Asymptotic analysis in thermodynamics of viscous fluids

Eduard Feireisl

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

IMA Minneapolis, July 2009

Eduard Feireisl

Asymptotic analysis

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

THERMAL SYSTEMS IN EQUILIBRIUM:

State variables: ϱ , ϑ

Thermodynamic functions: internal energy $e = e(\varrho, \vartheta)$, pressure

$$p = p(\varrho, \vartheta)$$
, entropy $s = s(\varrho, \vartheta)$

the entropy s can be viewed as an increasing function of the total energy e,

$$rac{\partial s}{\partial e} = rac{1}{artheta} > 0$$

maximization of the total entropy

$$S = \int \varrho s \, \mathrm{d}x$$

over the set of all allowable states of the system yields the equilibrium state provided the system is mechanically and thermally insulated

- (Third law of thermodynamics) the entropy tends to zero when the absolute temperature tends to zero
- the entropy remains constant in those processes, where the material responds *elastically*

GIBBS' EQUATION AND THERMODYNAMIC STABILITY:

GIBBS' EQUATION:

$$artheta \mathsf{Ds}(arrho, artheta) = \mathsf{De}(arrho, artheta) + \mathsf{p}(arrho, artheta) \mathsf{D}\left(rac{1}{arrho}
ight)$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

BALANCE LAWS:

BALANCE LAW (STRONG FORM):

$$\partial_t d + \operatorname{div}_x F = s \text{ in } (0, T) \times \Omega, \ d(0, \cdot) = d_0, \ \mathbf{F} \cdot \mathbf{n}|_{\partial \Omega} = F_b$$

<ロ> (日) (日) (日) (日) (日) Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

э

NAVIER-STOKES-FOURIER SYSTEM:

EQUATION OF CONTINUITY:

 $\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$

MOMENTUM EQUATION:

 $\partial_t(\rho \mathbf{u}) + \operatorname{div}_x(\rho \mathbf{u} \otimes \mathbf{u}) + \nabla_x \rho(\rho, \vartheta) = \operatorname{div}_x \mathbb{S} + \rho \nabla_x F$

ENTROPY EQUATION:

$$\partial_t(\varrho s) + \operatorname{div}_x(\varrho s \mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}}{\vartheta}\right) = \frac{1}{\vartheta}\left(\mathbb{S}: \nabla_x \mathbf{u} - \frac{\mathbf{q} \cdot \nabla_x \vartheta}{\vartheta}\right)$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

BOUNDARY CONDITIONS:

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

イロト イポト イヨト イヨト

3

DIFFUSION FLUX, TRANSPORT COEFFICIENTS:

NEWTON'S RHEOLOGICAL LAW:

$$\mathbb{S} = \mu \Big(\nabla_{\mathbf{x}} \mathbf{u} + \nabla_{\mathbf{x}}^{t} \mathbf{u} - \frac{2}{3} \mathrm{div}_{\mathbf{x}} \mathbf{u} \mathbb{I} \Big) + \eta \mathrm{div}_{\mathbf{x}} \mathbf{u} \mathbb{I},$$

with the shear viscosity coefficient μ and the bulk viscosity coefficient η

FOURIER'S LAW:

$$\mathbf{q} = -\kappa \nabla_{\mathbf{x}} \vartheta,$$

where κ is the heat conductivity coefficient

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

- 4 同 5 - 4 回 5 - 4 回 5

Energetically closed systems

- $p = p(\rho, \vartheta), e = e(\rho, \vartheta), s = s(\rho, \vartheta)$ are given functions satisfying Gibbs' equation and hypothesis of thermodynamic stability
- the state of the fluid at a given instant $t \in (0, T)$ and a spatial position $x \in \Omega \subset R^3$ is determined through the state variables $\rho = \rho(t, x), \ \vartheta = \vartheta(t, x), \ \text{and} \ \mathbf{u} = \mathbf{u}(t, x).$ The density ρ is a non-negative measurable function, the absolute temperature ϑ is a measurable function satisfying $\vartheta(t, x) > 0$ for a.a. $(t,x) \in (0,T) \times \Omega$

the total mass is a constant of motion.

$$M(t) = \int_\Omega arrho(t,\cdot) \, \mathrm{d}x = \int_\Omega arrho_0 \, \mathrm{d}x = M_0 ext{ for a.a. } t \in (0,T),$$

and so is the total energy

$$E(t) = \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) - \varrho F \right) \, \mathrm{d}x$$
$$= \int_{\Omega} \left(\frac{1}{2} \varrho_0 |\mathbf{u}_0|^2 + \varrho_0 e(\varrho_0, \vartheta_0) - \varrho_0 F \right) \, \mathrm{d}x \text{ for a.a. } t \in (0, T)$$

f

the time evolution of the system is governed by the following system of equations (integral identities):

CONSERVATION OF MASS (RENORMALIZED):

$$\begin{split} \int_0^T \int_\Omega \Big(b(\varrho) \partial_t \varphi + b(\varrho) \mathbf{u} \cdot \nabla_x \varphi + \Big(b(\varrho) - b'(\varrho) \varrho \Big) \mathrm{div}_x \mathbf{u} \varphi \, \mathrm{d}x \, \mathrm{d}t \\ &= - \int_\Omega b(\varrho_0) \varphi(0, \cdot) \, \mathrm{d}x \end{split}$$
 for any test function $\varphi \in C_c^\infty([0, T) \times \overline{\Omega})$, for any $b, \ b' \in C_c^\infty[0, \infty)$, and also for $b(\varrho) = \varrho$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Image: A (1) A (2) A

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

(4月) (三) (二)

■ the viscous stress S is determined by Newton's rheological law, the heat flux **q** satisfies Fourier's law

Eduard Feireisl

Asymptotic analysis

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

EXISTENCE OF GLOBAL-IN-TIME SOLUTIONS: Hypotheses:

[H1] the initial data ρ_0 , ϑ_0 , \mathbf{u}_0 satisfy:

$$\varrho_0, \vartheta_0 \in L^{\infty}(\Omega), \ \mathbf{u}_0 \in L^{\infty}(\Omega; \mathbb{R}^3),$$

$$arrho_0(x)\geq 0, artheta(x)>0$$
 for a.a. $x\in \Omega$

[H2] The potential of the driving force F belongs to $W^{1,\infty}(\Omega)$

[H3] the pressure $p = p(\varrho, \vartheta)$ is given by

$$p(\varrho, \vartheta) = \vartheta^{5/2} P\left(\frac{\varrho}{\vartheta^{3/2}}\right) + \frac{a}{3} \vartheta^4, \ a > 0,$$

where

$$P \in C^{1}[0,\infty), \ P(0) = 0, \ P'(Z) > 0 \text{ for all } Z \ge 0,$$
$$0 < \frac{\frac{5}{3}P(Z) - P'(Z)Z}{Z} \le c \text{ for all } Z > 0,$$
$$\lim_{Z \to \infty} \frac{P(Z)}{Z^{5/3}} = p_{\infty} > 0$$

the specific internal energy e obeys

$$egin{aligned} e(arrho,artheta) &= rac{3}{2}rac{artheta^{5/2}}{arrho} P\left(rac{arrho}{artheta^{3/2}}
ight) + arac{artheta^4}{arrho}, \ s(arrho,artheta) &= S\left(rac{arrho}{artheta^{3/2}}
ight) + rac{4a}{3}rac{artheta^3}{arrho}, \end{aligned}$$

with

$$S'(Z) = -\frac{3}{2} \frac{\frac{5}{3}P(Z) - P'(Z)Z}{Z^2}$$

[H4] the transport coefficients μ , η , and κ are continuously differentiable functions of the temperature ϑ satisfying

$$egin{aligned} \mu \in \mathcal{W}^{1,\infty}[0,\infty), \ 0 < \underline{\mu}(1+artheta^lpha) \leq \mu(artheta) \leq \overline{\mu}(1+artheta^lpha), \ 0 \leq \eta(artheta) \leq \overline{\eta}(1+artheta^lpha), \end{aligned}$$

where

$$1/2 \le \alpha \le 1;$$

and

$$0 < \underline{\kappa}(1+\vartheta^3) \le \kappa(\vartheta) \le \overline{\kappa}(1+\vartheta^3)$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

GLOBAL-IN-TIME EXISTENCE THEOREM:

Theorem

Let $\Omega \subset \mathbb{R}^3$ be a bounded domain of class $C^{2+\nu}$, $\nu > 0$. Suppose that the initial data ρ_0 , ϑ_0 , \mathbf{u}_0 satisfy hypothesis **[H1]** and that the driving force potential F obeys [H2]. Furthermore, let the thermodynamic functions p, e, and s be as in **[H3]**, while the transport coefficients μ , η , and κ satisfy **[H4]**.

Then the Navier-Stokes-Fourier system admits a weak solution ρ , ϑ , and **u** belonging to the class:

 $\rho \in L^{\infty}(0, T; L^{5/3}(\Omega)), \ \vartheta \in L^{\infty}(0, T; L^4(\Omega)) \cap L^2(0, T; W^{1,2}(\Omega)),$

$$\mathbf{u} \in L^2(0, T; W^{1,q}(\Omega; \mathbb{R}^3)), \ q = rac{8}{5-lpha}.$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

(4 間) トイヨト イヨト

3

A PRIORI ESTIMATES:

TOTAL DISSIPATION BALANCE:

$$\begin{split} &\int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) - \overline{\vartheta} \varrho s(\varrho, \vartheta) - \varrho F \right) (\tau, \cdot) \, \mathrm{d}x + \overline{\vartheta} \sigma \Big[[0, \tau] \times \overline{\Omega} \Big] \\ &= \int_{\Omega} \left(\frac{1}{2} \varrho_0 |\mathbf{u}_0|^2 + \varrho_0 e(\varrho_0, \vartheta_0) - \overline{\vartheta} \varrho_0 s(\varrho_0, \vartheta_0) - \varrho_0 F \right) \, \mathrm{d}x \end{split}$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

EXISTENCE THEORY: A PRIORI BOUNDS:

Energy bounds:

$$arrho \in L^{\infty}(0, T; L^{5/3}(\Omega)), \ artheta \in L^{\infty}(0, T; L^{4}(\Omega))$$

 $\sqrt{arrho} \mathbf{u} \in L^{\infty}(0, T; L^{2}(\Omega; R^{3}))$

Dissipation estimates:

$$\vartheta \in L^{2}(0, T; W^{1,2}(\Omega)), \ \mathbf{u} \in L^{2}((0, T; W^{1,2}(\Omega; R^{3})))$$

Pressure estimates:

$$p(\varrho, \vartheta) \in L^q((0, T) \times \Omega)), \ q > 1$$

Eduard Feireisl

Asymptotic analysis

 $< \Box > < \Box > < \Box > < \Box > < \Xi > < \Xi > = \bigcirc \bigcirc \bigcirc$ Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

COMPACTNESS OF TEMPERATURE: **Monotonicity of the entropy:**

$$\int_0^T \int_\Omega \Big(\varrho_\varepsilon s(\varrho_\varepsilon, \vartheta_\varepsilon) - \varrho_\varepsilon s(\varrho_\varepsilon, \vartheta) \Big) (\vartheta_\varepsilon - \vartheta) \, \mathrm{d} x \, \mathrm{d} t \geq 0$$

Entropy equation:

$$\overline{\varrho s(\varrho, \vartheta) \vartheta} = \overline{\varrho s(\varrho, \vartheta)} \; \vartheta$$

Renormalized continuity equation:

$$\partial_t b(\varrho) + \operatorname{div}_x(b(\varrho)\mathbf{u}) + (b'(\varrho)\varrho - b(\varrho))\operatorname{div}_x\mathbf{u} = 0$$

Young measure identity

$$\nu_{t,x}[b(\varrho)h(\vartheta)] = \nu_{t,x}[b(\varrho)] \ \nu_{t,x}[h(\vartheta)]$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

(4) (5) (4) (5)

3

Compactness of density: Oscillations defect measure:

$$\sup_{k\geq 1} \left[\limsup_{\varepsilon\to 0} \int_0^T \int_\Omega |T_k(\varrho_\varepsilon) - T_k(\varrho)|^\gamma \, \mathrm{d}x \, \mathrm{d}t\right] < \infty, \ \gamma > 8/3$$
$$T_k(z) = \min\{z, k\}$$

<ロ> (日) (日) (日) (日) (日) Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

3

Renormalized equation:

$$\int_{\Omega} \left(\overline{\varrho L_{k}(\varrho)} - \varrho L_{k}(\varrho) \right) (\tau, \cdot) \, \mathrm{d}x \\ + \int_{0}^{\tau} \int_{\Omega} \left(\overline{T_{k}(\varrho)} \mathrm{div}_{x} \mathbf{u} - \overline{T_{k}(\varrho)} \mathrm{div}_{x} \mathbf{u} \right) \, \mathrm{d}x \, \mathrm{d}t \\ = \int_{\Omega} \left(\overline{\varrho L_{k}(\varrho)} - \varrho L_{k}(\varrho) \right) (0, \cdot) \, \mathrm{d}x + \\ \int_{0}^{\tau} \int_{\Omega} \left(T_{k}(\varrho) \mathrm{div}_{x} \mathbf{u} - \overline{T_{k}(\varrho)} \mathrm{div}_{x} \mathbf{u} \right) \, \mathrm{d}x \, \mathrm{d}t$$

<ロ> (日) (日) (日) (日) (日) Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Result of Lions on the effective viscous pressure:

$$\overline{\mathcal{R}:[\mathbb{S}] T_k(\varrho)} - \overline{\mathcal{R}:[\mathbb{S}]} \overline{T_k(\varrho)} = \overline{p(\varrho) T_k(\varrho)} - \overline{p(\varrho)} \overline{T_k(\varrho)} \ge 0$$

where

$$\mathcal{R}: [\mathbb{S}] = \partial_{x_i} \Delta^{-1} \partial_{x_j} \Big[\mu(\vartheta) \Big(\partial_{x_i} u_j + \partial_{x_j} u_i - \frac{2}{3} \mathrm{div}_x \mathbf{u} \delta_{i,j} \Big) \Big]$$

Compactness of commutators:

$$\begin{split} \|\mathcal{R}:[\mu\mathcal{U}]-\mu\mathcal{R}:\mathcal{U}\|_{W^{lpha,p}}&\leq c\|\mathcal{U}\|_{L^2}\|\mu\|_{W^{1,2}}, \ lpha>0, \ p>1\ \mathcal{R}:\mathcal{U}&=rac{4}{3}\mathrm{div}_{\mathsf{x}}\mathbf{u} \end{split}$$

 $< \square \succ < \square \succ$ Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

EQUILIBRIUM STATES:

- equilibrium solutions minimize the entropy production;
- equilibrium solutions maximize the total entropy of the system in the class of all admissible states;
- all solutions to the evolutionary system driven by a conservative time-independent external force tend to an equilibrium for large time.

TOTAL DISSIPATION BALANCE:

$$\int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) - \overline{\vartheta} \varrho s(\varrho, \vartheta) - \varrho F \right) (\tau, \cdot) \, \mathrm{d}x + \overline{\vartheta} \sigma \Big[[0, \tau] \times \overline{\Omega} \Big]$$

$$= \int_{\Omega} \left(\frac{1}{2} \varrho_0 |\mathbf{u}_0|^2 + \varrho_0 e(\varrho_0, \vartheta_0) - \overline{\vartheta} \varrho_0 s(\varrho_0, \vartheta_0) - \varrho_0 F \right) \, \mathrm{d}x$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

STATIC STATES:

$$\nabla_{x} \boldsymbol{\rho}(\tilde{\varrho}, \tilde{\vartheta}) = \tilde{\varrho} \nabla_{x} \boldsymbol{F}, \ \tilde{\varrho} \geq 0, \ \tilde{\vartheta} = \text{const} > 0 \text{ in } \Omega,$$

$$\int_{\Omega} \tilde{\varrho} \, \mathrm{d}x = M_0, \int_{\Omega} \left(\tilde{\varrho} e(\tilde{\varrho}, \tilde{\vartheta}) - \overline{\vartheta} \tilde{\varrho} s(\tilde{\varrho}, \tilde{\vartheta}) - \tilde{\varrho} F \right) \, \mathrm{d}x = D_{\infty}[\overline{\vartheta}]$$

Positivity of the static density distribution:

[P]

$$\lim_{\varrho \to 0} \frac{\partial p(\varrho, \vartheta)}{\partial \varrho} > 0 \text{ for any fixed } \vartheta > 0.$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Eduard Feireisl

Asymptotic analysis

Theorem

Let $\Omega \subset R^3$ be a bounded Lipschitz domain. Assume that the thermodynamic functions p, e, and s are continuously differentiable in $(0, \infty)^2$, and that they satisfy Gibbs' equation, hypothesis of thermodynamic stability, together with condition [P]. Let $F \in W^{1,\infty}(\Omega)$. Then for given constants $M_0 > 0$, E_0 , there is at most one solution $\tilde{\varrho}$, $\tilde{\vartheta}$ of static problem in the class of locally Lipschitz functions subjected to the constraints

$$\int_{\Omega} \tilde{\varrho} \, \mathrm{d}x = M_0, \ \int_{\Omega} \left(\tilde{\varrho} e(\tilde{\varrho}, \tilde{\vartheta}) - \tilde{\varrho} F \right) \, \mathrm{d}x = E_0. \tag{1}$$

In addition, $\tilde{\varrho}$ is strictly positive in Ω , and, moreover,

$$\int_{\Omega} \tilde{\varrho} \boldsymbol{s}(\tilde{\varrho}, \tilde{\vartheta}) \, \mathrm{d} \boldsymbol{x} \geq \int_{\Omega} \varrho \boldsymbol{s}(\varrho, \vartheta) \, \mathrm{d} \boldsymbol{x}$$

for any couple $\varrho \geq 0$, $\vartheta > 0$ of measurable functions satisfying (1).

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

CONSERVATIVE SYSTEMS, ATTRACTORS:

- $\Omega \subset R^3$ a bounded Lipschitz domain
- the structural hypotheses [H1] [H4], with [P], are satisfied
- the (initial) values of the total mass M_0 , the energy E_0 , and the entropy S_0 are given

For any $\varepsilon > 0$ there exists $T = T(\varepsilon)$ such that

$$\left\{\begin{array}{l} \|(\varrho \mathbf{u})(t,\cdot)\|_{L^{5/4}(\Omega;R^3)} \leq \varepsilon, \\\\ \|\varrho(t,\cdot) - \tilde{\varrho}\|_{L^{5/3}(\Omega)} \leq \varepsilon, \\\\ \|\vartheta(t,\cdot) - \overline{\vartheta}\|_{L^4(\Omega)} \leq \varepsilon \end{array}\right\} \text{for a.a. } t > T(\varepsilon)$$

for any weak solution $\{\varrho, \bm{u}, \vartheta\}$ of the Navier-Stokes-Fourier system defined on $(0,\infty)\times\Omega$ and satisfying

$$\left\{\begin{array}{c} \int_{\Omega} \varrho(t,\cdot) \, \mathrm{d}x > M_{0}, \\\\ \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^{2} + \varrho e(\varrho,\vartheta) - \varrho F\right)(t,\cdot) \, \mathrm{d}x < E_{0}, \\\\ \mathrm{ess} \liminf_{t \to 0} \int_{\Omega} \varrho s(\varrho,\vartheta)(t,\cdot)(t,0) \, \mathrm{d}x > S_{0}, \end{array}\right\}$$

where $\tilde{\varrho},\,\overline{\vartheta}$ is a solution of the static problem determined uniquely by the condition

$$\int_{\Omega} \tilde{\varrho} \, \mathrm{d}x = \int_{\Omega} \varrho \, \mathrm{d}x,$$
$$\int_{\Omega} \left(\tilde{\varrho} \boldsymbol{e}(\tilde{\varrho}, \overline{\vartheta}) - \tilde{\varrho} \boldsymbol{F} \right) \, \mathrm{d}x = \int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho \boldsymbol{e}(\varrho, \vartheta) - \varrho \boldsymbol{F} \right) \, \mathrm{d}x$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Systems driven by a non-conservative force:

Theore<u>m</u>

Let $\Omega \subset R^3$ be a bounded Lipschitz domain. Under the hypotheses [H1] - [H4], [P], let $\{\varrho, \vartheta, \mathbf{u}\}$ be a weak solution of the Navier-Stokes-Fourier system driven by an external force $\mathbf{f} = \mathbf{f}(x)$ on the time interval $[T_0, \infty)$, where $\mathbf{f} \not\equiv \nabla_x F$. Then

$$\int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) (t, \cdot) \, \mathrm{d} x \to \infty \text{ as } t \to \infty.$$

Eduard Feireisl

Asymptotic analysis

Theorem

Assume that $\mathbf{f} = \mathbf{f}(t, x)$, $\mathbf{f} \in L^{\infty}((0, T) \times \Omega; \mathbb{R}^3)$. The either

$$\int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) (t, \cdot) \, \mathrm{d} x \to \infty \text{ as } t \to \infty$$

or

$$\int_{\Omega} \left(\frac{1}{2} \varrho |\mathbf{u}|^2 + \varrho e(\varrho, \vartheta) \right) (t, \cdot) \, \mathrm{d} x \leq E_{\infty} \text{ for a.a. } t > T_0$$

for a certain constant E_{∞} . Moreover, in the latter case, each sequence $\tau_n \to \infty$ contains a subsequence (not relabeled) such that

$$\mathbf{f}(\tau_n + \cdot, \cdot) \rightarrow \nabla_x F$$
 weakly-(*) in $L^{\infty}((0, 1) \times \Omega; \mathbb{R}^3)$

for a certain F = F(x), $F \in W^{1,\infty}(\Omega)$ that, in general, may depend on the choice of $\{\tau_n\}_{n=1}^{\infty}$.

HIGHLY OSCILLATING DRIVING FORCES

• $\Omega \subset R^3$ a bounded (Lipschitz) domain

$$\begin{split} \mathbf{f} &= \omega(t^{\beta}) \mathbf{w}(x), \ \beta > 2\\ \omega &\in L^{\infty}(0,\infty), \ \omega \neq 0, \ \sup_{\tau > 0} \left| \int_{0}^{\tau} \omega(t) \ \mathrm{d}t \right| < \infty \end{split}$$

 $\varrho \mathbf{u}(t,\cdot) \rightarrow 0$ in $L^{p}(\Omega; \mathbb{R}^{3})$

$$\varrho(t,\cdot) \to \overline{\varrho} \text{ in } L^{\rho}(\Omega), \ M_0 = \overline{\varrho}|\Omega$$

$$\vartheta(t,\cdot) \to \overline{\vartheta} \text{ in } L^p(\Omega)$$

as $t
ightarrow \infty$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

BOUNDARY CONDITIONS:

$$\mathbf{u} \cdot \mathbf{n}|_{\partial\Omega} = 0, \ [\mathbb{S}\mathbf{n}] \times \mathbf{n}|_{\partial\Omega} = 0, \ \mathbf{q} \cdot \mathbf{n}|_{\partial\Omega} = 0$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Э

3

CHARACTERISTIC NUMBERS:

\triangle Symbol	\triangle Definition	\triangle Name
Sr	$L_{ m ref}/(T_{ m ref}U_{ m ref})$	Strouhal number
Ma	$U_{ m ref}/\sqrt{{m p_{ m ref}}/arrho_{ m ref}}$	Mach number
Re	$arrho_{ m ref} U_{ m ref} L_{ m ref}/\mu_{ m ref}$	Reynolds number
Fr	$U_{ m ref}/\sqrt{L_{ m ref}f_{ m ref}}$	Froude number
Pe	$p_{ m ref} L_{ m ref} U_{ m ref} / (artheta_{ m ref} \kappa_{ m ref})$	Péclet number

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

LOW MACH NUMBER LIMIT ON "LARGE" DOMAINS:

Scaled Navier-Stokes-Fourier system:

$$\partial_t \varrho + \operatorname{div}_x(\varrho \mathbf{u}) = \mathbf{0}$$
$$\partial_t(\varrho \mathbf{u}) + \operatorname{div}_x(\varrho \mathbf{u} \otimes \mathbf{u}) + \frac{1}{\varepsilon^2} \nabla_x \rho(\varrho, \vartheta) = \operatorname{div}_x \mathbb{S}(\vartheta, \nabla_x \mathbf{u})$$
$$\partial_t(\varrho s(\varrho, \vartheta)) + \operatorname{div}_x(\varrho s(\varrho, \vartheta) \mathbf{u}) + \operatorname{div}_x\left(\frac{\mathbf{q}(\vartheta, \nabla_x \vartheta)}{\vartheta}\right) = \sigma_\varepsilon$$

with the total energy balance

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\Omega_{\varepsilon}}\left(\frac{\varepsilon^{2}}{2}\varrho|\mathbf{u}|^{2}+\varrho \boldsymbol{e}(\varrho,\vartheta)\right)(t,\cdot)\,\mathrm{d}x=0$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Newton's rheological law:

$$\mathbb{S}(\vartheta, \nabla_{x}\mathbf{u}) = \mu(\vartheta) \left(\nabla_{x}\mathbf{u} + \nabla_{x}^{t}\mathbf{u} - \frac{2}{3}\mathbb{I}\mathrm{div}_{x}\mathbf{u} \right) + \eta(\vartheta)\mathbb{I} \operatorname{div}_{x}\mathbf{u},$$

Fourier's law:

$$\mathbf{q}(\vartheta, \nabla_{\mathbf{x}}\vartheta) = -\kappa(\vartheta)\nabla_{\mathbf{x}}\vartheta,$$

Entropy production rate:

$$\sigma_{\varepsilon} \geq \frac{1}{\vartheta} \left(\varepsilon^2 \mathbb{S} : \nabla_x \mathbf{u} + \frac{\kappa(\vartheta)}{\vartheta} |\nabla_x \vartheta|^2 \right) \geq 0.$$

 $< \square \succ < \square \succ$ No. (Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

э

Conservative boundary conditions:

$$\begin{split} \mathbf{u} \cdot \mathbf{n}|_{\partial \Omega_{\varepsilon}} &= \mathbf{0}, \ [\mathbb{S}\mathbf{n}] \times \mathbf{n}|_{\partial \Omega_{\varepsilon}} = \mathbf{0} \\ \mathbf{q} \cdot \mathbf{n}|_{\partial \Omega_{\varepsilon}} &= \mathbf{0} \end{split}$$

Ill-prepared initial data:

$$\begin{split} \varrho(0,\cdot) &= \varrho_{0,\varepsilon} = \overline{\varrho} + \varepsilon \varrho_{0,\varepsilon}^{1}, \ \vartheta(0,\cdot) = \vartheta_{0,\varepsilon} = \overline{\vartheta} + \varepsilon \vartheta_{0,\varepsilon}^{1} \\ \overline{\varrho}, \ \overline{\vartheta} > 0, \ \int_{\Omega_{\varepsilon}} \varrho_{0,\varepsilon}^{1} \ \mathrm{d}x = \int_{\Omega_{\varepsilon}} \vartheta_{0,\varepsilon}^{1} \ \mathrm{d}x = 0 \text{ for all } \varepsilon > 0 \\ \{\varrho_{0,\varepsilon}^{1}\}_{\varepsilon > 0}, \ \{\vartheta_{0,\varepsilon}^{1}\}_{\varepsilon > 0} \text{ are bounded in } L^{2} \cap L^{\infty}(\Omega_{\varepsilon}) \\ \mathbf{u}(0,\cdot) &= \mathbf{u}_{0,\varepsilon} \\ \{\mathbf{u}_{0,\varepsilon}\}_{\varepsilon > 0} \text{ is bounded in } L^{2} \cap L^{\infty}(\Omega_{\varepsilon}; R^{3}) \end{split}$$

Spatial domains:

 $\Omega \subset {\it R}^3$ is an unbounded domain with a compact smooth boundary $\partial \Omega$

$$\Omega_{\varepsilon} = B_{r(\varepsilon)} \cap \Omega$$

where $B_{r(\varepsilon)}$ is a ball centered at zero with a radius $r(\varepsilon)$, with

$$\lim_{\varepsilon\to 0}\varepsilon r(\varepsilon)=\infty$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

TARGET SYSTEM:

$$egin{aligned} arphi_arepsilon & o \overlinearphi, \ artheta_arepsilon & o \overlineartheta \ ext{ strongly in } L^p \ & \mathbf{u}_arepsilon & o \mathbf{U} \ ext{weakly in } L^2 \ & rac{artheta_arepsilon - \overlineartheta \ }{arepsilon} & o \Theta \ ext{weakly in } L^p \end{aligned}$$

 ${\rm div}_{x} \bm{U} = \bm{0}$

$$\overline{\varrho} \Big(\partial_t \mathbf{U} + \operatorname{div}_x (\mathbf{U} \otimes \mathbf{U}) \Big) + \nabla_x \Pi = \operatorname{div}_x (\mu(\overline{\vartheta}) \nabla_x \mathbf{U})$$
$$\overline{\varrho} c_{\rho} (\overline{\varrho}, \overline{\vartheta}) \Big(\partial_t \Theta + \operatorname{div}_x (\Theta \mathbf{U}) \Big) - \operatorname{div}_x (\kappa(\overline{\vartheta}) \nabla_x \vartheta) = 0$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

・ロト ・四ト ・ヨト ・ヨト

Э

STABILITY OF STATIC EQUILIBRIA IN THE LOW MACH NUMBER LIMIT

Total dissipation balance:

$$\begin{split} \int_{\Omega_{\varepsilon}} \left(\frac{1}{2} \varrho_{\varepsilon} |\mathbf{u}_{\varepsilon}|^{2} + \frac{1}{\varepsilon^{2}} \Big[H_{\overline{\vartheta}}(\varrho_{\varepsilon}, \vartheta_{\varepsilon}) - \partial_{\varrho} H_{\overline{\vartheta}}(\overline{\varrho}, \overline{\vartheta})(\varrho_{\varepsilon} - \overline{\varrho}) - H_{\overline{\vartheta}}(\overline{\varrho}, \overline{\vartheta}) \Big] \right)(\tau, \cdot) \, \mathrm{d}x \\ + \frac{\overline{\vartheta}}{\varepsilon^{2}} \sigma_{\varepsilon} \Big[[0, \tau] \times \overline{\Omega}_{\varepsilon} \Big] = \\ \int_{\Omega_{\varepsilon}} \left(\frac{1}{2} \varrho_{0,\varepsilon} |\mathbf{u}_{0,\varepsilon}|^{2} + \frac{1}{\varepsilon^{2}} \Big[H_{\overline{\vartheta}}(\varrho_{0,\varepsilon}, \vartheta_{0,\varepsilon}) - \partial_{\varrho} H_{\overline{\vartheta}}(\overline{\varrho}, \overline{\vartheta})(\varrho_{0,\varepsilon} - \overline{\varrho}) - H_{\overline{\vartheta}}(\overline{\varrho}, \overline{\vartheta}) \Big] \right) \, \mathrm{d}x \end{split}$$

Helmholtz function:

$$H_{\overline{\vartheta}}(\varrho,\vartheta) = \varrho e(\varrho,\vartheta) - \overline{\vartheta} \varrho s(\varrho,\vartheta)$$

- $\rho \mapsto H_{\overline{\vartheta}}(\rho, \overline{\vartheta})$ is a strictly convex function
- $\vartheta \mapsto H_{\overline{\vartheta}}(\varrho, \vartheta)$ is decreasing if $\vartheta < \overline{\vartheta}$ and increasing whenever $\vartheta > \overline{\vartheta}$ for any fixed ϱ

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

COERCIVITY OF HELMHOLTZ FUNCTION:

For any

$$0 < \underline{\varrho} < \widetilde{\varrho} < \overline{\varrho}$$

there exists a positive constant $\Lambda = \Lambda(\underline{\varrho}, \overline{\varrho}, \overline{\vartheta})$ such that

$$\begin{split} & \mathcal{H}_{\overline{\vartheta}}(\varrho,\vartheta) - (\varrho - \tilde{\varrho}) \frac{\partial \mathcal{H}_{\overline{\vartheta}}(\tilde{\varrho},\overline{\vartheta})}{\partial \varrho} - \mathcal{H}_{\overline{\vartheta}}(\tilde{\varrho},\overline{\vartheta}) \\ & \geq \Lambda \left\{ \begin{array}{l} |\varrho - \tilde{\varrho}|^2 + |\vartheta - \overline{\vartheta}|^2 \text{ if } \underline{\varrho} < \varrho < \overline{\varrho}, \ \overline{\vartheta}/2 < \vartheta < 2\overline{\vartheta}, \\ \\ \varrho e(\varrho,\vartheta) + \overline{\vartheta} |s(\varrho,\vartheta)| + 1 \text{ otherwise} \end{array} \right. \end{split}$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

3

Uniform bounds for $\varepsilon \to 0$

$$h = [h]_{\mathrm{ess}} + [h]_{\mathrm{res}}, \ [h]_{\mathrm{ess}} = \Psi(\varrho_{\varepsilon}, \vartheta_{\varepsilon})h, \ [h]_{\mathrm{res}} = \Big(1 - \Psi(\varrho_{\varepsilon}, \vartheta_{\varepsilon})\Big)h$$

$$\Psi\in \mathit{C}^\infty_c(0,\infty)^2,\ 0\leq\Psi\leq 1,$$

 $\Psi \equiv 1$ in an open neighborhood of the point $[\overline{\varrho}, \overline{\vartheta}]$.

イロト イポト イヨト イヨト Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

UNIFORM BOUNDS:

$$\begin{split} & \operatorname{ess} \sup_{t \in (0,T)} \left\| \left[\frac{\varrho_{\varepsilon} - \overline{\varrho}}{\varepsilon} \right]_{\operatorname{ess}} \right\|_{L^{2}(\Omega_{\varepsilon})} \leq c \\ & \operatorname{ess} \sup_{t \in (0,T)} \left\| \left[\frac{\varrho_{\varepsilon} - \overline{\varrho}}{\varepsilon} \right]_{\operatorname{res}} \right\|_{L^{5/4}(\Omega_{\varepsilon})} \leq c \\ & \operatorname{ess} \sup_{t \in (0,T)} \left\| \left[\frac{\vartheta_{\varepsilon} - \overline{\vartheta}}{\varepsilon} \right]_{\operatorname{ess}} \right\|_{L^{2}(\Omega_{\varepsilon})} \leq c \\ & \operatorname{ess} \sup_{t \in (0,T)} \left\| \left[\frac{\vartheta_{\varepsilon} - \overline{\vartheta}}{\varepsilon} \right]_{\operatorname{ess}} \right\|_{L^{4}(\Omega_{\varepsilon})} \leq c \\ & \operatorname{ess} \sup_{t \in (0,T)} \left\| \sqrt{\varrho} \mathbf{u} \right\|_{L^{2}(\Omega_{\varepsilon};R^{3})} \leq c \end{aligned}$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Э

$$\|\sigma_{\varepsilon}\|_{\mathcal{M}^+([0,T]\times\overline{\Omega})} \leq \varepsilon^2 c$$

$$\begin{split} \int_0^T \|\mathbf{u}_{\varepsilon}\|_{W^{1,2}\Omega_{\varepsilon};R^3}^2 \, \mathrm{d}t &\leq c \\ \int_0^T \left\|\frac{\vartheta_{\varepsilon} - \overline{\vartheta}}{\varepsilon}\right\|_{W^{1,2}(\Omega_{\varepsilon};R^3)}^2 \, \mathrm{d}t &\leq c \end{split}$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

(日)(周)(日)(日)(日)(日)

LIGHTHILL'S ACOUSTIC EQUATION:

"time lifting" Σ_{ε} of the measure σ_{ε} :

 $<\Sigma_{\varepsilon};\varphi>=<\sigma_{\varepsilon};I[\varphi]>$

$$I[\varphi](t,x) = \int_0^t \varphi(z,x) \, \mathrm{d} z$$
 for any $\varphi \in L^1(0,\, T;\, C(\overline\Omega_arepsilon))$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

LIGHTHILL'S EQUATION:

$$\begin{split} \varepsilon \partial_t Z_\varepsilon + \operatorname{div}_x \mathbf{V}_\varepsilon &= \varepsilon \operatorname{div}_x \mathbf{F}_\varepsilon^1, \\ \varepsilon \partial_t \mathbf{V}_\varepsilon + \omega \nabla_x Z_\varepsilon &= \varepsilon \Big(\operatorname{div}_x \mathbb{F}_\varepsilon^2 + \nabla_x F_\varepsilon^3 + \frac{A}{\varepsilon^2 \omega} \nabla_x \Sigma_\varepsilon \Big), \end{split}$$

supplemented with the homogeneous Neumann boundary conditions

$$\mathbf{V}_{\varepsilon} \cdot \mathbf{n}|_{\partial \Omega_{\varepsilon}} = 0$$

where

$$Z_{\varepsilon} = \frac{\varrho_{\varepsilon} - \overline{\varrho}}{\varepsilon} + \frac{A}{\omega} \varrho_{\varepsilon} \left(\frac{s(\varrho_{\varepsilon}, \vartheta_{\varepsilon}) - s(\overline{\varrho}, \overline{\vartheta})}{\varepsilon} \right) + \frac{A}{\varepsilon \omega} \Sigma_{\varepsilon}, \ \mathbf{V}_{\varepsilon} = \varrho_{\varepsilon} \mathbf{u}_{\varepsilon}$$
$$\mathbf{F}_{\varepsilon}^{1} = \frac{A}{\omega} \varrho_{\varepsilon} \left(\frac{s(\varrho_{\varepsilon}, \vartheta_{\varepsilon}) - s(\overline{\varrho}, \overline{\vartheta})}{\varepsilon} \right) \mathbf{u}_{\varepsilon} + \frac{A}{\omega} \frac{\kappa \nabla_{x} \vartheta_{\varepsilon}}{\varepsilon \vartheta_{\varepsilon}}$$
$$\mathbb{F}_{\varepsilon}^{2} = \mathbb{S}_{\varepsilon} - \varrho_{\varepsilon} \mathbf{u}_{\varepsilon} \otimes \mathbf{u}_{\varepsilon}$$
$$F_{\varepsilon}^{3} = \omega \left(\frac{\varrho_{\varepsilon} - \overline{\varrho}}{\varepsilon^{2}} \right) + A \varrho_{\varepsilon} \left(\frac{s(\varrho_{\varepsilon}, \vartheta_{\varepsilon}) - s(\overline{\varrho}, \overline{\vartheta})}{\varepsilon^{2}} \right) - \left(\frac{p(\varrho_{\varepsilon}, \vartheta_{\varepsilon}) - p(\overline{\varrho}, \overline{\vartheta})}{\varepsilon^{2}} \right)$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

3

ACOUSTIC POTENTIAL:

Neumann Laplacean:

$$\Delta_N, \ \Delta_N[v] = \Delta v, \ \nabla_x v \cdot \mathbf{n}|_{\partial\Omega} = 0, \ v(x) \to 0 \text{ as } |x| \to \infty$$

$$\mathcal{D}(\Delta_N) = \{ w \in L^2(\Omega) \mid w \in W^{2,2}(\Omega), \ \nabla_x w \cdot \mathbf{n}|_{\partial\Omega} = 0 \}$$

Limiting absorption principle:

$$\sup_{\lambda \in \mathcal{C}, 0 < lpha \leq ext{Re}[\lambda] \leq eta < \infty, ext{ Im}[\lambda]
eq 0} ig\| \mathcal{V} \circ (-\Delta_N - \lambda)^{-1} \circ \mathcal{V} ig\|_{\mathcal{L}[L^2(\Omega); L^2(\Omega)]} \leq c_{lpha, eta}
onumber \ \mathcal{V}(x) = (1 + |x|^2)^{-rac{s}{2}}, ext{ } s > 1$$

イロト イポト イヨト イヨト Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

э

Acoustic potential:

$$\Phi_{\varepsilon} = \Delta_N^{-1}[\operatorname{div}_{\mathsf{X}} \mathsf{V}_{\varepsilon}],$$

$$\varepsilon \partial_t Z_{\varepsilon} + \Delta_N \Phi_{\varepsilon} = \varepsilon \operatorname{div}_x \mathbf{F}_{\varepsilon}^1,$$
$$\varepsilon \partial_t \Phi_{\varepsilon} + \omega Z_{\varepsilon} = \varepsilon \Delta_N^{-1} \operatorname{div}_x \operatorname{div}_x \mathbb{F}_{\varepsilon}^2.$$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

Long-time behavior

DUHAMEL'S FORMULA:

$$\begin{split} \Phi_{\varepsilon}(t,\cdot) \\ &= \exp\left(\pm \mathrm{i}\frac{t}{\varepsilon}\sqrt{-\Delta_{N}}\right) \left[\Delta_{N}[h_{\varepsilon}^{1}] + \frac{1}{\sqrt{-\Delta_{N}}}[h_{\varepsilon}^{2}] \pm \mathrm{i}\left(\Delta_{N}[h_{\varepsilon}^{3}] + \frac{1}{\sqrt{-\Delta_{N}}}[h_{\varepsilon}^{4}]\right)\right] \\ &+ \int_{0}^{t} \exp\left(\pm \mathrm{i}\frac{t-s}{\varepsilon}\sqrt{-\Delta_{N}}\right) \left[\Delta_{N}[H_{\varepsilon}^{1}] + \frac{1}{\sqrt{-\Delta_{N}}}[H_{\varepsilon}^{2}] \\ &\pm \mathrm{i}\left(\Delta_{N}[H_{\varepsilon}^{3}] + \frac{1}{\sqrt{-\Delta_{N}}}[H_{\varepsilon}^{4}]\right)\right] \mathrm{d}s \end{split}$$

with

$$\{h_{\varepsilon}^{i}\}_{\varepsilon>0}$$
 bounded in $L^{2}(\Omega)$,
 $\{H_{\varepsilon}^{i}\}_{\varepsilon>0}$ is bounded in $L^{2}((0, T) \times \Omega)$

Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

3

A result of Kato:

Theorem

Let A be a closed densely defined linear operator and H a self-adjoint densely defined linear operator in a Hilbert space X. For $\lambda \notin R$, let $R_H[\lambda] = (H - \lambda Id)^{-1}$ denote the resolvent of H. Suppose that

$$\Gamma = \sup_{\lambda \notin R, \ v \in \mathcal{D}(A^*), \ \|v\|_X = 1} \|A \circ R_H[\lambda] \circ A^*[v]\|_X < \infty.$$

Then

$$\sup_{w \in X, \|w\|_X=1} \frac{\pi}{2} \int_{-\infty}^{\infty} \|A \exp(-\mathrm{i} t \mathcal{H})[w]\|_X^2 \, \mathrm{d} t \leq \Gamma^2.$$

Eduard Feireisl

Asymptotic analysis

э

Application of Kato's theorenm:

$$X = L^2(\Omega), \ H = \sqrt{-\Delta_N}, \ A[v] = \varphi G(-\Delta_N)[v], \ v \in X$$

 $G \in C^{\infty}_{c}(0,\infty), \ \varphi \in C^{\infty}_{c}(\Omega)$ are given functions

イロト イポト イヨト イヨト Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague