

University of Texas at El Paso Dep. of Mathematical Sciences

On Some Aspects of the *hp*-FEM for Time-Harmonic Maxwell's Equations

Tomáš Vejchodský vejchod@math.cas.cz

Pavel Šolín solin@utep.edu Martin Zítka zitka@math.utep.edu

Midwest Numerical Analysis Conference, May 20–22, 2005, University of Iowa

Time harmonic Maxwell's equations

$$\operatorname{curl}\left(\mu_{\mathsf{r}}^{-1}\operatorname{curl}\mathbf{E}\right) - \kappa^{2}\epsilon_{\mathsf{r}}\mathbf{E} = \mathbf{F}$$
 in Ω ,

where

- curl = $(\partial/\partial x_2, -\partial/\partial x_1)^{\top}$
- curl $\mathbf{E} = \partial E_2 / \partial x_1 \partial E_1 / \partial x_2$
- $\Omega \subset \mathbb{R}^2$
- $\mu_{r} = \mu_{r}(x) \in \mathbb{R}$ relative permeability
- $\epsilon_{\rm r} = \epsilon_{\rm r}(x) \in \mathbb{C}^{2 \times 2}$ relative permittivity
- $\mathbf{E} = \mathbf{E}(x) \in \mathbb{C}^2$ phaser of the electric field intensity
- $\mathbf{F} = \mathbf{F}(x) \in \mathbb{C}^2$
- $\kappa \in \mathbb{R}$ the wave number

Time harmonic Maxwell's equations + boundary conditions

$$\operatorname{curl}\left(\mu_{\mathsf{r}}^{-1}\operatorname{curl}\mathbf{E}\right)-\kappa^{2}\epsilon_{\mathsf{r}}\mathbf{E}=\mathbf{F}$$
 in Ω

Perfect conducting boundary conditions:

$$\mathbf{E} \cdot \tau = 0$$
, on Γ_P .

Impedance boundary conditions:

$$\mu_{\mathsf{r}}^{-1}\operatorname{curl} \mathbf{E} - \mathsf{i}\kappa\lambda\mathbf{E}\cdot \mathbf{\tau} = \mathbf{g}\cdot \mathbf{\tau}$$
 on $\mathsf{\Gamma}_{I}$.

Here,

- $\tau = (-\nu_2, \nu_1)^\top$ positively oriented unit tangent vector
- $\lambda = \lambda(x) > 0$ impedance
- $\mathbf{g} = \mathbf{g}(x) \in \mathbb{C}^2$

Weak and FEM formulations

$$V = \{ \mathbf{E} \in \mathbf{H}(\operatorname{curl}, \Omega) : \nu \times \mathbf{E} = 0 \text{ on } \Gamma_P \}$$

$$\mathbf{E} \in V : \quad \overline{a(\mathbf{E}, \Phi) = \mathcal{F}(\Phi)} \quad \forall \Phi \in V$$

$$V_h = \{ \mathbf{E}_h \in V : \mathbf{E}_h | K_j \in P^{p_j}(K_j) \text{ and}$$

$$\mathbf{E}_h \cdot \tau_k \text{ is continuous on each edge } e_k \}$$

$$\mathbf{E}_h \in V_h : \quad \overline{a(\mathbf{E}_h, \Phi_h) = \mathcal{F}(\Phi_h)} \quad \forall \Phi_h \in V_h$$

$$a(\mathbf{E}, \Phi) = \left(\mu_{\mathsf{r}}^{-1} \operatorname{curl} \mathbf{E}, \operatorname{curl} \Phi\right) - \kappa^{2} \left(\epsilon_{\mathsf{r}} \mathbf{E}, \Phi\right) - \mathsf{i} \kappa \left\langle \lambda \mathbf{E} \cdot \tau, \Phi \cdot \tau \right\rangle$$
$$\mathcal{F}(\Phi) = \left(F, \Phi\right) + \left\langle \mathbf{g}, \Phi \cdot \tau \right\rangle$$

$$\mathbf{E}_h = \sum_{j}^N \underbrace{c_j}_{\in \mathbb{C}} \Psi_j$$
 $\Psi_j \dots$ hierarchic basis

Shape functions

Whitney functions:

$$\psi_0^{e_1} = \frac{\lambda_3 \mathbf{n}_2}{\mathbf{n}_2 \cdot \mathbf{t}_1} + \frac{\lambda_2 \mathbf{n}_3}{\mathbf{n}_3 \cdot \mathbf{t}_1}$$
$$\psi_0^{e_2} = \frac{\lambda_1 \mathbf{n}_3}{\mathbf{n}_3 \cdot \mathbf{t}_2} + \frac{\lambda_3 \mathbf{n}_1}{\mathbf{n}_1 \cdot \mathbf{t}_2}$$
$$\psi_0^{e_3} = \frac{\lambda_2 \mathbf{n}_1}{\mathbf{n}_1 \cdot \mathbf{t}_3} + \frac{\lambda_1 \mathbf{n}_2}{\mathbf{n}_2 \cdot \mathbf{t}_3}$$

First order functions:

$$\psi_1^{e_1} = \frac{\lambda_3 \mathbf{n}_2}{\mathbf{n}_2 \cdot \mathbf{t}_1} - \frac{\lambda_2 \mathbf{n}_3}{\mathbf{n}_3 \cdot \mathbf{t}_1}$$
$$\psi_1^{e_2} = \frac{\lambda_1 \mathbf{n}_3}{\mathbf{n}_3 \cdot \mathbf{t}_2} - \frac{\lambda_3 \mathbf{n}_1}{\mathbf{n}_1 \cdot \mathbf{t}_2}$$
$$\psi_1^{e_3} = \frac{\lambda_2 \mathbf{n}_1}{\mathbf{n}_1 \cdot \mathbf{t}_3} - \frac{\lambda_1 \mathbf{n}_2}{\mathbf{n}_2 \cdot \mathbf{t}_3}$$

Edge functions:

$$\psi_{k}^{e_{1}} = \frac{2k-1}{k} L_{k-1} (\lambda_{3} - \lambda_{2}) \psi_{1}^{e_{1}} - \frac{k-1}{k} L_{k-2} (\lambda_{3} - \lambda_{2}) \psi_{0}^{e_{1}},$$

$$\psi_{k}^{e_{2}} = \frac{2k-1}{k} L_{k-1} (\lambda_{1} - \lambda_{3}) \psi_{1}^{e_{1}} - \frac{k-1}{k} L_{k-2} (\lambda_{1} - \lambda_{3}) \psi_{0}^{e_{1}},$$

$$\psi_{k}^{e_{2}} = \frac{2k-1}{k} L_{k-1} (\lambda_{2} - \lambda_{1}) \psi_{1}^{e_{1}} - \frac{k-1}{k} L_{k-2} (\lambda_{2} - \lambda_{1}) \psi_{0}^{e_{1}}, \quad k = 2, 3, \dots$$

Edge based bubble functions:

$$\psi_{k}^{b,e_{1}} = \lambda_{3}\lambda_{2}L_{k-2}(\lambda_{3} - \lambda_{2})\mathbf{n}_{1},$$

$$\psi_{k}^{b,e_{2}} = \lambda_{1}\lambda_{3}L_{k-2}(\lambda_{1} - \lambda_{3})\mathbf{n}_{2},$$

$$\psi_{k}^{b,e_{3}} = \lambda_{2}\lambda_{1}L_{k-2}(\lambda_{2} - \lambda_{1})\mathbf{n}_{3}, \quad k = 2, 3, \dots$$

Genuine bubble functions:

$$\psi_{n_1,n_2}^{b,1} = \lambda_1 \lambda_2 \lambda_3 L_{n_1-1} (\lambda_3 - \lambda_2) L_{n_2-1} (\lambda_2 - \lambda_1) \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$\psi_{n_1,n_2}^{b,2} = \lambda_1 \lambda_2 \lambda_3 L_{n_1-1} (\lambda_3 - \lambda_2) L_{n_2-1} (\lambda_2 - \lambda_1) \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad 1 \le n_1, n_2$$

ELSYS_2D - *hp*-FEM solver

- *H*¹ conforming elements
- elliptic problems
- linear nonlinear
- systems

H(curl)

- H(curl) conforming elements
- time harmonic
 Maxwell's equations

. . .

Structure of the C++ object oriented code

Modularity of the code

common core

× equation dependent modules

File names	Assembling
CPU time	Solving
Input	Output
Output	Error computation
Quadrature	

Elements Vertices Nodes Read Grid file Preprocessing Refinement Boundary cond. DOFs Allocation

Modularity of the code

sMatrix

Vertices	Nodes – DOFs
Neighours	Solution
Transformation	
Edge orientations	

Sparse matrices Iterative solvers Interface for:

- Trilinos
- PETSc
- UMFPACK

$$u = r^{\frac{2}{3}} \sin\left(\frac{2}{3}\theta + \frac{\pi}{3}\right)$$

$$E = \nabla u$$

$$E = \frac{2}{3}r^{-\frac{1}{3}} \begin{bmatrix} \cos\left(\frac{\pi}{6} + \frac{\theta}{3}\right) \\ \sin\left(\frac{\pi}{6} + \frac{\theta}{3}\right) \end{bmatrix}$$

$$F = -E$$

$$\mu_{r} = 1$$

$$\epsilon_{r} = I$$

$$\kappa = 1$$

$$\lambda = 1$$

$$g = \dots$$

	DOFs	CPU time	$\ Err\ _{\mathbf{H}(curl)}/\ \mathbf{E}\ _{\mathbf{H}(curl)}$
p = 0	2758400	11 min 26 s	0.156 %
hp	2732	0.55 s	0.138 %
Improvement	$1010 \times$	1 247×	

refinement 100

	DOFs	CPU time	$\ Err \ _{\mathbf{H}(curl)} / \ \mathbf{E} \ _{\mathbf{H}(curl)}$
p = 1	266 464	4 min 18 s	0.02612 %
hp	5 534	2.67 s	0.02608 %
Improvement	48×	97×	

refinement 22

Example 2 (P. Monk, 2003)

$$u = J_{\frac{2}{3}}(r) \cos\left(\frac{2}{3}\theta\right)$$

$$E = \operatorname{curl} u$$

$$F = 0$$

$$\mu_{r} = 1$$

$$\epsilon_{r} = I$$

$$\kappa = 1$$

$$\lambda = 1$$

$$g = \dots$$

	DOFs	CPU time	$\ { t Err} \ _{{f H}({ t curl})} / \ {f E} \ _{{f H}({ t curl})}$
p = 0	2 586 540	21 min 12 s	0.645 %
hp	4 324	2.49 s	0.621 %
Improvement	598×	511×	

	DOFs	CPU time	$\ Err \ _{\mathbf{H}(curl)} / \ \mathbf{E} \ _{\mathbf{H}(curl)}$
p = 1	827 664	7 min 3 s	1.068 %
hp	2 624	1.51 s	0.966 %
Improvement	315×	280×	

refinement 4

Outlook

- H^1 and H(curl) conforming elements in 3D
- parallelization

•

- a posteriori error estimates
- automatic *hp*-adaptivity
- orthonormalization of the bubble functions (investigation of the non-affine hierarchic elements)

University of Texas at El Paso Dep. of Mathematical Sciences

Thank you for your attention.

Tomáš Vejchodský vejchod@math.cas.cz

Pavel Šolín solin@utep.edu Martin Zítka zitka@math.utep.edu

Midwest Numerical Analysis Conference, May 20–22, 2005, University of Iowa