

HERMES_2D: an hp-FEM solver *Hierarchic Modular* hp-FEM System

P. Šolín, M. Zítka, T. Vejchodský, P. Sváček, S. Vyvialová, M. Lazar, J. Červený,

E. Vazquez, F. Avila

vejchod@math.cas.cz

Mathematical Institute, Academy of Sciences Žitná 25, 11567 Prague 1 Czech Republic

Hermes_2D

What?

- Elliptic problems (non)linear systems
- Time-harmonic Maxwell's equations
- Stokes problem incompressible Navier-Stokes equations

Hermes_2D

What?

- Elliptic problems (non)linear systems
- Time-harmonic Maxwell's equations
- Stokes problem incompressible Navier-Stokes equations

How? *hp*-FEM!

- Input: triangulation + distribution of polynomial degrees, equation parameters, other settings
- Output: graphical (*hp*-solution, error, derivatives, ...) error (exact × reference solution)

Hermes_2D

What?

- Elliptic problems (non)linear systems
- Time-harmonic Maxwell's equations
- Stokes problem incompressible Navier-Stokes equations

How? *hp*-FEM!

- Input: triangulation + distribution of polynomial degrees, equation parameters, other settings
- Output: graphical (*hp*-solution, error, derivatives, ...) error (exact × reference solution)

Modular structure

• hp-FEM technology \times concrete PDEs

Under development

- automatic hp-adaptivity (J. Červený)
- parallelization (M. Lazar)
- 3D code (M. Zítka)
- parabolic problems (T. Vejchodský)

hp-**FEM technology**

$$u \in V : a(u, v) = F(v) \quad \forall v \in V$$

$$V_{hp} = \{ v_{hp} \in V : v_{hp} | _{K_j} \in P^{p_j}(K_j) \}$$

Minimum rule

$$V_{hp} = \{ v_{hp} \in V : v_{hp} |_{K_j} \in P^{p_j}(K_j) \}$$

Determination of the polynomial degree of edge nodes.

Orientation of edges.

Reference element

Shape functions

Optimization of shape functions

Shape functions

- Simple: $\lambda_1^i \lambda_2 \lambda_3^j$, i+j=p-1
- Ainsworth: based on integrated Legendre polynomials
- Beuchler: based on integrated Jacobi polynomials
- Eigen-bubbles: $(\nabla u, \nabla v)_{\hat{K}} = \lambda(u, v)_{\hat{K}} \ \forall v \in V_{hp,0}(\hat{K})$

Optimization of shape functions

MATENALL

Static condensation of internal DOFs

		VE	VB	
	EV	EE	EB	
A =	BV	BE	BB	

Static condensation of internal DOFs

$$\left\|u - u_{hp}\right\| \le C_1 \exp(-C_2 N_{\text{dof}})$$

HERMES_2D: an hp-FEM solver – p.10/23

h-, p- and hp-refinement in 1D.

Automatic *hp*-adaptivity

Multilevel constrained approximation

Hanging nodes

Hanging nodes

Parallelization

Supercomputer Felina

- CRAY XD1
- 72 x 2.2 GHz AMD Opteron processor,
- 144 GB RAM,
- 317 GFlops
- ONR Award No. 05PR07548-00
- PETSc

Elliptic problems

$$\frac{\partial}{\partial x_1} \left(P_1 \frac{\partial u}{\partial x_1} \right) + \frac{\partial}{\partial x_1} \left(P_2 \frac{\partial u}{\partial x_2} \right) + \frac{\partial}{\partial x_2} \left(P_3 \frac{\partial u}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(P_4 \frac{\partial u}{\partial x_2} \right) \\ + \frac{\partial}{\partial x_1} \left(P_5 u \right) + \frac{\partial}{\partial x_2} \left(P_6 u \right) + P_7 u = F,$$

$$\begin{split} u &= u(\boldsymbol{x}) \in \mathbb{R}^{N_{\text{eq}}} \\ F &= F(\boldsymbol{x}, u, \nabla u) \in \mathbb{R}^{N_{\text{eq}}} \\ P_k &= P_k(\boldsymbol{x}, u, \nabla u) \in \mathbb{R}^{N_{\text{eq}} \times N_{\text{eq}}}, \quad k = 1, \dots, 7 \end{split}$$

Elliptic problems

$$\frac{\partial}{\partial x_1} \left(P_1 \frac{\partial u}{\partial x_1} \right) + \frac{\partial}{\partial x_1} \left(P_2 \frac{\partial u}{\partial x_2} \right) + \frac{\partial}{\partial x_2} \left(P_3 \frac{\partial u}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(P_4 \frac{\partial u}{\partial x_2} \right) \\ + \frac{\partial}{\partial x_1} \left(P_5 u \right) + \frac{\partial}{\partial x_2} \left(P_6 u \right) + P_7 u = F,$$

$$\begin{split} u_i(\boldsymbol{x}) &= g_{D,i}(\boldsymbol{x}), \quad \boldsymbol{x} \in \Gamma_{D,i}, \ i = 1, 2, \dots, N_{\text{eq}}, \\ n_1 \left(P_1 \frac{\partial u}{\partial x_1} + P_2 \frac{\partial u}{\partial x_2} + P_5 u \right)_i + n_2 \left(P_3 \frac{\partial u}{\partial x_1} + P_4 \frac{\partial u}{\partial x_2} + P_6 u \right)_i = g_{N,i}, \\ \text{on } \Gamma_{N,i} \end{split}$$

Time-harmonic Maxwell's equations

$$\operatorname{curl}\left(\mu_{\mathrm{r}}^{-1}\operatorname{curl}\mathbf{E}\right) - \kappa^{2}\epsilon_{\mathrm{r}}\mathbf{E} = \mathbf{F} \quad \text{in } \Omega$$

•
$$\operatorname{curl} = (\partial/\partial x_2, -\partial/\partial x_1)^\top$$

• $\operatorname{curl} \mathbf{E} = \partial E_2 / \partial x_1 - \partial E_1 / \partial x_2$

•
$$\Omega \subset \mathbb{R}^2$$

- $\mu_{\mathbf{r}} = \mu_{\mathbf{r}}(x) \in \mathbb{R}$ relative permeability
- $\epsilon_{\mathbf{r}} = \epsilon_{\mathbf{r}}(x) \in \mathbb{C}^{2 \times 2}$ relative permittivity
- $\mathbf{E} = \mathbf{E}(x) \in \mathbb{C}^2$ phasor of the electric field intensity
- $\mathbf{F} = \mathbf{F}(x) \in \mathbb{C}^2$
- ${}_{{}_{\!\!\!\!\!\!\!}}$ $\kappa\in\mathbb{R}$ the wave number

$$\operatorname{curl}\left(\mu_{\mathrm{r}}^{-1}\operatorname{curl}\mathbf{E}\right) - \kappa^{2}\epsilon_{\mathrm{r}}\mathbf{E} = \mathbf{F} \quad \text{in } \Omega$$

$$\mathbf{E} \cdot \boldsymbol{\tau} = 0 \qquad \text{on } \Gamma_P$$
$$\mu_r^{-1} \operatorname{curl} \mathbf{E} - \mathrm{i} \kappa \lambda \mathbf{E} \cdot \boldsymbol{\tau} = \mathbf{g} \cdot \boldsymbol{\tau} \quad \text{on } \Gamma_I$$

τ = (-ν₂, ν₁)[⊤] positively oriented unit tangent vector
 λ = λ(x) > 0 impedance
 g = g(x) ∈ C²

Edge elements

Whitney functions:

First order functions:

Edge elements

Edge functions:

Edge elements

Edge based bubble functions:

$$\hat{\psi}_{k}^{b,e_{1}} = \lambda_{3}\lambda_{2}L_{k-2}(\lambda_{3} - \lambda_{2})\mathbf{n}_{1},$$
$$\hat{\psi}_{k}^{b,e_{2}} = \lambda_{1}\lambda_{3}L_{k-2}(\lambda_{1} - \lambda_{3})\mathbf{n}_{2},$$
$$\hat{\psi}_{k}^{b,e_{3}} = \lambda_{2}\lambda_{1}L_{k-2}(\lambda_{2} - \lambda_{1})\mathbf{n}_{3}, \quad k = 2, 3, \dots$$

Genuine bubble functions:

$$\hat{\psi}_{n_1,n_2}^{b,1} = \lambda_1 \lambda_2 \lambda_3 L_{n_1-1} (\lambda_3 - \lambda_2) L_{n_2-1} (\lambda_2 - \lambda_1) \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$\hat{\psi}_{n_1,n_2}^{b,2} = \lambda_1 \lambda_2 \lambda_3 L_{n_1-1} (\lambda_3 - \lambda_2) L_{n_2-1} (\lambda_2 - \lambda_1) \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad 1 \le n_1, n_2$$

Examples

Exact solution:

$$u = r^{2/3} \sin(2\theta/3 + \pi/3)$$

The exact solution. Detail view of $|\nabla u_{h,p}|$ at the re-entrant corner (zoom = 70).

The *hp*-mesh. Red – fifth-order elements. Blue – second-order elements. (Right: zoom = 70)

The piecewise-linear mesh. Uniform refinement to reach the accuracy (each edge was subdivided into 60).

	linear elements	hp-elements
DOF	143161	839
Error	0.1876 %	0.1603 %
Iterations	421	30
CPU time	2.1 min.	0.35 sec.

Solution of the cone-sphere problem (the electric potential)

Detail of the singularity of $|\mathbf{E}| = |-\nabla \varphi|$ (zoom = 100,000).

The hp-mesh – global view.

Red – seventh-order elements. Blue – quadratic elements.

The hp-mesh – detail of the tip of the cone (zoom = 100,000).

The piecewise-linear mesh. Uniform refinement to reach accuracy (each edge was subdivided into 48).

	linear elements	hp-elements
DOF	488542	3317
Error	0.5858 %	0.2804 %
Iterations	859	44
CPU time	30 min.	10.53 sec.

MATEMYZ

Motors that can resist destructive electromagnetic waves. axis Ω_1 150 Γ_1 Ω_2 50 Γ_2 50 400 El. potential: 200 $\varphi = 0$ V on Γ_1 $\varphi = 50$ V on Γ_2 . 200 Permittivity: 0.5 $\epsilon = 1$ in Ω_1 198 $\epsilon = 10$ in Ω_2 . 1.5

Electric potential φ (zoom = 1 and 6), singularity of $|\mathbf{E}| = |-\nabla \varphi|$ (zoom = 1000),

error estimate (zoom = 1000)

The hp-mesh (zoom = 1, 6, 50, 1000).

Red – sixth-order elements. Blue – quadratic elements.

The piecewise-linear mesh.

Uniform refinement (each edge was subdivided into 44).

Zoom = 1, 6, 50, 1000.

	linear elements	hp-elements
DOF	472384	4511
Error	0.2024 %	0.173 %
Iterations	387	71
CPU time	32 min.	17 sec.

Computational domain (all measures are in millimeters).

El. potential: $\varphi = 220$ V on Γ_1 , Permittivity: $\epsilon = 1$ in Ω_1 and $\epsilon = 10$ in Ω_2 .

Solution of the insulator problem (electric potential φ).

Detail of the singularity of $|\mathbf{E}|$ at the re-entrant corner and discontinuity along the material interface (zoom = 1000).

The hp-mesh – global view.

Red – fifth-order elements. Blue – quadratic elements.

The hp-mesh – detail of the re-entrant corner (zoom = 1000).

The piecewise-linear mesh.

Uniform refinement (each edge was subdivided into 23).

	linear elements	hp-elements
DOF	259393	6331
Error	1.617 %	1.521 %
Iterations	228	60
CPU time	34 min.	11.58 sec.

Diffraction problem

HERMES_2D: an hp-FEM solver - p.22/23

Diffraction problem

The meshes:

hierarchic hp edge elements and Whitney elements.

Diffraction problem

	Whitney edge elements	hp edge elements
DOF	2586540	4324
Error	0.6445 %	0.6211 %
CPU time	21.2 min.	2.49 sec.

Thank you for your attention.

http://servac.math.utep.edu/fem_group

http://servac.math.utep.edu/hermes

http://groups.google.com/group/femgroup

Tomáš Vejchodský

Mathematical Institute, Academy of Sciences Žitná 25, 11567 Prague 1 Czech Republic

vejchod@math.cas.cz