On the Discrete Maximum Principle for Higher Order Finite Elements

Tomáš Vejchodský and Pavel Šolín

vejchod@math.cas.cz, solin@utep.edu

Mathematical Institute, Academy of Sciences
Žitná 25, 11567 Prague 1
Czech Republic

Maximum Principle

Let $f \leq 0$ in $\Omega \subset \mathbb{R}^{d}$ and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be the solution of

$$
-\sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=f
$$

where $A(x)=\left\{a_{i j}\right\}_{i, j=1}^{d}$ is uniformly positive-definite in Ω. Then u attains its maximum on the boundary $\partial \Omega$.

Maximum Principle

Let $f \leq 0$ in $\Omega \subset \mathbb{R}^{d}$ and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be the solution of

$$
-\sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=f
$$

where $A(x)=\left\{a_{i j}\right\}_{i, j=1}^{d}$ is uniformly positive-definite in Ω.
Then u attains its maximum on the boundary $\partial \Omega$.
Discrete Maximum Principle (DMP): Does it hold also for the finite element solution?

Maximum Principle

Let $f \leq 0$ in $\Omega \subset \mathbb{R}^{d}$ and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be the solution of

$$
-\sum_{i, j=1}^{d} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}=f
$$

where $A(x)=\left\{a_{i j}\right\}_{i, j=1}^{d}$ is uniformly positive-definite in Ω. Then u attains its maximum on the boundary $\partial \Omega$.

Discrete Maximum Principle (DMP): Does it hold also for the finite element solution?

Answer: in general NO, but under suitable conditions YES.

What is known about DMP?

Almost all results:

- $n-D, p=1$, acute type condition $\Rightarrow \mathrm{DMP}$ Proof - based on M-matrices.
- Various generalization:
- weakened acute type condition
- nonlinear problems
- parabolic problems
- W. Höhn, H. D. Mittelmann: Some Remarks on the Discrete Maximum Principle for Finite Elements of Higher-Order, Computing 27, pp. 145-154, 1981.

1D Model Problem

$$
-u^{\prime \prime}=f \quad \text { in } \Omega=(a, b) ; \quad u(a)=u(b)=0
$$

- $V_{h p}=\left\{v_{h p} \in H_{0}^{1}(\Omega):\left.v_{h p}\right|_{K_{i}} \in P^{p_{i}}\left(K_{i}\right)\right\}$
- $N=\operatorname{dim}\left(V_{h p}\right)=-1+\sum_{i=1}^{M} p_{i}$

Find $u_{h p} \in V_{h p}$:

$$
\int_{a}^{b} u_{h p}^{\prime}(x) v_{h p}^{\prime}(x) \mathrm{d} x=\int_{a}^{b} f(x) v_{h p}(x) \mathrm{d} x \quad \text { for all } v_{h p} \in V_{h p}
$$

Discrete Maximum Principle

Is $u_{h p}(x) \geq 0$ for any $f(x) \geq 0 ? \quad$ (for all $x \in \Omega$)

Discrete Maximum Principle

Is $u_{h p}(x) \geq 0$ for any $f(x) \geq 0$? (for all $x \in \Omega$)
YES, if $p_{1}=p_{2}=\ldots=p_{M}=1$.

$$
\begin{gathered}
\int_{x_{j-1}}^{x_{j+1}} u_{h p}^{\prime}(x) v_{j}^{\prime}(x) \mathrm{d} x=\int_{x_{j-1}}^{x_{j+1}} \underbrace{f(x)}_{\geq 0} \underbrace{v_{j}(x)}_{\geq 0} \mathrm{~d} x \geq 0, \\
0 \leq D u_{h p}^{(j-1)} \frac{x_{j}-x_{j-1}}{x_{j}-x_{j-1}}-D u_{h p}^{(j)} \frac{x_{j+1}-x_{j}}{x_{j+1}-x_{j}}=D u_{h p}^{(j-1)}-D u_{h p}^{(j)}
\end{gathered}
$$

Discrete Maximum Principle

Is $u_{h p}(x) \geq 0$ for any $f(x) \geq 0$? (for all $x \in \Omega$)
NO, for general $p_{1}, p_{2}, \ldots, p_{M} \geq 1$.
$\Omega=(-1,1), \quad \mathcal{T}_{h p}=\left\{K_{1}\right\}, p_{1}=3, f(x)=200 e^{-10(x+1)} \geq 0$

Why?

L^{2} projection of $f(x)=200 e^{-10(x+1)}$ to $P^{3}(\Omega) \supset V_{h p}$

$$
\int_{a}^{b} f_{h p}(x) v_{h p}(x) \mathrm{d} x=\int_{a}^{b} f(x) v_{h p}(x) \mathrm{d} x \text { for all } v_{h p} \in P^{3}(\Omega),
$$

Weak DMP

Let $f_{h p} \geq 0$, where $f_{h p}$ is the L^{2}-projection of f to

$$
W=\left\{v \in C(\bar{\Omega}) ;\left.v\right|_{K_{i}} \in P^{p_{i}}\left(K_{i}\right), 1 \leq i \leq M\right\}
$$

Then (for the model problem $-u^{\prime \prime}=f, u(a)=u(b)=0$), $u_{h p} \geq 0$.

Proof:

It is enough to consider:
$(a, b)=(-1,1)$ and $\mathcal{T}_{h p}=\left\{K_{1}\right\}, p \geq 2$.

$$
\begin{aligned}
V_{h p} & =V_{h p}^{(v)} \oplus V_{h p}^{(b)} \\
u_{h p} & =u_{h p}^{(v)}+u_{h p}^{(b)} \\
\int_{a}^{b}\left(u_{h p}^{(v)}\right)^{\prime} v_{h p}^{\prime} \mathrm{d} x & =\int_{a}^{b} f v_{h p} \mathrm{~d} x \quad \forall v_{h p} \in V_{h p}^{(v)} \\
\int_{a}^{b}\left(u_{h p}^{(b)}\right)^{\prime} v_{h p}^{\prime} \mathrm{d} x & =\int_{a}^{b} f v_{h p} \mathrm{~d} x \quad \forall v_{h p} \in V_{h p}^{(b)}
\end{aligned}
$$

Proof: reference element

Reference element: $(-1,1)$
Lobatto shape functions $l_{2}, l_{3}, \ldots, l_{10}$:

$$
l_{k}(x)=\frac{1}{\left\|L_{k-1}\right\|_{L^{2}}} \int_{-1}^{x} L_{k-1}(\xi) \mathrm{d} \xi, \quad 2 \leq k
$$

Important property: $\int_{-1}^{1} l_{i}^{\prime}(x) l_{j}^{\prime}(x) \mathrm{d} x=\delta_{i j}$.

Proof: reference element

$$
\begin{aligned}
& l_{2}(x)=\frac{1}{2} \sqrt{\frac{3}{2}}\left(x^{2}-1\right) \\
& l_{3}(x)=\frac{1}{2} \sqrt{\frac{5}{2}}\left(x^{2}-1\right) x \\
& l_{4}(x)=\frac{1}{8} \sqrt{\frac{7}{2}}\left(x^{2}-1\right)\left(5 x^{2}-1\right) \\
& l_{5}(x)=\frac{1}{8} \sqrt{\frac{9}{2}}\left(x^{2}-1\right)\left(7 x^{2}-3\right) x \\
& l_{6}(x)=\frac{1}{16} \sqrt{\frac{11}{2}}\left(x^{2}-1\right)\left(21 x^{4}-14 x^{2}+1\right) \\
& l_{7}(x)=\frac{1}{16} \sqrt{\frac{13}{2}}\left(x^{2}-1\right)\left(33 x^{4}-30 x^{2}+5\right) x \\
& l_{8}(x)=\frac{1}{128} \sqrt{\frac{15}{2}}\left(x^{2}-1\right)\left(429 x^{6}-495 x^{4}+135 x^{2}-5\right) \\
& l_{9}(x)=\frac{1}{128} \sqrt{\frac{17}{2}}\left(x^{2}-1\right)\left(715 x^{6}-1001 x^{4}+385 x^{2}-35\right) x \\
& l_{10}(x)=\frac{1}{256} \sqrt{\frac{19}{2}}\left(x^{2}-1\right)\left(2431 x^{8}-4004 x^{6}+2002 x^{4}-308 x^{2}+7\right)
\end{aligned}
$$

Proof: reference element

Proof: $p=2$

$$
\begin{gathered}
u_{h p}(x)=y_{1} l_{2}(x), \quad l_{2}(x) \leq 0 \\
y_{1}=\int_{-1}^{1} y_{1} l_{2}^{\prime}(z) l_{2}^{\prime}(z) \mathrm{d} z \\
=\int_{-1}^{1} u_{h p}^{\prime}(z) l_{2}^{\prime}(z) \mathrm{d} z=\int_{-1}^{1} \underbrace{f_{h p}(z)}_{\geq 0} \underbrace{l_{2}(z)}_{\leq 0} \mathrm{~d} z \leq 0
\end{gathered}
$$

Thus $u_{h p}(x)=\underbrace{y_{1}}_{\leq 0} \underbrace{l_{2}(x)}_{\leq 0} \geq 0$ in $(-1,1)$!

Proof: $p=3$

$$
u_{h p}(x)=y_{1} l_{2}(x)+y_{2} l_{3}(x)
$$

Proof: $p=3$

$$
\begin{gathered}
u_{h p}(x)=y_{1} l_{2}(x)+y_{2} l_{3}(x) \\
y_{1}=\int_{-1}^{1} f_{h p}(z) l_{2}(z) \mathrm{d} z, \quad y_{2}=\int_{-1}^{1} f_{h p}(z) l_{3}(z) \mathrm{d} z
\end{gathered}
$$

Proof: $p=3$

$$
\begin{gathered}
u_{h p}(x)=y_{1} l_{2}(x)+y_{2} l_{3}(x) \\
y_{1}=\int_{-1}^{1} f_{h p}(z) l_{2}(z) \mathrm{d} z, \quad y_{2}=\int_{-1}^{1} f_{h p}(z) l_{3}(z) \mathrm{d} z \\
u_{h p}^{\prime}(-1) \geq 0 \quad \& \quad u_{h p}^{\prime}(1) \leq 0 \quad \Rightarrow \quad u_{h p} \geq 0 \text { in }(-1,1)
\end{gathered}
$$

Proof: $p=3$

$$
\begin{gathered}
u_{h p}(x)=y_{1} l_{2}(x)+y_{2} l_{3}(x) \\
y_{1}=\int_{-1}^{1} f_{h p}(z) l_{2}(z) \mathrm{d} z, \quad y_{2}=\int_{-1}^{1} f_{h p}(z) l_{3}(z) \mathrm{d} z \\
u_{h p}^{\prime}(-1) \geq 0 \quad \& \quad u_{h p}^{\prime}(1) \leq 0 \Rightarrow u_{h p} \geq 0 \text { in }(-1,1) \\
0 \leq u_{h p}^{\prime}(-1)=y_{1} l_{2}^{\prime}(-1)+y_{2} l_{3}^{\prime}(-1)=\int_{-1}^{1} f_{h p}(z) \underbrace{\left[l_{2}^{\prime}(-1) l_{2}(z)+l_{3}^{\prime}(-1) l_{3}(z)\right]}_{g_{a}(z)=\left(z^{2}-1\right)(5 z-3)} \mathrm{d} z
\end{gathered}
$$

Proof: $p=3$

$g_{a}(x), g_{b}(x):$

Show that $\int_{-1}^{1} f_{h p}(z) g_{a}(z) \mathrm{d} z \geq 0$ for all $0 \leq f_{h p} \in P^{3}(-1,1)$.

Proof: $p=3$

1. $f_{h p}=c$, where $c \geq 0$ is a constant,

Proof: $p=3$

1. $f_{h p}=c$, where $c \geq 0$ is a constant,
2. $f_{h p}$ is a nonconstant affine function with
(a) positive slope and root in the interval $(-\infty,-1]$,
(b) negative slope and root in the interval $[1, \infty)$,

Proof: $p=3$

1. $f_{h p}=c$, where $c \geq 0$ is a constant,
2. $f_{h p}$ is a nonconstant affine function with
(a) positive slope and root in the interval $(-\infty,-1]$,
(b) negative slope and root in the interval $[1, \infty)$,
3. $f_{h p}$ is a quadratic function with
(a) two complex-conjugate complex roots and positive leading term,
(b) one real root of multiplicity two and positive leading term,
(c) two roots in $(-\infty,-1]$ and positive leading term,
(d) two roots in $[1, \infty)$ and positive leading term,
(e) one root in $(-\infty,-1]$, one root in $[1, \infty)$ and negative leading term,

Proof: $p=3$

1. $f_{h p}=c$, where $c \geq 0$ is a constant,
2. $f_{h p}$ is a nonconstant affine function with
(a) positive slope and root in the interval $(-\infty,-1]$,
(b) negative slope and root in the interval $[1, \infty)$,
3. $f_{h p}$ is a quadratic function with
(a) two complex-conjugate complex roots and positive leading term,
(b) one real root of multiplicity two and positive leading term,
(c) two roots in $(-\infty,-1]$ and positive leading term,
(d) two roots in $[1, \infty)$ and positive leading term,
(e) one root in $(-\infty,-1]$, one root in $[1, \infty)$ and negative leading term,
4. $f_{h p}$ is a cubic function with positive leading term and
(a) one single root in $(-\infty,-1]$ and one root of multiplicity two in,
(b) one root in $(-\infty,-1]$ and two real roots in $[1, \infty)$,
(c) one root in $(-\infty,-1]$ and two complex-conjugate complex roots,
(d) three different roots in $(-\infty,-1]$,
(e) one root of multiplicity three in $(-\infty,-1]$,

Proof: $p=3$

1. $f_{h p}=c$, where $c \geq 0$ is a constant,
2. $f_{h p}$ is a nonconstant affine function with
(a) positive slope and root in the interval $(-\infty,-1]$,
(b) negative slope and root in the interval $[1, \infty)$,
3. $f_{h p}$ is a quadratic function with
(a) two complex-conjugate complex roots and positive leading term,
(b) one real root of multiplicity two and positive leading term,
(c) two roots in $(-\infty,-1]$ and positive leading term,
(d) two roots in $[1, \infty)$ and positive leading term,
(e) one root in $(-\infty,-1]$, one root in $[1, \infty)$ and negative leading term,
4. $f_{h p}$ is a cubic function with positive leading term and
(a) one single root in $(-\infty,-1]$ and one root of multiplicity two in,
(b) one root in $(-\infty,-1]$ and two real roots in $[1, \infty)$,
(c) one root in $(-\infty,-1]$ and two complex-conjugate complex roots,
(d) three different roots in $(-\infty,-1]$,
(e) one root of multiplicity three in $(-\infty,-1]$,
5. $f_{h p}$ is a cubic function with negative leading term and
(a)-(e) symmetric conditions to the previous ones.

Eighteen cases.

Proof: $p=3$, case 4(a)

(one single root in $(-\infty,-1]$ and one root of multiplicity two in \mathbb{R})
It is $f_{h p}(z)=(z-c)^{2}(z+d)$, where $c \in \mathbb{R}$ and $d \geq 1$:

$$
\begin{gathered}
u_{h p}^{\prime}(-1)=\int_{-1}^{1} f_{h p}(z) g_{a}(z) \mathrm{d} z=d \underbrace{\left(4 c^{2}+\frac{8}{3} c+\frac{4}{5}\right)}_{\geq 0 \text { for all } c \in \mathbb{R}}-\frac{4}{7}-\frac{8}{5} c-\frac{4}{3} c^{2} \\
\geq\left(4 c^{2}+\frac{8}{3} c+\frac{4}{5}\right)-\frac{4}{7}-\frac{8}{5} c-\frac{4}{3} c^{2}=\frac{8}{3} c^{2}+\frac{16}{15} c+\frac{8}{35} \geq 0
\end{gathered}
$$

Proof: $p=3$, case 4(b)

(one root in $(-\infty,-1]$ and two real roots in $[1, \infty)$)
It is $f_{h p}(z)=(z-c)(z-d)(z+e)$, where $c, d \geq 1$
such that $d=c+\varepsilon, \varepsilon>0$, and $e \geq 1$:

$$
\begin{aligned}
& u_{h p}^{\prime}(-1)=\int_{-1}^{1} f_{h p}(z) g_{a}(z) \mathrm{d} z=-\frac{4}{7}-\frac{4}{5} c+\frac{4}{5} e+\frac{4}{3} c e-\frac{4}{5} d-\frac{4}{3} c d+\frac{4}{3} d e+4 c d e \\
& =(\underbrace{\frac{4}{3} e-\frac{4}{5}}_{\geq 0}+\underbrace{\left(4 e-\frac{4}{3}\right)}_{\geq 0} c) \varepsilon+\underbrace{\left(4 e-\frac{4}{3}\right)}_{\geq 0} c^{2}+\underbrace{\left(\frac{8}{3} e-\frac{8}{5}\right)}_{\geq 0} c+\underbrace{\frac{4}{5} e-\frac{4}{7} \geq 0}_{\geq 0}
\end{aligned}
$$

All 18 cases hold \Rightarrow cubic case solved.

Proof: general p

$$
u_{h p}(x)=\sum_{i=1}^{p-1} y_{i} l_{i+1}(x)
$$

Proof: general p

$$
\begin{gathered}
u_{h p}(x)=\sum_{i=1}^{p-1} y_{i} l_{i+1}(x) \\
y_{i}=\int_{-1}^{1} f_{h p}(z) l_{i+1}(z) \mathrm{d} z
\end{gathered}
$$

Proof: general p

$$
\begin{gathered}
u_{h p}(x)=\sum_{i=1}^{p-1} y_{i} l_{i+1}(x) \\
y_{i}=\int_{-1}^{1} f_{h p}(z) l_{i+1}(z) \mathrm{d} z \\
u_{h p}(x)=\sum_{i=1}^{p-1}\left(\int_{-1}^{1} f_{h p}(z) l_{i+1}(z) \mathrm{d} z\right) l_{i+1}(x)=\int_{-1}^{1} f_{h p}(z) \Phi_{p}(x, z) \mathrm{d} z
\end{gathered}
$$

Proof: general p

$$
\begin{gathered}
u_{h p}(x)=\sum_{i=1}^{p-1} y_{i} l_{i+1}(x) \\
y_{i}=\int_{-1}^{1} f_{h p}(z) l_{i+1}(z) \mathrm{d} z \\
u_{h p}(x)=\sum_{i=1}^{p-1}\left(\int_{-1}^{1} f_{h p}(z) l_{i+1}(z) \mathrm{d} z\right) l_{i+1}(x)=\int_{-1}^{1} f_{h p}(z) \Phi_{p}(x, z) \mathrm{d} z \\
\Phi_{p}(x, z)=\sum_{i=1}^{p-1} l_{i+1}(x) l_{i+1}(z)
\end{gathered}
$$

Proof: general p

$$
\begin{gathered}
u_{h p}(x)=\sum_{i=1}^{p-1} y_{i} l_{i+1}(x) \\
y_{i}=\int_{-1}^{1} f_{h p}(z) l_{i+1}(z) \mathrm{d} z \\
u_{h p}(x)=\sum_{i=1}^{p-1}\left(\int_{-1}^{1} f_{h p}(z) l_{i+1}(z) \mathrm{d} z\right) l_{i+1}(x)=\int_{-1}^{1} f_{h p}(z) \Phi_{p}(x, z) \mathrm{d} z \\
\Phi_{p}(x, z)=\sum_{i=1}^{p-1} l_{i+1}(x) l_{i+1}(z)
\end{gathered}
$$

What can we say about $\Phi_{p}(x, z)$?

Proof: $p=4$

$\Phi_{4}(x, z)$ is nonnegative in $(-1,1)^{2} \Rightarrow$ quartic case holds!

Proof: $p=5$

$\Phi_{5}(x, z)$ is not nonnegative in $(-1,1)^{2}$

Proof: $p=5$ continued

$$
u_{h p}(x)=\int_{-1}^{1} f_{h p}(z) \Phi_{5}(x, z) \mathrm{d} z
$$

Proof: $p=5$ continued

Look for a 10th-order quadrature rule in $(-1,1)$ with

- positive weights w_{i},
- outside of the domains of negativity of Φ_{5}.

Then we will have

$$
u_{h p}(x)=\int_{-1}^{1} f_{h p}(z) \Phi_{5}(x, z) \mathrm{d} z=\int_{-1}^{1} F_{x}^{(10)}(z) \mathrm{d} z
$$

for all $x \in(-1,1)$.

Proof: $p=5$ continued

Point	Weight	Point	Weight
-1	0.0534286192	-0.811	0.3054087580
-0.59	0.0030544353	-0.42	0.4473230113
-0.2	0.0066984041	0	0.2760767276
0.2	0.2939694773	0.43	0.0149245373
0.6	0.3805105712	0.9	0.1999066353
1	0.0186988234		

Table 1: 10th-order quadrature rule in Ω with positive weights and points lying outside of $(-1,-0.811)$ - calculated by Maple.

This concludes the proof for $p=5$.
$\Phi_{6}(x, z)$ is nonnegative in $(-1,1)^{2} \Rightarrow$ case $p=6$ holds!

\mathbb{N}
 Proof: $p=7$

$\Phi_{7}(x, z)$ is not nonnegative in $(-1,1)^{2}$

Proof: $p=7$ continued

Proof: $p=7$ continued

Point	Weight	Point	Weight
-1	0.0306200311	-0.89	0.1806438688
-0.75	0.0016558668	-0.65	0.2862680475
-0.45	0.0379885258	-0.31	0.2988638595
-0.16	0.0833146476	0.1	0.3554921618
0.16	0.0113639321	0.35	0.0204292124
0.47	0.3218682171	0.734	0.1289561668
0.80	0.1314089188	0.955	0.1093567805
1	0.0017697634		

Table 2: 14th-order quadrature rule in Ω with positive weights and points lying outside of $(-1,-0.89)$.

This concludes the proof for $p=7$.

Proof: $p=8$

$\Phi_{8}(x, z)$ is not nonnegative in $(-1,1)^{2}$

Proof: $p=8$ continued

Proof: $p=8$ continued

Point	Weight	Point	Weight
-1	0.0137599529	-0.9564181650	0.0618586932
-0.8854980347	0.0892150513	-0.7582972896	0.1646935265
-0.5719162652	0.1875234174	-0.4628139806	0.0729252387
-0.2917166274	0.2435469772	-0.0811621291	0.0841621866
-0.0061521460	0.1800939083	0.1655560030	0.1320371771
0.3391628868	0.2286184297	0.5726348225	0.2184036287
0.75	0.1285378345	0.85	0.0908051678
0.9230637084	0.0427456544	0.9648584341	0.0509010934
1	0.0101720626		

Table 3: 16th-order quadrature rule in Ω with positive weights and points lying outside of $(0.75,0.85)$.

Proof: $p=8$ continued

Point	Weight	Point	Weight
-1	0.0097495069	-0.9548248562	0.0857520162
-0.8409569422	0.1018591390	-0.7825414112	0.0149475627
-0.7708636219	0.0926211201	-0.5747624113	0.2476049720
-0.3937499257	0.0549434125	-0.3273530867	0.0276562411
-0.2532942335	0.2543287199	0.0382371812	0.2892622856
0.2837396038	0.1910189889	0.4501581170	0.1560300966
0.5808907063	0.1246581226	0.7443822112	0.1842879621
0.8927849373	0.0841645246	0.9421667341	0.0612885001
1	0.0198268291		

Table 4: 16th-order quadrature rule in Ω with positive weights and points lying outside of $(0.98,1)$.

This concludes the proof for $p=8$.

$\mathbf{H} \quad$ Proof: $p=9$

$\Phi_{9}(x, z)$ is not nonnegative in $(-1,1)^{2}$

Proof: $p=9$ continued

$$
u_{h p}(x)=\int_{-1}^{1} f_{h p}(z) \Phi_{9}(x, z) \mathrm{d} z
$$

Proof: $p=9$ continued

Point	Weight	Point	Weight
-1	0.01937406240	-0.93	0.1153128270
-0.885	0.00157968340	-0.772	0.1947443595
-0.65	0.00126499680	-0.55	0.2341166464
-0.4	0.06286669339	-0.25	0.2438572426
-0.08	0.08588496537	0.08	0.2395820916
0.19	0.04691799156	0.38	0.2665159766
0.6	0.00216030838	0.625	0.2029738760
0.73	0.04687189997	0.83	0.1072052560
0.89	0.06009091818	0.97	0.0648680095
1	0.00381219535		

Table 5: 18th-order quadrature rule in Ω with positive weights and points lying outside of $(-1,-0.93)$.

This concludes the proof for $p=9$.

Proof: $p=10$

$\Phi_{10}(x, z)$ is not nonnegative in $(-1,1)^{2}$

Proof: $p=10$ continued

$$
u_{h p}(x)=\int_{-1}^{1} f_{h p}(z) \Phi_{10}(x, z) \mathrm{d} z
$$

Proof: $p=10$ continued

Point	Weight	Point	Weight
-1	0.0127411726	-0.9569019461	0.0603200758
-0.9344466123	0.0183508422	-0.8574545411	0.1032513172
-0.7530104489	0.1106942630	-0.6362178184	0.0412386636
-0.6061244531	0.1295220930	-0.4275824090	0.1937516842
-0.2340018112	0.1916905139	-0.0454114485	0.1774661870
0.0754465671	0.0755419308	0.1672504233	0.0745275871
0.2516247645	0.1488965177	0.3707975798	0.0207086237
0.4366736344	0.1397170181	0.5306011976	0.0924918512
0.6745457042	0.1639628301	0.82	0.1200387168
0.91	0.0649445615	0.9667274132	0.0502362251
1	0.0099073255		

Table 6: Case $p=10 ; 20$ th-order quadrature rule in Ω with positive weights and points lying outside of $(0.82,0.91)$.

Proof: $p=10$ continued

Point	Weight	Point	Weight
-1	0.0129961117	-0.9609467424	0.0393058650
-0.9366001558	0.0472129994	-0.8686571459	0.0307704321
-0.8222969304	0.1127110155	-0.6830858117	0.1442049485
-0.5515874908	0.1263749495	-0.4070028385	0.1615584597
-0.2391731402	0.1767071143	-0.0805321378	0.0223802647
-0.0404112041	0.1755155830	0.0382998004	0.0409103698
0.2054285570	0.2302298514	0.4168373782	0.1495405342
0.4862170553	0.0877842194	0.6284448676	0.0980645550
0.6932595712	0.1047143177	0.83041757281	0.1311485592
0.93562906418	0.0774056021	0.986	0.0267375743
1	0.0037266735		

Table 7: Case $p=10 ; 20$ th-order quadrature rule in Ω with positive weights and points lying outside of $(0.986,1)$.

This concludes the proof for $p=10$.

Summary

DMP in 1D on arbitrary $h p$-mesh

$$
-u^{\prime \prime}=f \quad \text { in }(a, b) ; \quad u(a)=u(b)=0
$$

- (strong) DMP: $u_{h p} \geq 0$ for all $f \geq 0$
- weak DMP: $u_{h p} \geq 0$ if L^{2}-projection of f is ≥ 0

Summary

DMP in 1D on arbitrary $h p$-mesh

Degree	DMP	Proof
$p=1$	strong	easy
$p=2$	strong	trivial
$p=3$	weak	brute force, tedious
$p=4$	strong	(computer aided) interval arithmetics*
$p=5$	weak	computer aided
$p=6$	strong	computer aided
$p=7$	weak	computer aided
$p=8$	weak	computer aided
$p=9$	weak	computer aided
$p=10$	weak	computer aided

* Roberto Araiza, Vladik Kreinovich, UTEP.

Outlook

- Bad news: weak DMP in 2D is not valid.
- Good news: Strong DMP in 1D is valid for meshes with two or more elements.

Thank you for your attention.

Tomáš Vejchodský

Mathematical Institute, Academy of Sciences
Žitná 25, 11567 Prague 1
Czech Republic
vejchod@math.cas.cz

