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1 Introduction

The large scale dynamics arising in stellar magnetoconvection is driven in an essential way by
the boundary conditions, see Gough [11]. The flux separation and pattern formation arise in the
turbulent regime when the fluid flow is far from equilibrium. As the underlying field equations are
non–linear, the existence of global in time smooth solutions in such a regime is not known. Indeed
the vast majority of global existence results in the class of classical solutions is restricted to the
initial state close to a stable equilibrium, see a.g. Matsumura and Nishida [13], Valli [18], among
others. What is more, the recent results of Merle et al. [14], [15] indicate that classical solutions
may develop singularities in a finite time.
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In view of the above arguments, the concept of weak solution represents a suitable alternative
to restore global–in–time existence even for problems with large data and solutions remaining out
of equilibrium in the long run. We consider a mathematical model of fully compressible three
dimensional fluid convection driven by an externally imposed magnetic field. The fluid occupies
a bounded domain Ω ⊂ R3 with regular boundary. The time evolution of the density % = %(t, x),
the (absolute) temperature ϑ = ϑ(t, x), the velocity field u = u(t, x), and the magnetic field
B = B(t, x) is governed by the compressible MHD system of field equations (cf. [6]):

Equation of continuity

∂t%+ divx(%u) = 0. (1.1)

Momentum equation

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,∇xu) + curlxB×B + %g. (1.2)

Induction equation

∂tB + curlx(B× u) + curlx(ζ(ϑ)curlxB) = 0, divxB = 0. (1.3)

Internal energy balance

∂t(%e(%, ϑ)) + divx(%e(%, ϑ)u) + divxq(ϑ,∇xϑ)

= S(ϑ,∇xu) : ∇xu + ζ(ϑ)|curlxB|2 − p(%, ϑ)divxu. (1.4)

The pressure p = p(%, ϑ) and the internal energy e = e(%, ϑ) are interrelated through Gibbs’
equation

ϑDs = De+ pD

(
1

%

)
, (1.5)

where s = s(%, ϑ) is the entropy. Consequently, the internal energy balance (1.4) may be reformu-
lated in the form of entropy balance equation

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
=

1

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
,

(1.6)

see e.g. Gough [11], Weiss and Proctor [20], Tao et al. [16].
The right–hand side of equation (1.4) represents the entropy production rate, which, in accor-

dance with the Second law of thermodynamics, must be non–negative. Accordingly, we consider
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Newtonian fluid, with the viscous stress tensor

S(ϑ,∇xu) = µ(ϑ)

(
∇xu +∇t

xu−
2

3
divxuI

)
+ η(ϑ)divxuI, (1.7)

where the viscosity coefficients µ > 0 and η ≥ 0 are continuously differentiable functions of the
temperature. Similarly, the heat flux obeys Fourier’s law,

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ, (1.8)

where the heat conductivity coefficient κ > 0 is a continuously differentiable function of the
temperature.

The existence of global–in–time weak solutions for the compressible MHD system (1.1)–(1.8)
was shown in [6] under certain physically relevant restrictions imposed on constitutive equations
and transport coefficients. The boundary conditions considered in [6] are conservative,

u|∂Ω = 0, ∇xϑ · n|∂Ω = 0, B · n|∂Ω = 0, [B× u + ζcurlxB]× n|∂Ω = 0 (1.9)

characteristic for closed systems. If the driving force g in the momentum equation is conservative,
meaning g = ∇xG, G = G(x), the total energy of the system is conserved and the dynamics obeys
the rather “boring” scenario formulated by the celebrated statement of Clausius:

The energy of the world is constant; its entropy tends to a maximum.

A rigorous mathematical proof of this statement for the Navier–Stokes–Fourier system was given
in [10].

As pointed out by Gough [11], a rich fluid behaviour is conditioned by a proper choice of bound-
ary conditions. Motivated by models in astrophysics, we suppose the boundary ∂Ω is impermeable
and the tangential component of the normal viscous stress vanishes on it,

u · n|∂Ω = 0, (S · n)× n|∂Ω = 0. (1.10)

However, the theory presented in this paper can accommodate more general boundary conditions
for the velocity field discussed in Section 6.

Similarly to the well known Rayleigh–Bénard problem, see e.g. Davidson [5], we impose the
inhomogeneous Dirichlet boundary conditions for the temperature,

ϑ|∂Ω = ϑB, ϑB > 0. (1.11)

To incorporate the effect of an exterior magnetic field, we suppose that B is (not necessarily
small) perturbation of a background magnetic field BB, divxBB = 0,

B = BB + b.
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In the context of astrophysics, we may think of BB as being the magnetic field imposed by a
massive star. As for b, we suppose either

b× n|∂Ω = 0 ⇒ B× n|∂Ω = BB × n|∂Ω, (1.12)

or
b · n|∂Ω = 0 ⇒ B · n|∂Ω = BB · n|∂Ω. (1.13)

The boundary condition (1.12) is of Dirichlet type, compatible with the requirement of solenoidality
of B. The condition (1.13) is of flux type, similar to the first condition (1.10) and must be
accompanied by another flux condition related to the electric field, namely[

B× u + ζcurlxB
]
× n|∂Ω = 0. (1.14)

The flux in (1.14) may be inhomogeneous as well. The borderline case BB = 0 in (1.12) and
(1.13) corresponds to a perfectly isolating and perfectly conducting boundary, respectively (see
e.g. Alekseev [1]).

For possibly technical but so far unsurmountable reasons, a mathematically tractable weak for-
mulation of compresible MHD system cannot be based on merely rewriting the system (1.1)–(1.4)
in the sense of distributions. The available a priori bounds are not strong enough to render certain
terms, notably p(%, ϑ)divxu in the internal energy balance (1.4), integrable. A remedy proposed
in [6] is replacing (1.4) by the entropy equation (1.6). Unfortunately, the entropy production rate
is a priori bounded only in the non–reflexive space L1 of integrable functions. As a result, any
approximation scheme provides merely an inequality

∂t(%s(%, ϑ)) + divx(%s(%, ϑ)u) + divx

(
q(ϑ,∇xϑ)

ϑ

)
≥ 1

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
(1.15)

satisfied in the sense of distributions.
Replacing entropy equation by inequality definitely enlarges the class of possible solutions and

gives rise to an underdetermined problem. To save well posedness, at least formally, the integrated
total energy balance/inequality is appended to the system (1.1)–(1.3), (1.15) in [6]. The total
energy balance reads

∂t

(
1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2

)
+ divx

[(
1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2 + p(%, ϑ)

)
u

]
+ divx

[
(B× u)×B + ζ(ϑ)curlxB×B

]
− divx(S(ϑ,∇xu) · u) + divxq(ϑ,∇xϑ) = %g · u.

(1.16)
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If the system is conservative, the total energy flux vanishes on the boundary and (1.16) integrated
over Ω yields

d

dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2

)
dx =

∫
Ω

%g · u dx. (1.17)

It turns out that the equations (1.1)–(1.3), the inequality (1.15), together with the integral identity
(1.17) represent a suitable weak formulation for the conservative system. Indeed the existence of
global–in–time weak solutions for any finite energy (initial) data was proved in [6]. The weak
solutions comply with a natural compatibility principle. Any sufficiently smooth weak solution
is a classical solution of the problem. In addition, the weak solutions satisfy the weak–strong
uniqueness principle: A weak solution coincides with the strong solution on the life span of the
latter, see [7].

The situation becomes more delicate for open (non–conservative) systems, with inhomogeneous
Dirichlet boundary conditions. The heat flux q · n as well as the induction flux (the normal
component of the electric field) [B×u×B+ ζcurlxB×B] ·n do not necessarily vanish on ∂Ω and
give rise to additional uncontrollable sources of energy in (1.17). In [4] (see also the monograph [9]),
a new approach has been developed to handle the inhomogeneous Dirichlet boundary conditions
for the temperature. The total energy balance (1.17) is replaced by a similar inequality for the
ballistic energy [

1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2 − ϑ̃%s(%, ϑ)

]
,

where ϑ̃ is an arbitrary extension of the boundary temperature ϑB inside Ω. Pursuing the same
strategy, we introduce a “magnetic” variant of the ballistic energy

EBM =

[
1

2
%|u|2 + %e+

1

2
|B|2 − ϑ̃%s−BB ·B

]
, (1.18)

After a straightforward manipulation, we deduce equality

d

dt

∫
Ω

(
1

2
%|u|2 + %e+

1

2
|B|2 − ϑ̃%s−BB ·B

)
dx

+

∫
Ω

ϑ̃

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ
+ ζ|curlxB|2

)
dx

= −
∫

Ω

(
%s∂tϑ̃+ %su · ∇xϑ̃+

q

ϑ
· ∇xϑ̃

)
dx

−
∫

Ω

(
B · ∂tBB − (B× u) · curlxBB − ζcurlx B · curlxBB

)
dx

+

∫
Ω

%g · u dx (1.19)

as soon as ϑ̃|∂Ω = ϑB, ϑ̃ > 0, B× n|∂Ω = BB × n|∂Ω. The same is true if B · n|∂Ω = BB · n|∂Ω and
the vanishing tangential flux condition (1.14) holds. Note carefully that (1.19) does not contain
the boundary flux integrals; whence it is suitable for a weak formulation of the problem.
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The mathematical theory we propose is based on imposing the weak form of the equations
(1.1)–(1.3), together with the entropy inequality (1.15), and the ballistic energy balance (1.19) as
a weak formulation of the compressible MHD system. The basic hypotheses concerning the state
equation and the transport coefficients as well as the exact definition of weak solution are given in
Section 2. In Section 3 we introduce the basic tool to investigate stability properties in the class
of weak solutions – the relative energy inequality. In Section 4, we show that the weak solutions
enjoy the weak–strong uniqueness property. In Section 5, the existence of global–in–time weak
solutions is established by means of a multilevel approximation scheme. The paper is concluded
in Section 6 by a brief discussion on possible extensions of the theory to a larger class of boundary
conditions.

2 Weak formulation

We start by a list of structural hypotheses imposed on the equation of state and the transport
coefficients.

2.1 Equation of state

Our choice of the equation of state is motivated by [9, Chapter 4]. In particular, we consider
the radiation contribution to the pressure/internal energy relevant to problems in astrophysics, cf.
Battaner [3]. In accordance with Gibbs’ relation (1.5) we suppose that

p(%, ϑ) = pM(%, ϑ) + pR(ϑ), pM(%, ϑ) = ϑ
5
2P

(
%

ϑ
3
2

)
, pR(ϑ) =

a

3
ϑ4,

e(%, ϑ) = eM(%, ϑ) + eR(%, ϑ), eM(%, ϑ) =
3

2

ϑ
5
2

%
P

(
%

ϑ
3
2

)
, eR(%, ϑ) =

a

%
ϑ4, a > 0, (2.1)

where the function P ∈ C1[0,∞) satisfies

P (0) = 0, P ′(Z) > 0 for Z ≥ 0, 0 <
5
3
P (Z)− P ′(Z)Z

Z
≤ c for Z > 0. (2.2)

This implies, in particular, that Z 7→ P (Z)/Z
5
3 is decreasing, and we suppose

lim
Z→∞

P (Z)

Z
5
3

= p∞ > 0. (2.3)

Note that pM , eM satisfy the relation characteristic for monoatomic gas,

pM =
2

3
%eM ,
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pR is the radiation pressure with the associated internal energy eR, and (2.3) corresponds to the
presence of electron pressure under the degenerate gas regime. It follows from (2.2) that p and e
satisfy the hypothesis of thermodynamic stability :

∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0. (2.4)

In accordance with (1.5), the entropy takes the form

s(%, ϑ) = sM(%, ϑ) + sR(%, ϑ), sM(%, ϑ) = S
(
%

ϑ
3
2

)
, sR(%, ϑ) =

4a

3

ϑ3

%
, (2.5)

where

S ′(Z) = −3

2

5
3
P (Z)− P ′(Z)Z

Z2
. (2.6)

2.2 Transport coefficients

We suppose the viscosity coefficients in the Newtonian stress S(ϑ,∇xu) are continuously differen-
tiable functions of the temperature satisfying

0 < µ (1 + ϑα) ≤ µ(ϑ) ≤ µ (1 + ϑα) , |µ′(ϑ)| ≤ c for all ϑ ≥ 0,

0 ≤ η(ϑ) ≤ η (1 + ϑα) for some
1

2
≤ α ≤ 1. (2.7)

Note that α = 1
2

corresponds to Sutherland’s law relevant in astrophysics, see Yang et al. [21].
Similarly, the heat conductivity coefficient in the Fourier heat flux q(ϑ,∇xϑ) is a continuously

differentiable function of the temperature satisfying

0 < κ
(
1 + ϑβ

)
≤ κ(ϑ) ≤ κ

(
1 + ϑβ

)
for some β ≥ 3. (2.8)

Here, the case β = 3 reflects the effect of radiation.
Finally, we suppose the magnetic diffusivity coefficient ζ = ζ(ϑ) is a continuously differentiable

function of the temperature,

0 < ζ(1 + ϑ) ≤ ζ(ϑ) ≤ ζ(1 + ϑ), |ζ ′(ϑ)| ≤ c for all ϑ ≥ 0. (2.9)

2.3 Boundary data

We suppose the background magnetic field BB = BB(t, x) is sufficiently smooth at least of class
C1,2([0, T ]× Ω;R3),

divxBB = 0 in (0, T )× Ω. (2.10)

Similarly, we suppose the boundary temperature ϑB can be extended inside Ω, ϑB ∈ C1,2([0, T ]×Ω),

ϑB > 0 in [0, T ]× Ω. (2.11)
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2.4 Weak solutions

Before discussing the concept of weak solution, it is useful to introduce the function spaces

H0,τ (Ω;R3) =
{

b ∈ L2(Ω;R3)
∣∣∣ curlxb ∈ L2(Ω;Rd), divxb = 0, b× n|∂Ω = 0

}
,

H0,n(Ω;R3) =
{

b ∈ L2(Ω;R3)
∣∣∣ curlxb ∈ L2(Ω;Rd), divxb = 0, b · n|∂Ω = 0

}
.

Both H0,τ and H0,n are endowed with the Hilbert norm

‖b‖2
H0

= ‖curlxb‖2
L2(Ω;R3) + ‖b‖2

L2(Ω;R3),

see e.g. Alexander and Auchmuty [2].

Definition 2.1. (Weak solution to the compressible MHD system)
A quantity (%, ϑ,u,B) is termed weak solution of the compressible MHD system (1.1)–

(1.4), with the boundary conditions (1.10), (1.11), (1.12) (respectively (1.13)), and the initial
data

%(0, ·) = %0, ϑ(0, ·) = ϑ0, u(0, ·) = u0, B(0, ·) = B0, (2.12)

if the following holds:

• Equation of continuity. % ∈ Cweak([0, T ];L
5
3 (Ω)), % ≥ 0 in (0, T )×Ω, and the integral

identity∫ τ

0

∫
Ω

(
%∂tϕ+ %u · ∇xϕ

)
dx dt = −

[∫
Ω

%ϕ dx

]t=τ
t=0

, %(0, ·) = %0, (2.13)

holds for any ϕ ∈ C1([0, T ]× Ω). In addition, the renormalized version of (2.13)∫ τ

0

∫
Ω

(
b(%)∂tϕ+ b(%)u · ∇xϕ+

(
b(%)− b′(%)%

)
divxu

)
dx dt =

[∫
Ω

b(%)ϕ dx

]t=τ
t=0

(2.14)
holds for any ϕ ∈ C1([0, T ]× Ω) and any b ∈ C1(R), b′ ∈ Cc(R).

• Momentum equation.

%u ∈ Cweak([0, T ];L
5
4 (Ω;R3), u ∈ L2(0, T ;W 1,q(Ω;R3)), q = 8

5−α , u · n|∂Ω = 0, and the
integral identity∫ τ

0

∫
Ω

(
%u · ∂tϕ + %u⊗ u : ∇xϕ + p(%, ϑ)divxϕ

)
dx

=

∫ τ

0

∫
Ω

S(ϑ,∇xu) : ∇xϕ dx dt−
∫ τ

0

∫
Ω

(
B⊗B− 1

2
|B|2I

)
: ∇xϕ dx dt

9



−
∫ τ

0

∫
Ω

%g ·ϕ dx dt+

[∫
Ω

%u ·ϕ dx

]t=τ
t=0

, (%u)(0, ·) = %0u0 (2.15)

holds for any ϕ ∈ C1([0, T ]× Ω;R3), ϕ · n|∂Ω = 0.

• Induction equation. B ∈ Cweak([0, T ];L2(Ω;R3)),

divxB(τ, ·) = 0 for any τ ∈ [0, T ]. (2.16)

In addition
(B−BB) ∈ L2(0, T ;H0,τ (Ω;R3)) (2.17)

if the boundary condition (1.12) is imposed or

(B−BB) ∈ L2(0, T ;H0,n(Ω;R3)) (2.18)

for the boundary conditions (1.13), (1.14). The integral identity∫ τ

0

∫
Ω

(
B · ∂tϕ− (B× u) · curlxϕ− ζ(ϑ)curlx B · curlx ϕ

)
dx dt

=

[∫
Ω

B ·ϕ dx

]t=τ
t=0

, B(0, ·) = B0, (2.19)

holds for any ϕ ∈ C1([0, T ]× Ω;R3), divxϕ = 0,

ϕ× n|∂Ω = 0 (2.20)

in the case of boundary conditions (1.12),

ϕ · n|∂Ω = 0 (2.21)

for the boundary conditions (1.13), (1.14).

• Entropy inequality. ϑ ∈ L∞(0, T ;L4(Ω)), ϑ > 0 a.a. in (0, T ) × Ω, ϑ − ϑB ∈
L2(0, T ;W 1,2

0 (Ω)), log(ϑ) ∈ L2(0, T ;W 1,2(Ω)), and the integral inequality∫ τ2

τ1

∫
Ω

(
%s(%, ϑ)∂tϕ+ %s(%, ϑ)u · ∇xϕ+

q(ϑ,∇xϑ)

ϑ
· ∇xϕ

)
dx dt

≤ −
∫ τ2

τ1

∫
Ω

1

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
ϕ dx dt
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+

[∫
Ω

%s(%, ϑ)ϕ dx

]t=τ2+

t=τ1−
, 0 ≤ τ1 ≤ τ2 ≤ T, %s(%, ϑ)(0−, ·) = %0s(%0, ϑ0), (2.22)

holds for any ϕ ∈ C1
c ([0, T ]× Ω), ϕ ≥ 0.

• Ballistic energy inequality. The inequality∫
Ω

(
1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2 − ϑ̃%s(%, ϑ)−BB ·B

)
(τ, ·) dx

+

∫ τ

0

∫
Ω

ϑ̃

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤ −
∫ τ

0

∫
Ω

(
%s(%, ϑ)∂tϑ̃+ %s(%, ϑ)u · ∇xϑ̃+

q(ϑ,∇xϑ)

ϑ
· ∇xϑ̃

)
dx

−
∫ τ

0

∫
Ω

(
B · ∂tBB − (B× u) · curlxBB − ζ(ϑ)curlx B · curlxBB

)
dx dt

+

∫ τ

0

∫
Ω

%g · u dx dt

+

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0) +

1

2
|B0|2 − ϑ̃(0, ·)%0s(%0, ϑ0)−BB(0, ·) ·B0

)
dx

(2.23)

holds for any ϑ̃ ∈ C1([0, T ]× Ω), ϑ̃ > 0, ϑ̃|∂Ω = ϑB.

Remark 2.2. As the magnetic field B satisfies (2.16), validity of (2.19) can be extended to any
(not necessarily solenoidal) test function ϕ satisfying (2.20), (2.21), respectively. Indeed, if ϕ
satisfies the boundary condition (2.20), we consider the potential Ψ solving

∆xΨ = divxϕ in Ω, Ψ|∂Ω = 0,

and write
ϕ = (ϕ−∇xΨ) +∇xΨ.

On the one hand, as Ψ vanishes on ∂Ω and B is solenoidal, we have∫
Ω

B · ∇xΨ dx =

∫
Ω

B · ∂t∇xΨ dx = 0;

whence the integral identity (2.19) holds for ∇xΨ. On the other hand, the function (ϕ−∇xΨ) is
solenoidal, and, as ∇xΨ× n|∂Ω = 0, a legal test function in (2.19).
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If ϕ satisfies (2.21), we simply consider

∆xΨ = divxϕ, ∇xΨ · n|∂Ω = ϕ · n|∂Ω = 0

- the standard potential in the Helmholtz decomposition.

Remark 2.3. Unlike %, %u, and B, the total entropy %s(%, ϑ) is not weakly continuous in time.
However, it can be deduced from the entropy inequality that the one sided limits

lim
t→τ−

∫
Ω

%s(%, ϑ)(t, ·)φ dx, lim
t→τ+

∫
Ω

%s(%, ϑ)(t, ·)φ dx

exist for any φ ∈ C(Ω), and

lim
t→τ−

∫
Ω

%s(%, ϑ)(t, ·)φ dx ≤ lim
t→τ+

∫
Ω

%s(%, ϑ)(t, ·)φ dx

whenever φ ≥ 0, see [9, Chapter 3, Section 3.3.3] for details.

Remark 2.4. As we shall see below, the “magnetic” ballistic energy EBM introduced in (1.18) is
in fact a strictly convex l.s.c function of the variables (%, S = %s(%, ϑ),m = %u,B). In particular,
its integral is a weakly lower semi–continuous function; whence (2.23) holds for any time τ with the
convention for entropy discussed Remark 2.3. Alternatively, we may impose a stronger integrated
version of (2.23) in the form∫ T

0

∂tψ

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2 − ϑ̃%s(%, ϑ)−BB ·B

)
dx dt

−
∫ T

0

ψ

∫
Ω

ϑ̃

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≥
∫ T

0

ψ

∫
Ω

(
%s(%, ϑ)∂tϑ̃+ %s(%, ϑ)u · ∇xϑ̃+

q(%, ϑ)

ϑ
· ∇xϑ̃

)
dx dt

+

∫ τ

0

ψ

∫
Ω

(
B · ∂tBB − (B× u) · curlxBB − ζcurlx B · curlxBB

)
dx dt

−
∫ T

0

ψ

∫
Ω

%g · u dx dt

− ψ(0)

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0) +

1

2
|B0|2 − ϑ̃(0, ·)%0s(%0, ϑ0)−BB(0, ·) ·B0

)
dx

(2.24)

for any ψ ∈ C1
c [0, T ), ψ ≥ 0.
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Remark 2.5. Note carefully that the ballistic energy inequality (2.23) remains valid if we replace

BB by any other extension B̃ such that

divxB̃ = 0,

and
B̃× n|∂Ω = BB × n|∂Ω, or B̃ · n|∂Ω = BB · n|∂Ω,

respectively. Indeed the difference BB−B̃ becomes an eligible test function for for the weak form of
the induction equation (2.19), endowed with the boundary conditions (2.20), (2.21), respectively.

The existence of global–in–time weak solutions in the sense of Definition 2.1 will be shown in
Section 5 below.

3 Relative energy

A suitable form of the relative energy for the compressible MHD system reads

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) =
1

2
%|u−U|2 +

1

2
|B−H|2

+ %e(%, ϑ)−Θ
(
%s(%, ϑ)− rs(r,Θ)

)
−
(
e(r,Θ)−Θs(r,Θ) +

p(r,Θ)

r

)
(%− r)− re(r,Θ). (3.1)

In applications, the quantity (%, ϑ,u,B) stands for a weak solution of the compressible MHD
system while (r,Θ,U,H) are arbitrary sufficiently smooth functions satisfying the compatibility
conditions

r > 0, Θ > 0 in [0, T ]× Ω, Θ|∂Ω = ϑB, U · n|∂Ω = 0,

divxH = 0 in (0, T )× Ω, H× n|∂Ω = BB × n|∂Ω, or H · n|∂Ω = BB · n|∂Ω, respectively. (3.2)

As a consequence of hypothesis of thermodynamic stability stated in (2.4), the energy

E(%, ϑ,u,B) =
1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2

is a strictly convex l.s.c. function if expressed in the variables (%, S = %s(%, ϑ),m = %u,B), see [9,
Chapter 3, Section 3.1] for details. Moreover, we have

∂E(%, S,m,B)

∂%
=

(
e(%, ϑ)− ϑs(%, ϑ) +

p(%, ϑ)

%

)
,
∂E(%, S,m,B)

∂S
= ϑ,

where
(
e(%, ϑ)− ϑs(%, ϑ) + p(%,ϑ)

%

)
is Gibbs’ free energy. Consequently, the relative energy can be

seen as Bregman divergence associate to the convex function E. In particular,

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) ≥ 0, and E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) = 0 ⇔ (%, ϑ,u,B) = (r,Θ,U,H)

as long as r > 0.
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3.1 Relative energy inequality

In the remaining part of this section, we derive a relative energy inequality provided (%, ϑ,u,B)
is a weak solution of the compressible MHD system specified in Definition 2.1 and (r,Θ,U,H)
arbitrary smooth functions satisfying (3.2). Our starting point is the ballistic energy inequality
(2.24). As noted in Remark 2.5, we may flip BB for H, and, of course, ϑ̃ for Θ obtaining∫

Ω

(
1

2
%|u|2 + %e(%, ϑ) +

1

2
|B|2 −Θ%s(%, ϑ)−H ·B

)
(τ, ·) dx

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤ −
∫ τ

0

∫
Ω

(
%s(%, ϑ)∂tΘ + %s(%, ϑ)u · ∇xΘ +

q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx

−
∫ τ

0

∫
Ω

(
B · ∂tH− (B× u) · curlxH− ζ(ϑ)curlx B · curlxH

)
dx dt

+

∫ τ

0

∫
Ω

%g · u dx dt

+

∫
Ω

(
1

2
%0|u0|2 + %0e(%0, ϑ0) +

1

2
|B0|2 −Θ(0, ·)%0s(%0, ϑ0)−H(0, ·) ·B0

)
dx (3.3)

3.1.1 Momentum perturbation

Our first goal is to replace |u|2 by |u−U|2. This can be achieved by considering U as a test function
in the momentum balance equation (2.15). After a straightforward manipulation explained in detail
in [9, Chapter 3, Section 3.2.1], we obtain∫

Ω

(
1

2
%|u−U|2 + %e(%, ϑ) +

1

2
|B|2 −Θ%s(%, ϑ)−H ·B

)
(τ, ·) dx

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤ −
∫ τ

0

∫
Ω

(
%(u−U)⊗ (u−U) + p(%, ϑ)I− S(ϑ,∇xu)

)
: ∇xU dx dt

−
∫ τ

0

∫
Ω

(curlxB×B) ·U dx dt

−
∫ τ

0

∫
Ω

%
(
∂tU + U · ∇xU

)
· (u−U) dx dt

−
∫ τ

0

∫
Ω

(
%s(%, ϑ)∂tΘ + %s(%, ϑ)u · ∇xΘ +

q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx+

∫ τ

0

∫
Ω

%g · (u−U) dx dt

−
∫ τ

0

∫
Ω

(
B · ∂tH− (B× u) · curlxH− ζ(ϑ)curlx B · curlx H

)
dx dt
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+

∫
Ω

(
1

2
%0|u0 −U(0, ·)|2 + %0e(%0, ϑ0) +

1

2
|B0|2 −Θ(0, ·)%0s(%0, ϑ0)−H(0, ·) ·B0

)
dx (3.4)

for any (Θ,U,H) as in (3.2).

3.1.2 Density perturbation

Next, exactly as in [9, Chapter 3, Section 3.4], we use the quantity(
e(r,Θ)−Θs(r,Θ) +

p(r,Θ)

r

)
as a test function in the equation of continuity (2.13):∫

Ω

(
1

2
%|u−U|2 + %e(%, ϑ) +

1

2
|B|2 −Θ%s(%, ϑ)−H ·B

)
(τ, ·) dx

+

∫
Ω

(
Θrs(r,Θ)−

(
e(r,Θ)−Θs(r,Θ) +

p(r,Θ)

r

)
(%− r)− re(r,Θ)

)
(τ, ·) dx

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,u) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤ −
∫ τ

0

∫
Ω

(
%(u−U)⊗ (u−U) + p(%, ϑ)I− S(ϑ,∇xu)

)
: ∇xU dx dt

+

∫ τ

0

∫
Ω

%

r
(u−U) · ∇xp(r,Θ) dx dt

−
∫ τ

0

∫
Ω

(curlxB×B) ·U dx dt

−
∫ τ

0

∫
Ω

%
(
∂tU + U · ∇xU +

1

r
∇xp(r,Θ)

)
· (u−U) dx dt

−
∫ τ

0

∫
Ω

(
%
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r,Θ)

)
u · ∇xΘ +

q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx

+

∫ τ

0

∫
Ω

%g · (u−U) dx dt

+

∫ τ

0

∫
Ω

((
1− %

r

)
∂tp(r,Θ)− %

r
u · ∇xp(r,Θ)

)
dx dt

−
∫ τ

0

∫
Ω

(
B · ∂tH− (B× u) · curlxH− ζ(ϑ)curlx B · curlx H

)
dx dt

+

∫
Ω

(
1

2
%0|u0 −U(0, ·)|2 + %0e(%0, ϑ0) +

1

2
|B0|2 −Θ(0, ·)%0s(%0, ϑ0)−H(0, ·) ·B0

)
dx

+

∫
Ω

(
Θs(r,Θ)−

(
e(r,Θ)−Θs(r,Θ) +

p(r,Θ)

r

)
(%0 − r)− re(r,Θ)

)
(0, ·) dx, (3.5)

whenever r ∈ C1([0, T ]× Ω), r > 0.
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3.1.3 Magnetic field perturbation and the final form of relative energy inequality

Since ∫
Ω

1

2
|H|2(τ, ·) dx−

∫
Ω

1

2
|H|2(0, ·) dx =

∫ τ

0

∫
Ω

H · ∂tH dx dt. (3.6)

we may rewrite (3.5) in the final form[∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) dx

]t=τ
t=0

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤ −
∫ τ

0

∫
Ω

(
%(u−U)⊗ (u−U) + p(%, ϑ)I− S(ϑ,∇xu)

)
: ∇xU dx dt

+

∫ τ

0

∫
Ω

%

r
(u−U) · ∇xp(r,Θ) dx dt

−
∫ τ

0

∫
Ω

(curlxB×B) ·U dx dt

−
∫ τ

0

∫
Ω

%
(
∂tU + U · ∇xU +

1

r
∇xp(r,Θ)− g

)
· (u−U) dx dt

−
∫ τ

0

∫
Ω

(
%
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r,Θ)

)
u · ∇xΘ +

q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx

+

∫ τ

0

∫
Ω

((
1− %

r

)
∂tp(r,Θ)− %

r
u · ∇xp(r,Θ)

)
dx dt

−
∫ τ

0

∫
Ω

(
B · ∂tH− (B× u) · curlxH− ζ(ϑ)curlx B · curlx H

)
dx dt

+

∫ τ

0

∫
Ω

H · ∂tH dx dt

(3.7)

for any “test” functions (r,Θ,U,H) specified in (3.2).

Remark 3.1. In view of future applications, in particular the weak–strong uniqueness principle
discussed in the forthcoming section, the class of functions (r,Θ,U,H) in (3.2) can be extended
to the “maximal regularity” framework

r ∈ W 1,q((0, T )× Ω), (Θ,U,B) ∈ Lq(0, T ;W 2,q(Ω;R7)) ∩W 1,q(0, T ;Lq(Ω;R7)), (3.8)

by a density argument. The exponent q must be taken large enough for all terms in (3.7) to be
well defined.
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4 Weak–strong uniqueness principle

The first important property of the weak solutions introduced in Definition 2.1 is the weak–strong
uniqueness principle. We suppose that (r,Θ,U,H) is a smooth solution of the problem, specifically,

∂tr + divx(rU) = 0,

∂tU + U ·U +
1

r
∇xp(r,Θ) =

1

r
divxS(Θ,∇xU) + g +

1

r
curlxH×H,

∂tH + curlx(H×U) + curlx(ζ(Θ)curlxH) = 0, divxH = 0,

r∂ts(r,Θ) + rU · ∇xs(r,Θ) + divx

(
q(Θ,∇xΘ)

Θ

)
=

1

Θ

(
S(Θ,∇xU) : ∇xU−

q(Θ,∇xΘ · ∇xΘ)

Θ
+ ζ(Θ)|curlxH|2

)
, (4.1)

together with the relevant initial and boundary conditions.

Theorem 4.1. (Weak–strong uniqueness)
Let Ω ⊂ R3 be a bounded Lipschitz domain. Suppose the thermodynamic functions p,

e, s satisfy the hypotheses (2.1)–(2.6), and the transport coefficients µ, η, κ, ζ comply with
(2.7)–(2.9), with

1

2
≤ α ≤ 1, β ≥ 3. (4.2)

Let (%, ϑ,u,B) be a weak solution of the compressible MHD system (1.1)–(1.4) in (0, T ) × Ω
specified in Definition 2.1. Suppose that the same problem, with the same initial and boundary
data, admits a classical solution (r,Θ,U,H) in the class

r ∈ C1([0, T ]× Ω), Θ ∈ C1,2([0, T ]× Ω), U, H ∈ C1,2([0, T ]× Ω;R3). (4.3)

Then
% = r, u = U, ϑ = Θ, B = H a.e. in [0, T ]× Ω.

Remark 4.2. As we assume existence of a classical solution in Theorem 4.1, the initial data are
also regular, in particular,

inf
Ω
%0 > 0, inf

Ω
ϑ0 > 0.

Remark 4.3. Remarkably, the result holds in the full range of exponents α, β specified in (4.2).
In particular, we remove the gap between the weak–strong uniqueness principle stated in [4], [9]
for β = 3 and the existence result requiring β > 6. The main novelty is formulated in Lemma 4.4
below.
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The rest of this section is devoted to the proof of Theorem 4.1. Note that existence of local
in time strong solutions to the compressible MHD system can be established by the nowadays
well understood technique proposed by Valli [18], Valli and Zajaczkowski [19], or by a more recent
approach via maximal regularity in the spirit of Kotschote [12]. As noted in Remark 3.1, the
conclusion of Theorem 4.1 remains valid for the strong solutions in the maximal regularity class
used in [12].

The idea of the proof of Theorem 4.1 is simple: We consider the strong solution (r,Θ,U,H)
as test functions in the relative energy inequality (3.7) and use Gronwall’s type argument. We
proceed in several steps specified below.

4.1 Magnetic field

As U solves the momentum equation, we get

−
∫ τ

0

∫
Ω

%
(
∂tU + U · ∇xU +

1

r
∇xp(r,Θ)− g

)
· (u−U) dx dt

=

∫ τ

0

∫
Ω

%

r

(
divxS(Θ,∇xU) + curlxH×H

)
· (U− u) dx dt

=

∫ τ

0

∫
Ω

(%
r
− 1
)(

divxS(Θ,∇xU) + curlxH×H
)
· (U− u) dx dt

+

∫ τ

0

∫
Ω

(
divxS(Θ,∇xU) + curlxH×H

)
· (U− u) dx dt. (4.4)

Similarly, H being the exact solution of the magnetic field equation,

−
∫ τ

0

∫
Ω

(
B · ∂tH− (B× u) · curlxH− ζ(ϑ)curlx B · curlx H

)
dx dt+

∫ τ

0

∫
Ω

H · ∂tH dx dt

=

∫ τ

0

∫
Ω

(B−H) ·
(
curlx(H×U) + curlx(ζ(Θ)curlxH)

)
dx dt

+

∫ τ

0

∫
Ω

(
(B× u) · curlxH + ζ(ϑ)curlx B · curlx H

)
dx dt (4.5)

Regrouping the terms in (3.7), (4.4), (4.5) that do not contain magnetic dissipation, we get the
expression

−
∫

Ω

(curlxB×B) ·U dx+

∫
Ω

(curlxH×H) · (U− u) dx

+

∫
Ω

(B−H) · curlx(H×U) dx+

∫
Ω

(B× u) · curlxH dx.

Now, we claim the identity

−
∫

Ω

(curlxB×B) ·U dx+

∫
Ω

(curlxH×H) · (U− u) dx
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+

∫
Ω

(B−H) · curlx(H×U) dx+

∫
Ω

(B× u) · curlxH dx

=

∫
Ω

(
U× (B−H)

)
· curlx(B−H) dx+

∫
Ω

(
(U− u)× (B−H)

)
· curlxH dx

+

∫
Ω

divx ((B−H)× (H×U)) dx. (4.6)

Indeed the integrals on the right–hand side can be treated as follows:∫
Ω

[(
U× (B−H)

)
· curlx(B−H) +

(
(U− u)× (B−H)

)
· curlxH

]
dx

=

∫
Ω

(U×B) · curlx(B−H) dx−
∫

Ω

(U×H) · curlx(B−H) dx

−
∫

Ω

(
(U− u)× curlxH

)
·B dx+

∫
Ω

(
curlxH×H

)
· (U− u) dx

= −
∫

Ω

(curlxB×B)U dx+

∫
Ω

(
curlxH×H

)
· (U− u) dx

−
∫

Ω

(U×B) · curlxH dx−
∫

Ω

(U×H) · curlx(B−H) dx

−
∫

Ω

(
U× curlxH

)
·B dx+

∫
Ω

(u× curlxH) ·B dx

= −
∫

Ω

(curlxB×B) ·U dx+

∫
Ω

(
curlxH×H

)
· (U− u) dx

+

∫
Ω

(B× u) · curlxH dx+

∫
Ω

(H×U) · curlx(B−H) dx

= −
∫

Ω

(curlxB×B) ·U dx+

∫
Ω

(
curlxH×H

)
· (U− u) dx

+

∫
Ω

(B× u) · curlxH dx+

∫
Ω

(B−H) · curlx(H×U) dx

+

∫
Ω

divx ((B−H)× (H×U)) dx.

Summing up the previous discussion, we may rewrite inequality (3.7) in the form∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) (τ, ·) dx

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S : ∇xu−

q · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤ −
∫ τ

0

∫
Ω

(
%(u−U)⊗ (u−U) + pI− S

)
: ∇xU dx dt
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+

∫ τ

0

∫
Ω

%

r
(u−U) · ∇xp(r,Θ) dx dt

−
∫ τ

0

∫
Ω

divxS(Θ,∇xU) · (u−U) dx dt

−
∫ τ

0

∫
Ω

(
%(s− s(r,Θ))∂tΘ + %(s− s(r,Θ))u · ∇xΘ +

q

ϑ
· ∇xΘ

)
dx

+

∫ τ

0

∫
Ω

((
1− %

r

)
∂tp(r,Θ)− %

r
u · ∇xp(r,Θ)

)
dx dt

+

∫ τ

0

∫
Ω

(B−H) · curlx(ζ(Θ)curlxH) dx dt+

∫ τ

0

∫
Ω

ζ(ϑ)curlxB · curlxH dx dt

+

∫ τ

0

∫
Ω

(%
r
− 1
)(

divxS(Θ,∇xU) + curlxH×H
)
· (U− u) dx dt

+

∫ τ

0

∫
Ω

(
U× (B−H)

)
· curlx(B−H) dx dt

+

∫ τ

0

∫
Ω

(
(U− u)× (B−H)

)
· curlxH dx dt

+

∫ τ

0

∫
Ω

divx ((B−H)× (H×U)) dx dt (4.7)

In addition, we have∫
Ω

(B−H) · curlx(ζ(Θ)curlxH) dx =

∫
Ω

ζ(Θ)curlxH · curlx(B−H) dx

+

∫
Ω

divx (ζ(Θ)(B−H) · curlxH) dx. (4.8)

We claim∫ τ

0

∫
Ω

divx ((B−H)× (H×U)) dx dt+

∫
Ω

divx (ζ(Θ)(B−H)× curlxH) dx

=

∫ τ

0

∫
∂Ω

(
(B−H)× (H×U)

)
· n +

(
ζ(Θ)(B−H) · curlxH

)
· n dσ dt = 0. (4.9)

Indeed either B, H satisfy the boundary condition (1.12) and then (B−H)×n = 0 or H satisfies
the flux condition (1.14). In both cases the surface integral in (4.9) vanishes.

Thus relation (4.7) takes the form∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) (τ, ·) dx

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt
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≤
∫ τ

0

∫
Ω

%

r
(u−U) · ∇xp(r,Θ) dx dt−

∫ τ

0

∫
Ω

p(%, ϑ)divxU dx dt

+

∫ τ

0

∫
Ω

S(Θ,∇xU) : ∇x(u−U) dx dt+

∫ τ

0

∫
Ω

S(ϑ,∇xu) : ∇xU dx dt

−
∫ τ

0

∫
Ω

(
%
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r,Θ)

)
u · ∇xΘ +

q

ϑ
· ∇xΘ

)
dx

+

∫ τ

0

∫
Ω

((
1− %

r

)
∂tp(r,Θ)− %

r
u · ∇xp(r,Θ)

)
dx dt

+

∫ τ

0

∫
Ω

ζ(Θ)curlx(B−H) · curlxH dx dt+

∫ τ

0

∫
Ω

ζ(ϑ)curlxB · curlxH dx dt

+

∫ τ

0

∫
Ω

(%
r
− 1
)(

divxS(Θ,∇xU) + curlxH×H
)
· (U− u) dx dt

+

∫
Ω

(
U× (B−H)

)
· curlx(B−H) dx+

∫
Ω

(
(U− u)× (B−H)

)
· curlxH dx

−
∫ τ

0

∫
Ω

(
%(u−U)⊗ (u−U)

)
: ∇xU dx dt (4.10)

4.2 Pressure and entropy

After a simple manipulation, we can rewrite (4.10) in the form∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) (τ, ·) dx

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤
∫ τ

0

∫
Ω

(
p(r,Θ)− p(%, ϑ)

)
divxU dx dt

−
∫ τ

0

∫
Ω

(
r
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ + r

(
s(%, ϑ)− s(r,Θ)

)
U · ∇xΘ

)
dx

+

∫ τ

0

∫
Ω

(
1− %

r

)(
∂tp(r,Θ) + U · ∇xp(r,Θ)

)
dx dt

+

∫ τ

0

∫
Ω

S(Θ,∇xU) : ∇x(u−U) dx dt+

∫ τ

0

∫
Ω

S(ϑ,∇xu) : ∇xU dx dt

+

∫ τ

0

∫
Ω

ζ(Θ)curlx(B−H) · curlxH dx dt+

∫ τ

0

∫
Ω

ζ(ϑ)curlxB · curlxH dx dt

−
∫ τ

0

∫
Ω

q(ϑ,∇xϑ)

ϑ
· ∇xΘ dx dt+

∫ τ

0

R1, (4.11)
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with a quadratic remainder

R1 =

∫ τ

0

∫
Ω

(r − %)
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ dx dt

+

∫ τ

0

∫
Ω

(r − %)
(
s(%, ϑ)− s(r,Θ)

)
U · ∇xΘ dx dt

+

∫ τ

0

∫
Ω

%
(
s(%, ϑ)− s(r,Θ)

)
(U− u) · ∇xΘ dx dt

+

∫ τ

0

∫
Ω

(%
r
− 1
)(

divxS(Θ,∇xU) + curlxH×H−∇xp(r,Θ)
)
· (U− u) dx dt

+

∫
Ω

(
U× (B−H)

)
· curlx(B−H) dx+

∫
Ω

(
(U− u)× (B−H)

)
· curlxH dx

−
∫ τ

0

∫
Ω

(
%(u−U)⊗ (u−U)

)
: ∇xU dx dt

+

∫ τ

0

∫
Ω

(%
r
− 1
)

(u−U) · ∇xp(r,Θ) dx dt. (4.12)

Using the identity
∂s(r,Θ)

∂%
= − 1

r2

∂p(r,Θ)

∂ϑ

we compute, exactly as in [4, Section 3.3],(
1−%

r

)
(∂tp(r,Θ) + U · ∇xp(r,Θ)) + divxU

(
p(r,Θ)− p(%, ϑ)

)
=divxU

(
p(r,Θ)− ∂p(r,Θ)

∂%
(r − %)− ∂p(r,Θ)

∂ϑ
(Θ− ϑ)− p(%, ϑ)

)
−r(r − %)

∂s(r,Θ)

∂%

(
∂tΘ + U · ∇xΘ

)
− r(Θ− ϑ)

∂s(r,Θ)

∂ϑ

(
∂tΘ + U · ∇xΘ

)
−(Θ− ϑ)divx

(
q(Θ,∇xΘ)

Θ

)
+

(
1− ϑ

Θ

)(
S(Θ,∇xU) : ∇xU−

q(Θ,∇xΘ) · ∇xΘ

Θ

)
.

Consequently, inequality (4.11) can be written as∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) (τ, ·) dx

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu−

q(ϑ,∇xϑ) · ∇xϑ

ϑ
+ ζ(ϑ)|curlxB|2

)
dx dt

≤ −
∫ τ

0

∫
Ω

(Θ− ϑ)divx

(
q(Θ,∇xΘ)

Θ

)
dx dt

+

∫ τ

0

∫
Ω

(
1− ϑ

Θ

)(
S(Θ,∇xU) : ∇xU−

q(Θ,∇xΘ) · ∇xΘ

Θ
+ ζ(Θ)|curlxH|2

)
dx dt
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+

∫ τ

0

∫
Ω

S(Θ,∇xU) : ∇x(u−U) dx dt+

∫ τ

0

∫
Ω

S(ϑ,∇xu) : ∇xU dx dt

+

∫ τ

0

∫
Ω

ζ(Θ)curlx(B−H) · curlxH dx dt+

∫ τ

0

∫
Ω

ζ(ϑ)curlxB · curlxH dx dt

−
∫ τ

0

∫
Ω

q(ϑ,∇xϑ)

ϑ
· ∇xΘ dx dt+

∫ τ

0

R2, (4.13)

with a remainder

R2 =

∫ τ

0

∫
Ω

(r − %)
(
s(%, ϑ)− s(r,Θ)

)
∂tΘ dx dt

+

∫ τ

0

∫
Ω

(r − %)
(
s(%, ϑ)− s(r,Θ)

)
U · ∇xΘ dx dt

+

∫ τ

0

∫
Ω

%
(
s(%, ϑ)− s(r,Θ)

)
(U− u) · ∇xΘ dx dt

+

∫ τ

0

∫
Ω

(%
r
− 1
)(

divxS(Θ,∇xU) + curlxH×H−∇xp(r,Θ)
)
· (U− u) dx dt

+

∫
Ω

(
U× (B−H)

)
· curlx(B−H) dx+

∫
Ω

(
(U− u)× (B−H)

)
· curlxH dx

−
∫ τ

0

∫
Ω

(
%(u−U)⊗ (u−U)

)
: ∇xU dx dt

+

∫ τ

0

∫
Ω

(%
r
− 1
)

(u−U) · ∇xp(r,Θ) dx dt

+

∫ τ

0

∫
Ω

divxU
(
p(r,Θ)− ∂p(r,Θ)

∂%
(r − %)− ∂p(r,Θ)

∂ϑ
(Θ− ϑ)− p(%, ϑ)

)
dx dt

+

∫ τ

0

∫
Ω

r

(
s(r,Θ)− ∂s(r,Θ)

∂%
(r − %)− ∂s(r,Θ)

∂ϑ
(Θ− ϑ)− s(%, ϑ)

)
(∂tΘ + U · ∇xΘ) dx dt.

(4.14)

4.3 Diffusive terms

First, as ϑ, Θ coincide on ∂Ω, we can integrate by parts:

−
∫ τ

0

∫
Ω

(Θ− ϑ)divx

(
q(Θ,∇xΘ)

Θ

)
dx dt =

∫ τ

0

∫
Ω

(
q(Θ,∇xΘ)

Θ

)
· (∇xΘ−∇xϑ) dx dt

Putting all diffusive terms on the left–hand side of the relative energy inequality (4.13), we get∫ τ

0

∫
Ω

(
Θ

ϑ
S(ϑ,∇xu) : ∇xu− S(ϑ,∇xu) : ∇xU)− S(Θ,∇xU) : ∇x(u−U)

)
dx dt

=

∫ τ

0

∫
Ω

((
Θ

ϑ
− 1

)
S(ϑ,∇xu) : ∇xu +

(
S(ϑ,∇xu)− S(Θ,∇xU)

)
: ∇x(u−U)

)
dx dt.

(4.15)
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Similarly∫ τ

0

∫
Ω

(
Θ

ϑ
ζ(ϑ)|curlxB|2 − ζ(Θ)curlx(B−H) · curlxH− ζ(ϑ)curlxB · curlxH

)
dx dt

=

∫ τ

0

∫
Ω

((
Θ

ϑ
− 1

)
ζ(ϑ)|curlxB|2 +

(
ζ(ϑ)curlxB− ζ(Θ)curlxH

)
· curlx(B−H)

)
dx dt.

(4.16)

Finally,

−
∫ τ

0

∫
Ω

(
Θ

ϑ

q(%,∇xϑ) · ∇xϑ

ϑ

)
dx dt+

∫ τ

0

∫
Ω

(Θ− ϑ)divx

(
q(Θ,∇xΘ)

Θ

)
dx dt

+

∫ τ

0

∫
Ω

(
1− ϑ

Θ

)(
q(Θ,∇xΘ) · ∇xΘ

Θ

)
dx dt+

∫ τ

0

∫
Ω

q(ϑ,∇xϑ)

ϑ
· ∇xΘ dx dt

=

∫ τ

0

∫
Ω

((
1− Θ

ϑ

)
q(ϑ,∇xϑ) · ∇xϑ

ϑ
+

(
1− ϑ

Θ

)
q(Θ,∇xΘ) · ∇xΘ

Θ

)
dx dt

+

∫ τ

0

∫
Ω

(
q(ϑ,∇xϑ)

ϑ
− q(Θ,∇xΘ)

Θ

)
· (∇xΘ−∇xϑ) dx dt (4.17)

Thus (4.13) can be rewritten in the final form∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) (τ, ·) dx

+

∫ τ

0

∫
Ω

(
Θ

ϑ
− 1

)
S(ϑ,∇xu) dx dt+

∫ τ

0

∫
Ω

(
ϑ

Θ
− 1

)
S(Θ,∇xU) dx dt

+

∫ τ

0

∫
Ω

(
Θ

ϑ
− 1

)
ζ(ϑ)|curlxB|2 dx dt+

∫ τ

0

∫
Ω

(
ϑ

Θ
− 1

)
ζ(Θ)|curlxH|2 dx dt

+

∫ τ

0

∫
Ω

((
1− Θ

ϑ

)
q(%,∇xϑ) · ∇xϑ

ϑ
+

(
1− ϑ

Θ

)
q(Θ,∇xΘ) · ∇xΘ

Θ

)
dx dt

+

∫ τ

0

∫
Ω

(
S(ϑ,∇xu)− S(Θ,∇xU)

)
: ∇x

(
u−U

)
dx dt

+

∫ τ

0

∫
Ω

(
ζ(ϑ)curlxB− ζ(Θ)curlxH

)
· curlx(B−H) dx dt

+

∫ τ

0

∫
Ω

(
q(ϑ,∇xϑ)

ϑ
− q(Θ,∇xΘ)

Θ

)
· (∇xΘ−∇xϑ) dx dt

≤
∫ τ

0

R2 dt, (4.18)

with R2 given in (4.14).
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4.4 Refined estimates

Similarly to [9, Chapter 4, Section 4.2.1], we introduce the “essential” and “residual” component
of a measurable function. We set

Oess =

{
(t, x) ∈ (0, T )× Ω

∣∣∣ 1

2
inf

(0,T )×Ω
r ≤ %(t, x) ≤ 2 sup

(0,T )×Ω

r

1

2
inf

(0,T )×Ω
Θ ≤ ϑ(t, x) ≤ 2 sup

(0,T )×Ω

Θ

}
Ores =

(
(0, T )× Ω

)
\ Oess,

hess = h1Oess , hres = h− hess = h1Ores .

The remaining part of the proof of weak–strong uniqueness principle follows essentially the
arguments of [9, Chapter 4, Section 4], with the necessary modifications to accommodate the
terms containing the magnetic field as well as the complete slip/Dirichlet boundary conditions.
First, we recall the coercivity property of the relative energy:

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) ≥ c
(
|[%− r]ess|2 + |[ϑ−Θ]ess|2 + |[u−U]ess|2 + |[B−H]ess|2

)
,

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) ≥ (1res + [%|u|2]res + [%e(%, ϑ)]res + [%|s(%, ϑ)|]res + [|B|2]res

)
, (4.19)

where the constant depend on inf r, sup r, inf Θ, sup Θ.

4.4.1 Temperature gradient

The following crucial estimate was proved in [9, Chapter 4, Section 4.2.2] for β = 3. Here, we
extend its validity to general β ≥ 3.

Lemma 4.4. Under the hypotheses of Theorem 4.1, there is a constant c > 0,

‖ϑ−Θ‖2
W 1,2(Ω;R3)

≤ c

∫
Ω

((
Θ

ϑ
− 1

)
κ(ϑ)|∇xϑ|2

ϑ
+

(
ϑ

Θ
− 1

)
κ(Θ)|∇xΘ|2

Θ

)
dx

+

∫
Ω

(
κ(Θ)∇xΘ

Θ
− κ(ϑ)∇xϑ

ϑ

)
· (∇xΘ−∇xϑ) dx+ ξ

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) dx (4.20)

where ξ > 0 depends on Θ, inf Θ, and ‖ϑ‖L4(Ω).

Remark 4.5. As we shall see below, the result holds whenever κ(ϑ) ≈ 1 + ϑβ, β ≥ 2.
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Proof. We consider first the essential part. Rewrite(
Θ

ϑ
− 1

)
κ(ϑ)|∇xϑ|2

ϑ
+

(
ϑ

Θ
− 1

)
κ(Θ)|∇xΘ|2

Θ
+

(
κ(Θ)∇xΘ

Θ
− κ(ϑ)∇xϑ

ϑ

)
· (∇xΘ−∇xϑ)

≥ Θ
κ(ϑ)

ϑ2
|∇xϑ−∇xΘ|2 + 2

κ(ϑ)

ϑ2
(Θ− ϑ)(∇xϑ−∇xΘ) · ∇xΘ

+

(
κ(ϑ)

ϑ
− κ(Θ)

Θ

)
(∇xϑ−∇xΘ) · ∇xΘ +

(
κ(ϑ)

ϑ
− κ(Θ)

Θ

)(
Θ− ϑ

Θ

)
|∇xΘ|2. (4.21)

Applying Hölder’s inequality we deduce from (4.21)∫
Ω

|[∇xϑ−∇xΘ]ess|2 dx

<∼
[(

Θ

ϑ
− 1

)
κ(ϑ)|∇xϑ|2

ϑ
+

(
ϑ

Θ
− 1

)
κ(Θ)|∇xΘ|2

Θ
+

(
κ(Θ)∇xΘ

Θ
− κ(ϑ)∇xϑ

ϑ

)
· (∇xΘ−∇xϑ)

]
ess

+ ξ

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H)
ess

dx, (4.22)

where ξ depends on Θ. As a matter of fact, the only hypotheses to be imposed on κ is that
κ(ϑ) > 0 whenever ϑ > 0.

As for the residual part, we first rewrite(
Θ

ϑ
− 1

)
κ(ϑ)|∇xϑ|2

ϑ
+

(
ϑ

Θ
− 1

)
κ(Θ)|∇xΘ|2

Θ
+

(
κ(Θ)∇xΘ

Θ
− κ(ϑ)∇xϑ

ϑ

)
· (∇xΘ−∇xϑ)

=
Θ

ϑ

κ(ϑ)|∇xϑ|2

ϑ
+
ϑ

Θ

κ(Θ)|∇xΘ|2

Θ
− κ(ϑ)∇xϑ

ϑ
· ∇xΘ−

κ(Θ)∇xΘ

Θ
· ∇xϑ (4.23)

Obviously, [
ϑ

Θ

κ(Θ)|∇xΘ|2

Θ

]
res

<∼
∫

Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H)
res

dx.

Consequently, as inf Θ > 0, it remains to handle a quantity[
κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

]
res

where C is a positive constant depending on Θ, inf Θ. Note that this step requires ϑ2 <∼ κ(ϑ).
To proceed we consider ϑ > 0 to be fixed below. We write[

κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

]
res

1ϑ<ϑ +

[
κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

]
res

1ϑ≥ϑ.

Obviously, there is ξ = ξ(ϑ,Θ) such that∫
Ω

|[∇xϑ]res|21ϑ<ϑ dx
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<∼
∫

Ω

[
κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

]
res

1ϑ<ϑ dx+ ξ

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H)
res

dx. (4.24)

Thus it remains to handle the integral∫
Ω

[
κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

]
res

1ϑ≥ϑ dx =

∫
ϑ≥ϑ

(
κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

)
dx.

As κ(ϑ) ≈ (1 + ϑβ), our task reduces to∫
ϑ≥ϑ

(
κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

)
dx ≈

∫
ϑ≥ϑ

(
|∇xϑ

β
2 |2 − Cϑβ|∇xΘ|

)
dx.

First observe ∫
ϑ≥ϑ

ϑβ|∇xΘ| dx ≤
∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)2

|∇xΘ| dx+

∫
ϑ≥ϑ

ϑ
β|∇xΘ| dx,

where ∫
ϑ≥ϑ

ϑ
β|∇xΘ| dx ≤ ζ

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H)
res

dx.

Finally, it remains to handle the integral∫
ϑ≥ϑ

(
|∇xϑ

β
2 |2 − C

(
ϑ
β
2 − ϑ

β
2

)2

|∇xΘ|

)
dx

=

∫
ϑ≥ϑ

(∣∣∣∣∇x

(
ϑ
β
2 − ϑ

β
2

)∣∣∣∣2 − C (ϑβ
2 − ϑ

β
2

)2

|∇xΘ|

)
dx.

On the one hand, using Sobolev–Poincaré inequality we get∫
ϑ≥ϑ

∣∣∣∣∇x

(
ϑ
β
2 − ϑ

β
2

)∣∣∣∣2 dx =

∫
Ω

∣∣∣∣∣∇x

[
ϑ
β
2 − ϑ

β
2

]+
∣∣∣∣∣
2

dx

>∼

∫
Ω

∣∣∣∣∣
[
ϑ
β
2 − ϑ

β
2

]+
∣∣∣∣∣
6

dx

 1
3

=

(∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)6

dx

) 1
3

. (4.25)

On the other hand, by Hölder’s inequality,

∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)2

|∇xΘ| dx ≤

(∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)4

dx

) 1
2 (∫

ϑ≥ϑ
|∇xΘ|2 dx

) 1
2

.
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Next, by Jensen’s inequality,

(∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)4

dx

) 3
2

=

∫
Ω

([
ϑ
β
2 − ϑ

β
2

]+
)4

dx

 3
2

<∼
∫

Ω

([
ϑ
β
2 − ϑ

β
2

]+
)6

dx =

∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)6

dx;

whence (∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)4

dx

) 1
2

<∼

(∫
ϑ≥ϑ

(
ϑ
β
2 − ϑ

β
2

)6

dx

) 1
3

. (4.26)

Our final observation is that as ‖ϑ‖L4(Ω) is bounded, for any δ > 0, there is ϑ(δ) such that∫
ϑ≥ϑ
|∇xΘ|2 dx ≤ δ.

Combining (4.25), (4.26) we may infer∫
Ω

|[∇xϑ]res|21ϑ≥ϑ dx

<∼
∫

Ω

[
κ(ϑ)|∇xϑ|2

ϑ2
− Cκ(ϑ)|∇xΘ|

]
res

dx+ ξ

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H)
res

dx (4.27)

Putting together (4.22), (4.24), and (4.27) we obtain (4.20).

4.4.2 Viscous stress and magnetic diffusion

Exactly as in [9, Chapter 4, Section 4.2.3], we estimate the viscous stress dissipation:∥∥∥∥∇x(u−U) +∇t
x(u−U)− 2

3
divx(u−U)I

∥∥∥∥2

Lq(Ω;R3×3)

≤ c

(∫
Ω

(
Θ

ϑ
− 1

)
S(ϑ,∇xu) +

(
ϑ

Θ
− 1

)
S(Θ,∇xU) dx

+

∫
Ω

(
S(ϑ,∇xu)− S(Θ,∇xU)

)
: ∇x

(
u−U

)
dx+

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) dx

)
,

(4.28)

where

q =
8

5− α
. (4.29)
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Next, repeating the same arguments, we get

‖curlx(B−H)‖2
L2(Ω;R3) ≤ c

(∫
Ω

(
Θ

ϑ
− 1

)
ζ(ϑ)|curlxB|2 +

(
ϑ

Θ
− 1

)
ζ(Θ)|curlxH|2 dx

+

∫
Ω

(
ζ(ϑ)curlxB− ζ(Θ)curlxH

)
· curlx(B−H) dx+

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) dx

)
.

(4.30)

Finally, we recall the generalized Korn–Poincaré inequality [8, Chapter 11, Theorem 11.23]:

‖v‖W 1,q(Ω;R3) ≤ c(δ, q)

(∥∥∥∥∇xv +∇t
xv −

2

3
divxvI

∥∥∥∥
Lq(Ω;R3×3)

+

∫
Ω

%|v| dx

)
(4.31)

whenever

1 < q <∞, % ≥ 0,

∫
Ω

% dx ≥ δ,

∫
Ω

%γ dx <
1

δ
, γ > 1. (4.32)

The previous estimates, together with (4.32), allow us to rewrite the inequality (4.18) in the
form ∫

Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) (τ, ·) dx

+

∫ τ

0

(
‖u−U‖2

W 1,q(Ω;R3) + ‖ϑ−Θ‖2
W 1,2(Ω) + ‖curlx(B−H)‖2

L2(Ω;R3)

)
dt

≤
∫ τ

0

R2 dt+ c

∫ τ

0

∫
Ω

E
(
%, ϑ,u,B

∣∣∣r,Θ,U,H) dxdt, q =
8

5− α
, (4.33)

where the remainder R2 is specified in (4.14).

4.5 Completing the proof of weak–strong uniqueness

The rest of the proof of weak–strong uniqueness consists in absorbing all integrals appearing in
the remainder R2 by the left–hand side of (4.33) and applying Gronwall’s argument. We omit the
details as the whole procedure is described in [9, Chapter 4].

We have proved Theorem 4.1.

Remark 4.6. The Lipschitz regularity of the domain Ω required in Theorem 4.1 may not be
sufficient for the existence of the strong solution to the MHD system.

5 Existence of weak solutions

The proof of existence of weak solutions can be carried out by means of the approximate scheme,
a priori estimates, and compactness arguments specified in Chapter 5 and Chapter 12 of the
monograph [9].
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The magnetic field equations can be incorporated exactly as in [6] without any additional
difficulties. Similarly to [9, Chapter 12], two additional assumptions must be imposed on the
constitutive relations, specifically,

lim
Z→∞

S(Z) = 0, (5.1)

where S is the function defining the entropy sM . Moreover, we require

β > 6, (5.2)

where β is the exponent in (2.8). While (5.1) corresponds to the Third Law of Thermodynamics,
hypothesis (5.2) is purely technical to ensure the necessary a priori bounds.

5.1 Approximation scheme

The existence of weak solutions can be shown by solving the following multi–level approximation
scheme. The equation of continuity (1.1) is replaced by its parabolic regularization:

∂t%+ divx(%u) = ε∆x% in (0, T )× Ω, ε > 0, (5.3)

supplemented by the Neumann boundary conditions

∇x% · n|∂Ω = 0, (5.4)

and the initial condition
%(0, ·) = %0,δ, (5.5)

where %0,δ > 0 is a smooth regularization of the initial density %0. Here and hereafter, ε and δ are
small parameters to be sent to zero successively in the limit passage.

The momentum equation (1.2) is replaced by a Galerkin approximation∫ τ

0

∫
Ω

[
%u · ∂tϕ + %u⊗ u : ∇xϕ + pδ(%, ϑ)divxϕ− Sδ(ϑ,∇xu) : ∇xϕ

]
dx dt

− ε
∫ τ

0

∫
Ω

∇x% · ∇xu · ∇xϕ dx dt+

∫ τ

0

∫
Ω

[
curlxB×B ·ϕ + %g ·ϕ

]
dx dt

=

∫
Ω

%u(τ, ·) ·ϕ dx−
∫

Ω

(%u)0 ·ϕ(0, ·) dx (5.6)

for any test function ϕ ∈ C1([0, T ];XN), where XN is a finite dimensional space spanned by the
eigenvectors of the Lamé operator with the complete slip boundary conditions (1.10). Here,

pδ(%, ϑ) = p(%, ϑ) + δ
(
%2 + %Γ

)
,Sδ = S(ϑ,u) + δϑ

(
∇xu +∇t

xu−
2

3
divxuI

)
, δ > 0. (5.7)

Similarly, the induction equation is replaced by a Galerkin approximation. We look for solutions
in the form

B = BB + b,
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where∫ τ

0

∫
Ω

[
(BB + b) · ∂tϕ−

(
(BB + b)× u

)
· curlxϕ− ζ(ϑ)curlx(BB + b) · curlxϕ

]
dx dt

=

∫
Ω

(BB + b) ·ϕ(τ, ·) dx−
∫

Ω

B0 ·ϕ dx (5.8)

for any ϕ ∈ C1([0, T ];YN). The finite–dimensional space YN is chosen in accordance with the
boundary conditions. The functions in YN are smooth, solenoidal,

divxϕ = 0 in Ω,

and ϕ×n|∂Ω = 0, ∪N>0YN is dense inH0,τ in the case of boundary condition (1.12), and ϕ·n|∂Ω = 0,
∪N>0YN is dense in H0,n in the case of boundary conditions (1.13), (1.14).

Finally, the internal energy balance is regularized, adapted to the viscous approximation of the
equation of continuity, and solved exactly,

∂t(%eδ(%, ϑ)) + divx(%eδ(%, ϑ)u) + divxqδ(ϑ,∇xϑ) = Sδ(ϑ,∇xu) + ζ(ϑ)|curlxB|2

− p(%, ϑ)divxu + εδ
(
%Γ−2 + 2

)
|∇x%|2 + δ

1

ϑ2
− εϑ5, (5.9)

with the regularized initial/boundary conditions

ϑ(0, ·) = ϑ0,δ, ϑ|∂Ω = ϑB. (5.10)

Here, we have denoted

qδ = q− δ
(
ϑΓ +

1

ϑ

)
∇xϑ,

eδ = e+ δϑ. (5.11)

5.2 Existence of weak solutions

The existence of weak solutions to the Navier–Stokes–Fourier system (without magnetic field)
follows by solving the approximate scheme (5.3)–(5.7), (5.9)–(5.11). The proof in the absence of
magnetic field is given with full details in [9, Part II, Chapter 5]. The crucial observation made
in [6] is that the basic energy estimate consists in considering the scalar product of (5.6) with u
and (5.8) with b - a step compatible with the Galerkin approximation; whence the proof can be
reproduced without any essential difficulties in the present setting. We may therefore state the
following result concerning the existence of weak solutions to the compressible MHD system.
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Theorem 5.1. (Existence of weak solution)
Let Ω ⊂ R3 be a bounded domain of class at least C3. Suppose the data ϑB, BB are twice

continuously differentiable,

inf [0,T ]×∂ΩϑB > 0, divxBB = 0 in (0, T )× Ω.

Let the thermodynamic functions p, e, s satisfy the hypotheses (2.1)–(2.6) and the transport
coefficients µ, η, κ, and ζ comply with (2.7)–(2.9), where

1

2
≤ α ≤ 1, β > 6, lim

Z→∞
S(Z) = 0. (5.12)

Then for any initial data

%0, %0 > 0, ϑ0, ϑ0 > 0, u0, B0, divxB0 = 0,∫
Ω

[
1

2
%0|u0|2 + %0e(%0, ϑ0) +

1

2
|B0|2 dx

]
<∞,

and any g ∈ L∞((0, T ) × Ω;R3), the compressible MHD system admits a weak solution in
(0, T )× Ω in the sense specified in Definition 2.1.

Remark 5.2. As a matter of fact, positivity of the initial density and temperature is not really
necessary in the weak framework. Expressing the initial data in terms of the initial density %0,
the momentum m0, the total entropy S0, and the magnetic field B0, we can show global in time
existence under the condition that the initial energy∫

Ω

[
1

2

|m0|2

%0

+ %0e(%0, S0) +
1

2
|B0|2

]
dx <∞

is finite.

Remark 5.3. The weak solutions resulting from the approximate scheme specified above satisfy
the differential version of the ballistic energy inequality (2.24).

Remark 5.4. The hypothesis limZ→∞ S(Z) = 0 can be omitted and β ≥ 3 allowed as soon as the
boundary temperature ϑB is constant.

6 Concluding remarks

The theory can be extended in a straightforward manner to other types of boundary conditions.
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• The complete slip boundary conditions (1.10) can be replaced by the Dirichlet (no slip)
boundary conditions

u|∂Ω = uB

as long as uB ·n = 0. This enables to include problems of Taylor–Coutte type. The extension
to general in/out flow boundary conditions for the velocity would require a more elaborated
treatment in view of the presence of the magnetic field. For the in/out flow boundary
conditions for the Navier–Stokes–Fourier system in the absence of magnetic field see [9].

• The Dirichlet boundary conditions for the temperature can be replaced by a flux type con-
dition on a part of the boundary:

∂Ω = Γ1 ∪ Γ2, ϑ|Γ1 = ϑB, q · n|Γ2 = h.

Note that this type of condition is particularly relevant in the modelling of stellar magneto-
convection, see Thompson and Christensen–Dalsgaard [17].

• The induction flux (electric field) can be prescribed in (1.14):[
B× u + ζcurlxB

]
× n|∂Ω = EB × n.

• Mixed type boundary conditions imposed on different components of ∂Ω can be accommo-
dated without essential difficulties.
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