|_{L^{\infty}(R^{2})} \|h\|_{L^{1}(R^{2})} \\ \mathcal{F}_{\xi \to x_{h}}^{-1} \left[\exp\left(\pm i\lambda_{j}(|\xi|, k, \omega)\tau \right) \psi(|\xi|) \right] (x_{h}) \\ = \int_{0}^{\infty} \exp\left(\pm i\lambda_{j}(r, k, \omega)\tau \right) \psi(r) r J_{0}(r|x_{h}|) \, \mathrm{d}r, \end{split}$$

van Corput's lemma

Lemma

Let $\Lambda = \Lambda(z)$ be a smooth function away from the origin,

 $\partial_z \Lambda(z)$ monotone, $|\partial_z \Lambda(z)| \ge \Lambda_0 > 0$

for all $z \in [a,b], \, 0 < a < b < \infty.$ Let Φ be a smooth function on [a,b]. Then

$$\left|\int_{a}^{b}\exp\left(\mathrm{i}\Lambda(z)\tau\right)\Phi(z)\,\,\mathrm{d}z\right|\leq c\frac{1}{\tau\Lambda_{0}}\left[\left|\Phi(b)\right|+\int_{a}^{b}\left|\partial_{z}\Phi(z)\right|\,\,\mathrm{d}z\right],$$

where c is an absolute constant independent of the specific shape Λ and $\Phi.$

イロト 不得 トイヨト イヨト 一日 うらつ

Decay estimates

$L^{p} - L^{q}$ estimates

$$\begin{split} \|Z(au, \cdot, k, \omega)\|_{L^p(R^2)} &\leq c(\psi, p, k) \max\left\{rac{1}{\omega au^{1-eta/2}}; rac{1}{ au^{eta/2}}
ight\}^{1-rac{2}{p}} \|h\|_{L^{p'}(R^2)} \ & ext{for } p \geq 2, \; rac{1}{p} + rac{1}{p'} = 1, \; eta > 0, \; \lambda_j
eq 0. \end{split}$$

Scaling

$$\omega \approx \varepsilon^{m-1}, \ \tau \approx t/\varepsilon^m$$

Dispersive decay

$$\left\| Z\left(\frac{t}{\varepsilon^{m}}, \cdot, k, \omega\right) \right\|_{L^{p}(R^{2})} \leq c \ \varepsilon^{\frac{1}{2} - \frac{1}{p}} \max\left\{ \frac{1}{t^{1-1/2m}}; \frac{1}{t^{1/2m}} \right\}^{1 - \frac{2}{p}} \|h\|_{L^{p'}(R^{2})}$$