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Thermal systems in equilibrium:
State variables: %, ϑ
Thermodynamic functions: internal energy e = e(%, ϑ), pressure
p = p(%, ϑ), entropy s = s(%, ϑ)

the entropy s can be viewed as an increasing function of the total
energy e,

∂s

∂e
=

1

ϑ
> 0

maximization of the total entropy

S =

∫
%s dx

over the set of all allowable states of the system yields the
equilibrium state provided the system is mechanically and thermally
insulated

(Third law of thermodynamics) the entropy tends to zero when
the absolute temperature tends to zero

the entropy remains constant in those processes, where the material
responds elastically
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Gibbs’ equation and thermodynamic stability:

Gibbs’ equation:

ϑDs(%, ϑ) = De(%, ϑ) + p(%, ϑ)D

(
1

%

)

Hypothesis of thermodynamic stability:

∂p(%, ϑ)

∂%
> 0

∂e(%, ϑ)

∂ϑ
> 0

for any %, ϑ > 0
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Balance laws:

Balance law (weak form):

∫ T

0

∫
Ω

(
d(t, x)∂tϕ(t, x) + F(t, x) · ∇xϕ(t, x)

)
dx dt+ < s;ϕ >

= −
∫

Ω

d0(x)ϕ(0, x) dx +

∫ T

0

∫
∂Ω

Fb(x)ϕ(t, x) dSx dt

for any test function ϕ ∈ C∞c ([0,T )× Ω)
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Balance law (strong form):

∂td + divxF = s in (0,T )× Ω, d(0, ·) = d0, F · n|∂Ω = Fb
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Navier-Stokes-Fourier system:

Equation of continuity:

∂t% + divx(%u) = 0

Momentum equation:

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS + %∇xF

Entropy equation:

∂t(%s) + divx(%su) + divx

(q

ϑ

)
=

1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
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Boundary conditions:

Complete slip:

u · n|∂Ω = 0, [Sn]× n|∂Ω = 0

No-slip:

u|∂Ω = 0

No energy flux:

q · n|∂Ω = 0
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Diffusion flux, transport coefficients:

Newton’s rheological law:

S = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI,

with the shear viscosity coefficient µ and the bulk viscosity coefficient
η

Fourier’s law:

q = −κ∇xϑ,

where κ is the heat conductivity coefficient
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Energetically closed systems

p = p(%, ϑ), e = e(%, ϑ), s = s(%, ϑ) are given functions satisfying
Gibbs’ equation and hypothesis of thermodynamic stability
the state of the fluid at a given instant t ∈ (0,T ) and a spatial
position x ∈ Ω ⊂ R3 is determined through the state variables
% = %(t, x), ϑ = ϑ(t, x), and u = u(t, x). The density % is a
non-negative measurable function, the absolute temperature ϑ is a
measurable function satisfying ϑ(t, x) > 0 for a.a.
(t, x) ∈ (0,T )× Ω
the total mass is a constant of motion,

M(t) =

∫
Ω

%(t, ·) dx =

∫
Ω

%0 dx = M0 for a.a. t ∈ (0,T ),

and so is the total energy

E (t) =

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx

=

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0)− %0F

)
dx for a.a. t ∈ (0,T )
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the time evolution of the system is governed by the following system
of equations (integral identities):

Conservation of mass (renormalized):

∫ T

0

∫
Ω

(
b(%)∂tϕ + b(%)u · ∇xϕ +

(
b(%)− b′(%)%

)
divxuϕ dx dt

= −
∫

Ω

b(%0)ϕ(0, ·) dx

for any test function ϕ ∈ C∞c ([0,T )× Ω), for any b, b′ ∈ C∞c [0,∞),
and also for b(%) = %
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Balance of momentum (weak):∫ T

0

∫
Ω

(
%u · ∂tϕ + %(u⊗ u) : ∇xϕ + p(%, ϑ)divxϕ

)
dx dt∫ T

0

∫
Ω

(
S : ∇xϕ− %∇xF · ϕ

)
dx dt −

∫
Ω

%0u0 · ϕ(0, ·) dx

for any test function ϕ ∈ C∞c ([0,T )× Ω; R3)

If the complete slip boundary conditions are imposed, the space of
admissible test functions must be extended to C∞c ([0,T ) × Ω; R3),
ϕ · n|∂Ω = 0
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Entropy balance (weak):

∫ T

0

∫
Ω

(
%s(%, ϑ)∂tϕ + %s(%, ϑ)u · ∇xϕ +

q · ∇xϕ

ϑ

)
dx dt+ < σ;ϕ >

= −
∫

Ω

%0s(%0, ϑ0)ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0,T ) × Ω; R3), where the entropy production rate
σ ∈M+([0,T ]× Ω) satisfies

σ ≥ 1

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ

)
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the viscous stress S is determined by Newton’s rheological law, the
heat flux q satisfies Fourier’s law
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Existence of global-in-time solutions:
Hypotheses:

[H1] the initial data %0, ϑ0, u0 satisfy:

%0, ϑ0 ∈ L∞(Ω), u0 ∈ L∞(Ω;R3),

%0(x) ≥ 0, ϑ(x) > 0 for a.a. x ∈ Ω

[H2] The potential of the driving force F belongs to W 1,∞(Ω)

[H3] the pressure p = p(%, ϑ) is given by

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+

a

3
ϑ4, a > 0,

where
P ∈ C 1[0,∞), P(0) = 0, P ′(Z ) > 0 for all Z ≥ 0,

0 <
5
3P(Z )− P ′(Z )Z

Z
≤ c for all Z > 0,

lim
Z→∞

P(Z )

Z 5/3
= p∞ > 0

Eduard Feireisl Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Asymptotic analysis



Mathematical theory of fluid dynamics Long-time behavior Scale analysis

the specific internal energy e obeys

e(%, ϑ) =
3

2

ϑ5/2

%
P

( %

ϑ3/2

)
+ a

ϑ4

%
,

s(%, ϑ) = S
( %

ϑ3/2

)
+

4a

3

ϑ3

%
,

with

S ′(Z ) = −3

2

5
3P(Z )− P ′(Z )Z

Z 2

[H4] the transport coefficients µ, η, and κ are continuously differentiable
functions of the temperature ϑ satisfying

µ ∈ W 1,∞[0,∞), 0 < µ(1 + ϑα) ≤ µ(ϑ) ≤ µ(1 + ϑα),

0 ≤ η(ϑ) ≤ η(1 + ϑα),

where
1/2 ≤ α ≤ 1;

and
0 < κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3)
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Global-in-time existence theorem:

Theorem

Let Ω ⊂ R3 be a bounded domain of class C 2+ν , ν > 0. Suppose that
the initial data %0, ϑ0, u0 satisfy hypothesis [H1] and that the driving
force potential F obeys [H2]. Furthermore, let the thermodynamic
functions p, e, and s be as in [H3], while the transport coefficients µ, η,
and κ satisfy [H4].
Then the Navier-Stokes-Fourier system admits a weak solution %, ϑ, and
u belonging to the class:

% ∈ L∞(0,T ; L5/3(Ω)), ϑ ∈ L∞(0,T ; L4(Ω)) ∩ L2(0,T ;W 1,2(Ω)),

u ∈ L2(0,T ;W 1,q(Ω;R3)), q =
8

5− α
.
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A priori estimates:

Total dissipation balance:

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− ϑ%s(%, ϑ)− %F

)
(τ, ·) dx + ϑσ

[
[0, τ ]× Ω

]
=

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0)− ϑ%0s(%0, ϑ0)− %0F

)
dx
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Existence theory: A priori bounds:

Energy bounds:

% ∈ L∞(0,T ; L5/3(Ω)), ϑ ∈ L∞(0,T ; L4(Ω))
√

%u ∈ L∞(0,T ; L2(Ω; R3))

Dissipation estimates:

ϑ ∈ L2(0,T ;W 1,2(Ω)), u ∈ L2((0,T ;W 1,2(Ω; R3))

Pressure estimates:

p(%, ϑ) ∈ Lq((0,T )× Ω)), q > 1
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Compactness of temperature:
Monotonicity of the entropy:∫ T

0

∫
Ω

(
%εs(%ε, ϑε)− %εs(%ε, ϑ)

)
(ϑε − ϑ) dx dt ≥ 0

Entropy equation:
%s(%, ϑ)ϑ = %s(%, ϑ) ϑ

Renormalized continuity equation:

∂tb(%) + divx(b(%)u) +
(
b′(%)%− b(%)

)
divxu = 0

Young measure identity

νt,x [b(%)h(ϑ)] = νt,x [b(%)] νt,x [h(ϑ)]
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Compactness of density:
Oscillations defect measure:

sup
k≥1

[
lim sup

ε→0

∫ T

0

∫
Ω

|Tk(%ε)− Tk(%)|γ dx dt
]

< ∞, γ > 8/3

Tk(z) = min{z , k}

Eduard Feireisl Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Asymptotic analysis



Mathematical theory of fluid dynamics Long-time behavior Scale analysis

Renormalized equation:∫
Ω

(
%Lk(%)− %Lk(%)

)
(τ, ·) dx

+

∫ τ

0

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx dt

=

∫
Ω

(
%Lk(%)− %Lk(%)

)
(0, ·) dx+∫ τ

0

∫
Ω

(
Tk(%)divxu− Tk(%)divxu

)
dx dt
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Result of Lions on the effective viscous pressure:

R : [S]Tk(%)−R : [S] Tk(%) = p(%)Tk(%)− p(%) Tk(%) ≥ 0

where

R : [S] = ∂xi ∆
−1∂xj

[
µ(ϑ)

(
∂xi uj + ∂xj ui −

2

3
divxuδi,j

)]
Compactness of commutators:

‖R : [µU ]− µR : U‖W α,p ≤ c‖U‖L2‖µ‖W 1,2 , α > 0, p > 1

R : U =
4

3
divxu
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Equilibrium states:

equilibrium solutions minimize the entropy production;

equilibrium solutions maximize the total entropy of the system in the
class of all admissible states;

all solutions to the evolutionary system driven by a conservative
time-independent external force tend to an equilibrium for large time.

Total dissipation balance:

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− ϑ%s(%, ϑ)− %F

)
(τ, ·) dx + ϑσ

[
[0, τ ]× Ω

]
=

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0)− ϑ%0s(%0, ϑ0)− %0F

)
dx
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Static states:

∇xp(%̃, ϑ̃) = %̃∇xF , %̃ ≥ 0, ϑ̃ = const > 0 in Ω,

∫
Ω

%̃ dx = M0,

∫
Ω

(
%̃e(%̃, ϑ̃)− ϑ%̃s(%̃, ϑ̃)− %̃F

)
dx = D∞[ϑ]

Positivity of the static density distribution:
[P]

lim
%→0

∂p(%, ϑ)

∂%
> 0 for any fixed ϑ > 0.
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Theorem

Let Ω ⊂ R3 be a bounded Lipschitz domain. Assume that the
thermodynamic functions p, e, and s are continuously differentiable in
(0,∞)2, and that they satisfy Gibbs’ equation , hypothesis of
thermodynamic stability, together with condition [P]. Let F ∈ W 1,∞(Ω).
Then for given constants M0 > 0, E0, there is at most one solution %̃, ϑ̃
of static problem in the class of locally Lipschitz functions subjected to
the constraints∫

Ω

%̃ dx = M0,

∫
Ω

(
%̃e(%̃, ϑ̃)− %̃F

)
dx = E0. (1)

In addition, %̃ is strictly positive in Ω, and, moreover,∫
Ω

%̃s(%̃, ϑ̃) dx ≥
∫

Ω

%s(%, ϑ) dx

for any couple % ≥ 0, ϑ > 0 of measurable functions satisfying (1).
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Conservative systems, attractors:

Ω ⊂ R3 a bounded Lipschitz domain

the structural hypotheses [H1] - [H4], with [P], are satisfied

the (initial) values of the total mass M0, the energy E0, and the
entropy S0 are given

For any ε > 0 there exists T = T (ε) such that
‖(%u)(t, ·)‖L5/4(Ω;R3) ≤ ε,

‖%(t, ·)− %̃‖L5/3(Ω) ≤ ε,

‖ϑ(t, ·)− ϑ‖L4(Ω) ≤ ε

 for a.a. t > T (ε)

for any weak solution {%,u, ϑ} of the Navier-Stokes-Fourier system
defined on (0,∞)× Ω and satisfying
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∫
Ω

%(t, ·) dx > M0,∫
Ω

(
1
2%|u|2 + %e(%, ϑ)− %F

)
(t, ·) dx < E0,

ess lim inft→0

∫
Ω

%s(%, ϑ)(t, ·)(t, 0) dx > S0,


where %̃, ϑ is a solution of the static problem determined uniquely by the
condition ∫

Ω

%̃ dx =

∫
Ω

% dx ,∫
Ω

(
%̃e(%̃, ϑ)− %̃F

)
dx =

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)− %F

)
dx
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Systems driven by a non-conservative force:

Theorem

Let Ω ⊂ R3 be a bounded Lipschitz domain. Under the hypotheses [H1] -
[H4], [P], let {%, ϑ,u} be a weak solution of the Navier-Stokes-Fourier
system driven by an external force f = f(x) on the time interval [T0,∞),
where f 6≡ ∇xF .
Then ∫

Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx →∞ as t →∞.
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Theorem

Assume that f = f(t, x), f ∈ L∞((0,T )× Ω; R3).
The either ∫

Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx →∞ as t →∞

or ∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx ≤ E∞ for a.a. t > T0

for a certain constant E∞. Moreover, in the latter case, each sequence
τn →∞ contains a subsequence (not relabeled) such that

f(τn + ·, ·) → ∇xF weakly-(*) in L∞((0, 1)× Ω; R3)

for a certain F = F (x), F ∈ W 1,∞(Ω) that, in general, may depend on
the choice of {τn}∞n=1.
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Highly oscillating driving forces

• Ω ⊂ R3 a bounded (Lipschitz) domain
•

f = ω(tβ)w(x), β > 2

ω ∈ L∞(0,∞), ω 6= 0, sup
τ>0

∣∣∣∣∫ τ

0

ω(t) dt

∣∣∣∣ < ∞

%u(t, ·) → 0 in Lp(Ω; R3)

%(t, ·) → % in Lp(Ω), M0 = %|Ω|

ϑ(t, ·) → ϑ in Lp(Ω)

as t →∞
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Scaled Navier-Stokes-Fourier system:

Sr ∂t% + divx(%u) = 0,

Sr ∂t(%u) + divx(%u⊗ u) +
1

Ma2∇xp =
1

Re
divxS +

1

Fr2
%∇xF ,

Sr ∂t(%s) + divx(%su) +
1

Pe
divx

(q

ϑ

)
= σ,

together with

Sr
d
dt

∫
Ω

(Ma2

2
%|u|2 + %e − Ma2

Fr2
%F

)
dx = 0,

σ ≥ 1

ϑ

(Ma2

Re
S : ∇xu−

1

Pe
q · ∇xϑ

ϑ

)
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Boundary conditions:

u · n|∂Ω = 0, [Sn]× n|∂Ω = 0, q · n|∂Ω = 0
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Characteristic numbers:

4 Symbol 4 Definition 4 Name

Sr Lref/(TrefUref) Strouhal number

Ma Uref/
√

pref/%ref Mach number

Re %refUrefLref/µref Reynolds number

Fr Uref/
√

Lref fref Froude number

Pe prefLrefUref/(ϑrefκref) Péclet number
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Low Mach number limit on “large” domains:

Scaled Navier-Stokes-Fourier system:

∂t% + divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%, ϑ) = divxS(ϑ,∇xu)

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
= σε

with the total energy balance

d
dt

∫
Ωε

(
ε2

2
%|u|2 + %e(%, ϑ)

)
(t, ·) dx = 0
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Newton’s rheological law:

S(ϑ,∇xu) = µ(ϑ)

(
∇xu +∇t

xu−
2

3
Idivxu

)
+ η(ϑ)I divxu,

Fourier’s law:

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ,

Entropy production rate:

σε ≥
1

ϑ

(
ε2S : ∇xu +

κ(ϑ)

ϑ
|∇xϑ|2

)
≥ 0.
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Conservative boundary conditions:

u · n|∂Ωε
= 0, [Sn]× n|∂Ωε

= 0

q · n|∂Ωε
= 0

Ill-prepared initial data:

%(0, ·) = %0,ε = % + ε%1
0,ε, ϑ(0, ·) = ϑ0,ε = ϑ + εϑ1

0,ε

%, ϑ > 0,

∫
Ωε

%1
0,ε dx =

∫
Ωε

ϑ1
0,ε dx = 0 for all ε > 0

{%1
0,ε}ε>0, {ϑ1

0,ε}ε>0 are bounded in L2 ∩ L∞(Ωε)

u(0, ·) = u0,ε

{u0,ε}ε>0 is bounded in L2 ∩ L∞(Ωε;R
3)
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Spatial domains:

Ω ⊂ R3 is an unbounded domain with a compact smooth boundary ∂Ω

Ωε = Br(ε) ∩ Ω

where Br(ε) is a ball centered at zero with a radius r(ε), with

lim
ε→0

εr(ε) = ∞
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Target system:

%ε → %, ϑε → ϑ strongly in Lp

uε → U weakly in L2

ϑε − ϑ

ε
→ Θ weakly in Lp

divxU = 0

%
(
∂tU + divx(U⊗U)

)
+∇xΠ = divx(µ(ϑ)∇xU)

%cp(%, ϑ)
(
∂tΘ + divx(ΘU)

)
− divx(κ(ϑ)∇xϑ) = 0
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Stability of static equilibria in the low Mach number limit

Total dissipation balance:

∫
Ωε

(
1

2
%ε|uε|2 +

1

ε2

[
Hϑ(%ε, ϑε)− ∂%Hϑ(%, ϑ)(%ε − %)− Hϑ(%, ϑ)

])
(τ, ·) dx

+
ϑ

ε2
σε

[
[0, τ ]× Ωε

]
=∫

Ωε

(
1

2
%0,ε|u0,ε|2 +

1

ε2

[
Hϑ(%0,ε, ϑ0,ε)− ∂%Hϑ(%, ϑ)(%0,ε − %)− Hϑ(%, ϑ)

])
dx
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Helmholtz function:

Hϑ(%, ϑ) = %e(%, ϑ)− ϑ%s(%, ϑ)

% 7→ Hϑ(%, ϑ) is a strictly convex function

ϑ 7→ Hϑ(%, ϑ) is decreasing if ϑ < ϑ and increasing whenever ϑ > ϑ
for any fixed %

Eduard Feireisl Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague
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Coercivity of Helmholtz function:

For any
0 < % < %̃ < %

there exists a positive constant Λ = Λ(%, %, ϑ) such that

Hϑ(%, ϑ)− (%− %̃)
∂Hϑ(%̃, ϑ)

∂%
− Hϑ(%̃, ϑ)

≥ Λ


|%− %̃|2 + |ϑ− ϑ|2 if % < % < %, ϑ/2 < ϑ < 2ϑ,

%e(%, ϑ) + ϑ|s(%, ϑ)|+ 1 otherwise

Eduard Feireisl Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague
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Uniform bounds for ε → 0

h = [h]ess + [h]res, [h]ess = Ψ(%ε, ϑε)h, [h]res =
(
1−Ψ(%ε, ϑε)

)
h

Ψ ∈ C∞c (0,∞)2, 0 ≤ Ψ ≤ 1,

Ψ ≡ 1 in an open neighborhood of the point [%, ϑ].
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Uniform bounds:

ess sup
t∈(0,T )

∥∥∥∥[
%ε − %

ε

]
ess

∥∥∥∥
L2(Ωε)

≤ c

ess sup
t∈(0,T )

∥∥∥∥[
%ε − %

ε

]
res

∥∥∥∥
L5/4(Ωε)

≤ c

ess sup
t∈(0,T )

∥∥∥∥[
ϑε − ϑ

ε

]
ess

∥∥∥∥
L2(Ωε)

≤ c

ess sup
t∈(0,T )

∥∥∥∥[
ϑε − ϑ

ε

]
ess

∥∥∥∥
L4(Ωε)

≤ c

ess sup
t∈(0,T )

‖√%u‖L2(Ωε;R3) ≤ c
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‖σε‖M+([0,T ]×Ω) ≤ ε2c

∫ T

0

‖uε‖2
W 1,2Ωε;R3) dt ≤ c

∫ T

0

∥∥∥∥ϑε − ϑ

ε

∥∥∥∥2

W 1,2(Ωε;R3)

dt ≤ c
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Lighthill’s acoustic equation:

“time lifting” Σε of the measure σε:

< Σε;ϕ >=< σε; I [ϕ] >

I [ϕ](t, x) =

∫ t

0

ϕ(z , x) dz for any ϕ ∈ L1(0,T ;C (Ωε))

Eduard Feireisl Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague
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Lighthill’s equation:

ε∂tZε + divxVε = εdivxF
1
ε,

ε∂tVε + ω∇xZε = ε
(
divxF2

ε +∇xF
3
ε +

A

ε2ω
∇xΣε

)
,

supplemented with the homogeneous Neumann boundary conditions

Vε · n|∂Ωε
= 0

where

Zε =
%ε − %

ε
+

A

ω
%ε

(
s(%ε, ϑε)− s(%, ϑ)

ε

)
+

A

εω
Σε, Vε = %εuε

F1
ε =

A

ω
%ε

(
s(%ε, ϑε)− s(%, ϑ)

ε

)
uε +

A

ω

κ∇xϑε

εϑε

F2
ε = Sε − %εuε ⊗ uε

F 3
ε = ω

(
%ε − %

ε2

)
+ A%ε

(
s(%ε, ϑε)− s(%, ϑ)

ε2

)
−

(
p(%ε, ϑε)− p(%, ϑ)

ε2

)
Eduard Feireisl Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague
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Acoustic potential:

Neumann Laplacean:

∆N , ∆N [v ] = ∆v , ∇xv · n|∂Ω = 0, v(x) → 0 as |x | → ∞

D(∆N) = {w ∈ L2(Ω) | w ∈ W 2,2(Ω), ∇xw · n|∂Ω = 0}

Limiting absorption principle:

sup
λ∈C ,0<α≤Re[λ]≤β<∞, Im[λ] 6=0

∥∥V ◦ (−∆N − λ)−1 ◦ V
∥∥
L[L2(Ω);L2(Ω)]

≤ cα,β

V(x) = (1 + |x |2)− s
2 , s > 1
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Acoustic potential:

Φε = ∆−1
N [divxVε],

ε∂tZε + ∆NΦε = εdivxF
1
ε,

ε∂tΦε + ωZε = ε∆−1
N divxdivxF2

ε.
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Duhamel’s formula:

Φε(t, ·)

= exp
(
±i

t

ε

√
−∆N

) [
∆N [h1

ε] +
1√
−∆N

[h2
ε]± i

(
∆N [h3

ε] +
1√
−∆N

[h4
ε]

)]
+

∫ t

0

exp

(
±i

t − s

ε

√
−∆N

) [
∆N [H1

ε ] +
1√
−∆N

[H2
ε ]

±i
(

∆N [H3
ε ] +

1√
−∆N

[H4
ε ]

)]
ds

with
{hi

ε}ε>0 bounded in L2(Ω),

{H i
ε}ε>0 is bounded in L2((0,T )× Ω)
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A result of Kato:

Theorem

Let A be a closed densely defined linear operator and H a self-adjoint
densely defined linear operator in a Hilbert space X . For λ /∈ R, let
RH [λ] = (H − λId)−1 denote the resolvent of H. Suppose that

Γ = sup
λ/∈R, v∈D(A∗), ‖v‖X =1

‖A ◦ RH [λ] ◦ A∗[v ]‖X < ∞.

Then

sup
w∈X , ‖w‖X =1

π

2

∫ ∞

−∞
‖A exp(−itH)[w ]‖2

X dt ≤ Γ2.
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Application of Kato’s theorenm:

X = L2(Ω), H =
√
−∆N , A[v ] = ϕG (−∆N)[v ], v ∈ X

G ∈ C∞c (0,∞), ϕ ∈ C∞c (Ω) are given functions

Eduard Feireisl Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague
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