Mathematical Institute
Academy of Sciences, Czech Republic
Žitná 25, 11567 Praha 1

Guaranteed and locally computable a posteriori error estimator

Combination of the equilibrated residual method and the method of hypercircle

Tomáš Vejchodský

INTRODUCTION - a posteriori error estimates

$u \quad$... exact solution of an elliptic problem
$u_{h} \quad \ldots$ finite element solution of the elliptic problem
$e=u-u_{h} \ldots$ the error
$\mathcal{E} \approx\|e\| \quad \ldots$ a posteriori error estimator

- Computable from u_{h} and input data.
- Computation of \mathcal{E} should be fast.
- Guaranteed upper bound

$$
\|e\| \leq \mathcal{E}
$$

- Global error estimator - solution of global problem.
- Local error estimator - series of local problems.

INTRODUCTION - methods

- The equilibrated residual method
- locally computable, not guaranteed upper bound.

Origin of this method: Ladeveze and Leguillon (1983), Kelly (1984), Bank and Weiser (1985).

- The method of hypercircle
- guaranteed upper bound, not locally computable.

Fundamental book: Synge (1957).

- The combined method
- guaranteed upper bound, locally computable.

Published by Ladeveze and Leguillon (1983), but they consider piecewise constant data and their estimator is not completely computable in 2D.

Linear elliptic model problem - classical formulation

$$
\begin{aligned}
-\nabla \cdot(\mathcal{A} \nabla \bar{u}) & =f & & \text { in } \Omega, \\
\bar{u} & =g_{\mathrm{D}} & & \text { on } \Gamma_{\mathrm{D}}, \\
(\mathcal{A} \nabla \bar{u}) \cdot \nu & =g_{\mathrm{N}} & & \text { on } \Gamma_{\mathrm{N}} .
\end{aligned}
$$

Notation:

$$
\begin{aligned}
\Omega & \subset \mathbb{R}^{2} \\
\nu & =\nu\left(x_{1}, x_{2}\right) \ldots \text { polygonal domain, } \\
\Gamma_{\mathrm{D}} & \subset \partial \Omega \\
\Gamma_{\mathrm{N}} & \subset \partial \Omega
\end{aligned} \quad \ldots \text { Dirichlet part of } \partial \Omega,
$$

Linear elliptic model problem - weak formulation

Find $\bar{u} \in H^{1}(\Omega)$ such that $\bar{u}=u+g_{\mathrm{D}}$ and $u \in V$ satisfies

$$
(\mathcal{A} \nabla u, \nabla v)=(f, v)-\left(\mathcal{A} \nabla g_{\mathrm{D}}, \nabla v\right)+\left\langle g_{\mathrm{N}}, v\right\rangle \quad \forall v \in V
$$

where

$$
V=\left\{v \in H^{1}(\Omega): v=0 \text { on } \Gamma_{\mathrm{D}}\right\}
$$

$\mathcal{A} \in\left[L^{\infty}(\Omega)\right]^{2 \times 2} \ldots$ symmetric, uniformly positive definite matrix, $g_{\mathrm{D}} \in H^{1}(\Omega) \quad \ldots$ extension of values on $\partial \Gamma_{\mathrm{D}}$ into interior of Ω, $f \in L^{2}(\Omega) \quad . .$. the right-hand side,
$g_{\mathrm{N}} \in L^{2}\left(\Gamma_{N}\right) \quad \ldots$ the Neumann boundary condition,
$\Gamma_{N} \subset \partial \Omega \quad \ldots$ Neumann part of $\partial \Omega$.

$$
\begin{aligned}
(\mathcal{A} \nabla u, \nabla v) & =\int_{\Omega}(\mathcal{A} \nabla u) \cdot \nabla v \mathrm{~d} x, & & \forall u, v \in V \\
(f, v) & =\int_{\Omega} f v \mathrm{~d} x & & \forall f, v \in L^{2}(\Omega), \\
\left\langle g_{\mathrm{N}}, v\right\rangle & =\int_{\Gamma_{\mathrm{N}}} g_{\mathrm{N}} v \mathrm{~d} s & & \forall g_{\mathrm{N}}, v \in L^{2}\left(\Gamma_{\mathrm{N}}\right) .
\end{aligned}
$$

FINITE ELEMENT METHOD

Finite element solution:
$\bar{u}_{h}=u_{h}+g_{\mathrm{D}}$, where $\bar{u}_{h} \in H^{1}(\Omega)$ and $u_{h} \in V_{h}$ satisfies

$$
\left(\mathcal{A} \nabla u_{h}, \nabla v_{h}\right)=\left(f, v_{h}\right)-\left(\mathcal{A} \nabla g_{\mathrm{D}}, \nabla v_{h}\right)+\left\langle g_{\mathrm{N}}, v_{h}\right\rangle \quad \forall v_{h} \in V_{h}
$$

$T_{h} \quad \ldots$ triangulation of Ω,
$V_{h} \subset V \ldots$ finite element space based on T_{h} consists of continuous and piecewise polynomial functions of degree p.

Residual equation:

$$
(\mathcal{A} \nabla e, \nabla v)=\mathcal{R}(v) \quad \forall v \in V
$$

where

$$
\begin{aligned}
e & =u-u_{h}=\bar{u}-\bar{u}_{h} \quad \ldots \text { the error } \\
\mathcal{R}(v) & =(f, v)-\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla v\right)+\left\langle g_{\mathrm{N}}, v\right\rangle \ldots \text { residuum }, \quad v \in V .
\end{aligned}
$$

Notation: L^{2}-norm: $\|v\|_{0, \Omega}^{2}=(v, v)$, energy norm: $\|v\|^{2}=(\mathcal{A} \nabla v, \nabla v)$.

THE EQUILIBRATED RESIDUAL METHOD*

Split residuum $\mathcal{R}(v)$ into contribution from individual elements:

$$
\mathcal{R}(v)=\sum_{K \in T_{h}} \mathcal{R}_{K}^{\mathrm{EQ}}\left(\left.v\right|_{K}\right) \quad \forall v \in V,
$$

where

$$
\mathcal{R}_{K}^{\mathrm{EQ}}(v)=(f, v)_{K}-\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla v\right)_{K}+\left\langle g_{K}, v\right\rangle_{\partial K} \quad \forall v \in V(K)
$$

and $V(K)=\left\{v \in H^{1}(K): v=0\right.$ on $\left.\Gamma_{\mathrm{D}}\right\}$.

Notation:

$$
\begin{aligned}
(\mathcal{A} \nabla u, \nabla v)_{K} & =\int_{K}(\mathcal{A} \nabla u) \cdot \nabla v \mathrm{~d} x, & & \forall u, v \in H^{1}(K), \\
(f, v)_{K} & =\int_{K} f v \mathrm{~d} x & & \forall f, v \in L^{2}(K), \\
\left\langle g_{K}, v\right\rangle_{\partial K} & =\int_{\partial K} g_{K} v \mathrm{~d} s & & \forall g_{K}, v \in L^{2}(\partial K) .
\end{aligned}
$$

*According to the book Ainsworth and Oden (2000).

The equilibrated residual method - boundary fluxes g_{K}

- $g_{K} \in P^{p}(\gamma)$. . polynomials of degree p on edges γ of elements K.
- Approximate the actual fluxes of the true solution on the elements boundaries:

$$
g_{K} \approx \nabla u \cdot \nu_{K}, \text { on } \partial K
$$

- If K and K^{*} denote two adjacent elements then

$$
\left.\begin{array}{rlrl}
g_{K}+g_{K^{*}} & =0 & & \text { on } \partial K \cap \partial K^{*}, \\
g_{K} & =g_{\mathrm{N}} & & \text { on } \partial K \cap \partial \Gamma_{\mathrm{N}},
\end{array}\right\} \quad \Longrightarrow \quad \mathcal{R}(v)=\sum_{K \in T_{h}} \mathcal{R}_{K}^{\mathrm{EQ}}(v) .
$$

- Satisfy p-th order equilibration condition:

$$
\mathcal{R}_{K}^{\mathrm{EQ}}\left(\theta_{K}\right)=\left(f, \theta_{K}\right)_{K}-\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla \theta_{K}\right)_{K}+\left\langle g_{K}, \theta_{K}\right\rangle_{\partial K}=0
$$

for all polynomials θ_{K} of degree p from $V(K)$.

- Boundary fluxes g_{K} can be computed quickly.

The equilibrated residual method - local problem

Define the solution $\Phi_{K} \in V(K)$ of the local residual problem

$$
\left(\mathcal{A} \nabla \Phi_{K}, \nabla v\right)_{K}=(f, v)_{K}-\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla v\right)_{K}+\left\langle g_{K}, v\right\rangle_{\partial K} \quad \forall v \in V(K),
$$

i.e.,

$$
\left(\mathcal{A} \nabla \Phi_{K}, \nabla v\right)_{K}=\mathcal{R}_{K}^{\mathrm{EQ}}(v)
$$

$$
\forall v \in V(K)
$$

This is local elliptic problem with Neumann boundary conditions given by g_{K}. The existence of solution Φ_{K} is guaranteed by the equilibration condition:

$$
(f, 1)_{K}+\left\langle g_{K}, 1\right\rangle_{\partial K}=0
$$

Nonuniqueness of Φ_{K} is not important since we are interested in $\nabla \Phi_{K}$.

The equilibrated residual method - guaranteed upper bound
Notation: $\|v\|_{K}^{2}=(\mathcal{A} \nabla v, \nabla v)_{K}$.
Residual equation:

$$
(\mathcal{A} \nabla e, \nabla v)=\sum_{K \in T_{h}} \mathcal{R}_{K}^{\mathrm{EQ}}(v)=\sum_{K \in T_{h}}\left(\mathcal{A} \nabla \Phi_{K}, \nabla v\right)_{K} \quad \forall v \in V
$$

Two times Cauchy-Schwarz inequality:

$$
|(\mathcal{A} \nabla e, \nabla v)| \leq \sum_{K \in T_{h}}\left\|\Phi_{K}\right\|_{K}\|v\|_{K} \leq\left(\sum_{K \in T_{h}}\left\|\Phi_{K}\right\|_{K}^{2}\right)^{1 / 2}\|v\|
$$

Finally:

$$
\|e\|=\sup _{0 \neq v \in V} \frac{|(\mathcal{A} \nabla e, \nabla v)|}{\|v\|} \leq\left(\sum_{K \in T_{h}}\left\|\Phi_{K}\right\|_{K}^{2}\right)^{1 / 2} .
$$

Thus, the local solutions Φ_{K} provide guaranteed upper bound.
Trouble:
Φ_{K} as solutions of infinitely dimensional problems are not computable.

The equilibrated residual method - summary

- Compute boundary fluxes g_{K} - fast algorithm.
- Find approximate solutions to the local residual problems

$$
\left(\mathcal{A} \nabla \Phi_{K}, \nabla v\right)_{K}=(f, v)_{K}-\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla v\right)_{K}+\left\langle g_{K}, v\right\rangle_{\partial K} \quad \forall v \in V(K) .
$$

- Evaluate the estimator

$$
\|e\|^{2} \leq \sum_{K \in T_{h}}\left\|\Phi_{K}\right\|_{K}^{2}
$$

This a posteriori error estimator is locally computable, but it is not guaranteed upper bound.

THE METHOD OF HYPERCIRCLE

Notation: $\|\mathbf{q}\|_{\mathcal{A}^{-1}, \Omega}^{2}=\left(\mathcal{A}^{-1} \mathbf{q}, \mathbf{q}\right) ; \quad H^{1}(\operatorname{div}, \Omega) \subset\left[L^{2}(\Omega)\right]^{2}$ Substituting $v=e=\bar{u}-\bar{u}_{h}$ into the weak formulation we get:

$$
-(\mathcal{A} \bar{u}, \nabla e)=-(f, e)-\left\langle g_{\mathrm{N}}, e\right\rangle
$$

Let us compute for any $\mathrm{q} \in H^{1}(\operatorname{div}, \Omega)$:

$$
\begin{aligned}
& \| \mathbf{q}-\mathcal{A} \nabla \bar{u}_{h} \|_{\mathcal{A}^{-1}, \Omega}^{2} \\
&=\left(\mathcal{A}^{-1} \mathbf{q}-\nabla \bar{u}-\nabla \bar{u}_{h}+\nabla \bar{u}, \mathbf{q}-\mathcal{A} \nabla \bar{u}-\mathcal{A} \nabla \bar{u}_{h}+\mathcal{A} \nabla \bar{u}\right) \\
&=\|\mathbf{q}-\mathcal{A} \nabla \bar{u}\|_{\mathcal{A}^{-1}, \Omega}^{2}+2\left(\mathbf{q}-\mathcal{A} \nabla \bar{u}, \nabla \bar{u}-\nabla \bar{u}_{h}\right)+\left\|\bar{u}-\bar{u}_{h}\right\|^{2} \\
&=\|\mathbf{q}-\mathcal{A} \nabla \bar{u}\|_{\mathcal{A}^{-1}, \Omega}^{2}+2(\mathbf{q}, \nabla e)-2(f, e)-2\left\langle g_{\mathrm{N}}, e\right\rangle+\left\|\bar{u}-\bar{u}_{h}\right\|^{2} . \\
& Q\left(f, g_{\mathrm{N}}\right)=\left\{\mathbf{q} \in H^{1}(\operatorname{div}, \Omega):(\mathbf{q}, \nabla v)=(f, v)+\left\langle g_{\mathrm{N}}, v\right\rangle \quad \forall v \in V\right\} \\
&\left\|\mathbf{q}-\mathcal{A} \nabla \bar{u}_{h}\right\|_{\mathcal{A}^{-1}, \Omega}^{2}=\|\mathbf{q}-\mathcal{A} \nabla \bar{u}\|_{\mathcal{A}^{-1}, \Omega}^{2}+\left\|\bar{u}-\bar{u}_{h}\right\|^{2}, \quad \forall \mathbf{q} \in Q\left(f, g_{\mathrm{N}}\right) .
\end{aligned}
$$

The method of hypercircle - guaranteed upper bound

Thus,

$$
\|e\|^{2}=\left\|\bar{u}-\bar{u}_{h}\right\|^{2} \leq\left\|\mathbf{q}-\mathcal{A} \nabla \bar{u}_{h}\right\|_{\mathcal{A}^{-1}, \Omega}^{2} \quad \forall \mathbf{q} \in Q\left(f, g_{N}\right)
$$

This estimator is exact if $\mathrm{q}=\nabla u$, but it is unreachable.

How to find suitable function $\mathrm{p}_{h} \in Q\left(f, g_{\mathrm{N}}\right)$, which would produce tight upper bound?

The crucial ingredient: the structure of $Q\left(f, g_{\mathrm{N}}\right)$, described by Křižek (1983).

The method of hypercircle - structure of $Q\left(f, g_{\mathbf{N}}\right)$

Let $\overline{\mathbf{p}} \in Q\left(f, g_{\mathrm{N}}\right)$ be arbitrary but fixed, then

$$
Q\left(f, g_{N}\right)=\overline{\mathbf{p}}+Q(0,0)
$$

where

$$
Q(0,0)=\left\{\mathbf{q} \in H^{1}(\operatorname{div}, \Omega):(\mathbf{q}, \nabla v)=0 \quad \forall v \in V\right\}
$$

It is

$$
Q(0,0)=\operatorname{curl} W
$$

where

$$
W=\left\{w \in H^{1}(\Omega): w=0 \text { on } \Gamma_{\mathrm{N}}\right\}
$$

Definition: curl $=\left(\partial / \partial x_{2},-\partial / \partial x_{1}\right)^{\top}$.

How to construct $\overline{\mathbf{p}} \in Q\left(f, g_{\mathrm{N}}\right)$?

The method of hypercircle $\mathbf{-}$ construction of $\overline{\mathbf{p}} \in Q\left(f, g_{\mathbf{N}}\right)$

Any $\overline{\mathbf{p}} \in Q\left(f, g_{\mathrm{N}}\right)$ have to satisfy: $-\operatorname{div} \overline{\mathbf{p}}=f$ and $\overline{\mathbf{p}} \cdot \nu=g_{\mathrm{N}}$. Therefore,

$$
\overline{\mathbf{p}}=\mathbf{F}+\operatorname{curl} w,
$$

where

$$
\mathbf{F}\left(x_{1}, x_{2}\right)=\left(-\int_{0}^{x_{1}} f\left(s, x_{2}\right) \mathrm{d} s, 0\right)^{\top}
$$

and $w \in H^{1}(\Omega)$ is an arbitrary function satisfying

$$
\operatorname{curl} w \cdot \nu=\nabla w \cdot \tau=g_{\mathrm{N}}-F \cdot \nu \quad \text { on } \Gamma_{\mathrm{N}},
$$

Notation: $\tau=\left(-\nu_{2}, \nu_{1}\right) \ldots$ a unit tangent vector to Γ_{N}.

Remark:
the values of w on ∂K are given by primitive function to $g_{\mathrm{N}}-F \cdot \nu$.

The method of hypercircle - conclusion

$$
\begin{array}{ll}
\|e\| \leq\left\|\mathbf{q}-\mathcal{A} \nabla \bar{u}_{h}\right\|_{\mathcal{A}^{-1}, \Omega} & \forall \mathbf{q} \in Q\left(f, g_{\mathrm{N}}\right) \\
\| & \|=\| \\
\|e\| \leq\left\|\overline{\mathbf{p}}+\operatorname{curl} y-\mathcal{A} \nabla \bar{u}_{h}\right\|_{\mathcal{A}^{-1}, \Omega} & \forall y \in W
\end{array}
$$

To obtain computable estimate we replace W by a finite dimensional subspace $W_{h} \subset W$.
The optimal choice $y_{h} \in W_{h}$ minimizes the estimator over W_{h} :

$$
\left(\mathcal{A}^{-1} \operatorname{curl} y_{h}, \operatorname{curl} v_{h}\right)=\left(\nabla u_{h}-\mathcal{A}^{-1} \overline{\mathbf{p}}, \operatorname{curl} v_{h}\right) \quad \forall v_{h} \in W_{h} .
$$

$\left\|\overline{\mathbf{p}}+\operatorname{curl} y_{h}-\mathcal{A} \nabla \bar{u}_{h}\right\|_{\mathcal{A}^{-1}, \Omega} \ldots$ computable guaranteed upper bound.
Trouble: evaluation of this estimator involves solution of a global problem, i.e., this estimator is not local.

THE COMBINED METHOD

To obtain locally computable guaranteed upper bound, we combine the equilibrated residual method with the hypercircle method.

- Compute boundary fluxes g_{K} by the equilibrated residual method.
- Apply the method of hypercircle to the local residual problem

$$
\left(\mathcal{A} \nabla \Phi_{K}, \nabla v\right)_{K}=(f, v)_{K}-\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla v\right)_{K}+\left\langle g_{K}, v\right\rangle_{\partial K} \quad \forall v \in V(K) .
$$

The combined method - error expression

Local residual problem with $v=\Phi_{K}$:

$$
-\left(\mathcal{A} \nabla \Phi_{K}, \nabla \Phi_{K}\right)_{K}=-\left(f, \Phi_{K}\right)_{K}+\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla \Phi_{K}\right)_{K}-\left\langle g_{K}, \Phi_{K}\right\rangle_{\partial K}
$$

Let us compute for any $\mathrm{q} \in H^{1}(\operatorname{div}, K)$:

$$
\begin{aligned}
& \|\mathbf{q}\|_{\mathcal{A}^{-1}, K}^{2} \\
& =\left\|\mathbf{q}-\mathcal{A} \nabla \Phi_{K}\right\|_{\mathcal{A}^{-1}, K}^{2}+2\left(\mathbf{q}-\mathcal{A} \nabla \Phi_{K}, \nabla \Phi_{K}\right)_{K}+\left\|\Phi_{K}\right\|_{K}^{2} \\
& =2\left(\mathbf{q}, \nabla \Phi_{K}\right)_{K}-2\left(f, \Phi_{K}\right)_{K}+2\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla \Phi_{K}\right)_{K}-2\left\langle g_{K}, \Phi_{K}\right\rangle_{\partial K} \\
& \quad+\left\|\mathbf{q}-\mathcal{A} \nabla \Phi_{K}\right\|_{\mathcal{A}^{-1}, K}^{2}+\left\|\Phi_{K}\right\|_{K}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& Q_{K}\left(f, g_{K}, \bar{u}_{h}\right)=\left\{\mathbf{q} \in H^{1}(\operatorname{div}, K):\right. \\
&(\mathbf{q}, \nabla v)_{K}\left.=(f, v)_{K}-\left(\mathcal{A} \nabla \bar{u}_{h}, \nabla v\right)_{K}+\left\langle g_{K}, v\right\rangle_{\partial K} \quad \forall v \in V(K)\right\} \\
& \forall \\
&\|\mathbf{q}\|_{\mathcal{A}^{-1}, K}^{2}=\left\|\mathbf{q}-\mathcal{A} \nabla \Phi_{K}\right\|_{\mathcal{A}^{-1}, K}^{2}+\left\|\Phi_{K}\right\|_{K}^{2} \quad \forall \mathbf{q} \in Q_{K}\left(f, g_{K}, \bar{u}_{h}\right)
\end{aligned}
$$

The combined method - structure of $Q_{K}\left(f, g_{K}, \bar{u}_{h}\right)$
$\overline{\mathrm{p}}_{K} \in Q_{K}\left(f, g_{K}, \bar{u}_{h}\right)$ is arbitrary but fixed.

$$
\begin{aligned}
Q_{K}\left(f, g_{K}, \bar{u}_{h}\right) & =\overline{\mathrm{p}}_{K}+Q_{K}(0,0,0) \\
& =\overline{\mathrm{p}}_{K}+\operatorname{curl} W(K) \\
W(K) & =\left\{v \in H^{1}(K): v=0 \text { on } \partial K \backslash \Gamma_{\mathrm{D}}\right\} \\
Q_{K}(0,0,0) & =\left\{\mathbf{q} \in H^{1}(\operatorname{div}, K):(\mathbf{q}, \nabla v)_{K}=0 \quad \forall v \in V(K)\right\}
\end{aligned}
$$

The combined method - guaranteed upper bound

From the error expression we have

$$
\begin{array}{ll}
\left\|\Phi_{K}\right\|_{K} \leq\|\mathbf{q}\|_{\mathcal{A}^{-1}, K} & \forall \mathbf{q} \in Q_{K}\left(f, g_{K}, \bar{u}_{h}\right), \\
\left\|\Phi_{K}\right\|_{K} \leq\left\|\overline{\mathbf{p}}_{K}+\operatorname{curl} y_{K}\right\|_{\mathcal{A}^{-1}, K} & \forall y_{K} \in W(K) .
\end{array}
$$

We conclude that

$$
\|e\|^{2} \leq \sum_{K \in T_{h}}\left\|\Phi_{K}\right\|_{K}^{2} \leq \sum_{K \in T_{h}}\left\|\overline{\mathbf{p}}_{K}+\operatorname{curl} y_{K}\right\|_{\mathcal{A}^{-1}, K}^{2} \quad \forall y_{K} \in W(K)
$$

Finite dimensional subspace: $W_{h}(K) \subset W(K)$.
For example: $W_{h}(K)=P^{p+1}(K) \subset W(K)$.
The optimal $y_{K h} \in W_{h}(K)$, which minimizes the right-hand side over $W_{h}(K)$, satisfies

$$
\left(\mathcal{A}^{-1} \operatorname{curl} y_{K h}, \operatorname{curl} v\right)_{K}=-\left(\mathcal{A}^{-1} \overline{\mathbf{p}}_{K}, \operatorname{curl} v\right)_{K} \quad \forall v \in W_{h}(K)
$$

The combined method $\mathbf{-}$ construction of $\overline{\mathbf{p}}_{K} \in Q_{K}\left(f, g_{K}, \bar{u}_{h}\right)$

How to find vector $\overline{\mathrm{p}}_{K} \in Q_{K}\left(f, g_{K}, \bar{u}_{h}\right)$ efficiently?

We have

$$
\overline{\mathrm{p}}_{K}=\mathbf{F}+\operatorname{curl} w_{K}-\mathcal{A} \nabla \bar{u}_{h}
$$

where $\mathcal{A} \nabla \bar{u}_{h}$ is known,

$$
\mathbf{F}\left(x_{1}, x_{2}\right)=\left(-\int_{0}^{x_{1}} f\left(s, x_{2}\right) \mathrm{d} s, 0\right)^{\top}
$$

and $w_{K} \in H^{1}(K)$ has to satisfy

$$
\operatorname{curl} w_{K} \cdot \nu_{K}=\frac{\partial w_{K}}{\partial \tau_{K}}=g_{K}-\mathbf{F} \cdot \nu_{K} \quad \text { on } \partial K \backslash \Gamma_{\mathrm{D}}
$$

Notation: $\tau_{K}=\left(-\nu_{K, 2}, \nu_{K, 1}\right)^{\top}$.
Notice that the values of w_{K} on the boundary ∂K are given by a primitive function to $g_{K}-\mathbf{F} \cdot \nu_{K}$.

The combined method - primitive function to $g_{K}-\mathbf{F} \cdot \nu_{K}$
Consider triangle K with vertices A, B, C. Then

$$
w_{K}(x)= \begin{cases}w_{K}(A)+\int_{A}^{x}\left(g_{K}-\mathbf{F} \cdot \nu_{K}\right) \mathrm{d} s, & \text { for } x \in \overline{A B} \\ w_{K}(B)+\int_{B}^{x}\left(g_{K}-\mathbf{F} \cdot \nu_{K}\right) \mathrm{d} s, & \text { for } x \in \overline{B C} \\ w_{K}(C)+\int_{C}^{x}\left(g_{K}-\mathbf{F} \cdot \nu_{K}\right) \mathrm{d} s, & \text { for } x \in \overline{C A}\end{cases}
$$

where $\overline{A B}, \overline{B C}$, and $\overline{C A}$ denote the edges of triangle and

$$
\begin{aligned}
& w_{K}(A) \in \mathbb{R} \text { is arbitrary, } \\
& w_{K}(B)=w_{K}(A)+\int_{A}^{B}\left(g_{K}-\mathbf{F} \cdot \nu_{K}\right) \mathrm{d} s \\
& w_{K}(C)=w_{K}(B)+\int_{B}^{C}\left(g_{K}-\mathbf{F} \cdot \nu_{K}\right) \mathrm{d} s
\end{aligned}
$$

The constants $w_{K}(B)$ and $w_{K}(C)$ are chosen such that w_{K} is continuous in points B and C.
The function w_{K} is continuous also in point A :

$$
\left[w_{K}(A)\right]=\int_{\partial K} \frac{\partial w_{K}}{\partial \tau_{K}}=\int_{\partial K}\left(g_{K}-\mathbf{F} \cdot \nu_{K}\right) \mathrm{d} s=\int_{\partial K} g_{K} \mathrm{~d} s+\int_{K} f \mathrm{~d} x=0
$$

The combined method - extension into interior of K

The function w_{K} is continuous on ∂K and it is possible to extend it into interior of K such that $w \in H^{1}(K)$. We suggest this extension:

The combined method - description of the extension

Consider triangle K with vertices A, B and C and $\omega \in C^{0}(\partial K)$. Let us define extension $\tilde{\omega} \in C^{0}(\bar{K})$ of ω into the interior of K by

$$
\tilde{\omega}(X)=\tilde{\ell}(X)+\tilde{z}_{1}(X)+\tilde{z}_{2}(X)+\tilde{z}_{3}(X), \quad X \in \bar{K}
$$

- Function $\tilde{\ell}$ is a linear function on \bar{K} such that $\widetilde{\ell}(A)=\omega(A), \widetilde{\ell}(B)=$ $\omega(B)$, and $\tilde{\ell}(C)=\omega(C)$.
- Functions $\tilde{z}_{1} \in C^{0}(\bar{K})$, which is zero on $\partial K \backslash \overline{B C}$, and $\tilde{z}_{2} \in C^{0}(\bar{K})$, which is zero on $\partial K \backslash \overline{C A}$ are define in analogy with the definition of \tilde{z}_{3}.
- Function $\tilde{z}_{3} \in C^{0}(\bar{K})$ is zero on $\partial K \backslash \overline{A B}$ and is defined by

$$
\begin{array}{ll}
z_{3}(X)=\omega(X)-\tilde{\ell}(X) & \text { for } X \in \overline{A B}, \\
\tilde{z}_{3}(X)=0 & \text { for } X \in \overline{B C} \\
\tilde{z}_{3}(X)=\left(\omega\left(D_{3}\right)-\tilde{\ell}\left(D_{3}\right)\right) \frac{\left|X E_{3}\right|}{\left|D_{3} E_{3}\right|} & \text { for } X \in K,
\end{array}
$$

where $\left|X E_{3}\right|$ denotes the distance between points X and E_{3}.

Notice that $\tilde{\omega}(X)=\omega(X)$ on ∂K.

The combined method - properties of the extension

Notation: $P^{p}(\Theta)$ - the space of polynomials of degree p defined on the set Θ.

Lemma 1. Consider a triangle K and $\omega \in C^{0}(\partial K)$. Moreover, let $\left.\omega\right|_{\gamma} \in P^{p}(\gamma)$ for all edges γ of triangle K and for arbitrary $p \in \mathbb{N}$. Then the extension $\tilde{\omega}$ of function ω into interior of K described above is a polynomial of degree p in K, i.e., $\tilde{\omega} \in P^{p}(K)$.

The idea of proof.

The following functions form a basis of space $P_{0}^{p}([0,1])$ of all polynomials on $[0,1]$ with zeroes at 0 and 1:

$$
\varphi_{n}^{1 \mathrm{D}}(x)=x^{n}(1-x), \quad n=1,2, \ldots, p-1 .
$$

Functions

$$
\varphi_{n}^{2 \mathrm{D}}\left(x_{1}, x_{2}\right)=x_{1}^{n}\left(1-x_{1}-x_{2}\right), \quad n=1,2, \ldots, p-1,
$$

are the standard finite element basis functions corresponding to the edge $\overline{A B}$ of the reference triangle.
Consider lines parallel with edge $\overline{C A}$, i.e., lines described by equality $x_{1}=k, k \in \mathbb{R}$. All basis functions $\varphi_{n}^{2 \mathrm{D}}\left(x_{1}, x_{2}\right)$ are linear on these lines:

$$
\varphi_{n}^{2 \mathrm{D}}\left(k, x_{2}\right)=k^{n}\left(1-k-x_{2}\right), \quad n=1,2, \ldots, p-1
$$

The combined method - properties of the extension

Lemma 2. Consider a triangle K with vertices A, B, and C, function $\omega \in C^{0}(\partial K)$ and its extension $\tilde{\omega} \in C^{0}(K)$ described above. If there exist finite tangent derivative $\partial \omega / \partial \tau_{K}$ on all edges of triangle K then the derivatives of function \tilde{z}_{3} at any interior point $X=\left(x_{1}, x_{2}\right) \in K$ in the directions $E D$ and $X B$ are given by

$$
\begin{aligned}
& \frac{\partial \tilde{z}_{3}(X)}{\partial \overrightarrow{E_{3} D_{3}}}=\frac{\tilde{z}_{3}\left(D_{3}\right)}{\left|D_{3} E_{3}\right|} \\
& \frac{\partial \tilde{z}_{3}(X)}{\partial \overrightarrow{X B}}=\frac{\partial \tilde{z}_{3}\left(D_{3}\right)}{\partial \overrightarrow{A B}} \frac{|A B|}{|X B|} \frac{\left|X E_{3}\right|}{\left|D_{3} E_{3}\right|} \alpha=\frac{\partial \tilde{z}_{3}\left(D_{3}\right)}{\partial \tau_{K}} \frac{|A B|}{|X B|} \frac{\left|X E_{3}\right|}{\left|D_{3} E_{3}\right|} \alpha,
\end{aligned}
$$

where

$$
\alpha=\frac{\left(B_{1}-x_{1}\right)\left(A_{1}-C_{1}\right)-\left(B_{2}-x_{2}\right)\left(A_{2}-C_{2}\right)}{\left(B_{1}-A_{1}\right)\left(A_{1}-C_{1}\right)-\left(B_{2}-A_{2}\right)\left(A_{2}-C_{2}\right)} .
$$

Proof.

The derivative in the directions $\overrightarrow{X B}$ is given by

$$
\lim _{r \rightarrow 0} \frac{\tilde{z}_{3}(\widehat{X})-\tilde{z}_{3}(X)}{r|B X|}=\lim _{r \rightarrow 0} \frac{\tilde{z}_{3}\left(\widehat{D}_{3}\right)-z_{3}\left(D_{3}\right)}{r|B X|} \frac{\left|X E_{3}\right|}{\left|D_{3} E_{3}\right|},
$$

where $\widehat{X}=X+r(B-X)$,
$\tilde{z}_{3}(X)=\tilde{z}_{3}\left(D_{3}\right) \frac{\left|X E_{3}\right|}{\left|D_{3} E_{3}\right|}, \quad \tilde{z}_{3}(\widehat{X})=\tilde{z}_{3}\left(\widehat{D}_{3}\right) \frac{\left|\widehat{X} \widehat{E}_{3}\right|}{\left|\widehat{D}_{3} \widehat{E}_{3}\right|}, \quad \frac{\left|X E_{3}\right|}{\left|D_{3} E_{3}\right|}=\frac{\left|\widehat{X} \widehat{E}_{3}\right|}{\left|\widehat{D}_{3} \widehat{E}_{3}\right|}$.
The rest of proof is an exercise in analytical geometry.
Remark: the derivatives of \tilde{z}_{1} and \tilde{z}_{2} can be evaluated analogically.

The combined method - summary

- Compute boundary fluxes g_{K} using residual equilibration method.
- Construct for all triangles K in T_{h} vector

$$
\overline{\mathrm{p}}_{K}=\mathbf{F}+\operatorname{curl} w_{K}-\mathcal{A} \nabla \bar{u}_{h},
$$

where construction of w_{K} employs the extension described above.
Notice that the values of $\operatorname{curl} w_{K}$ are easily computable from values of w_{K} on ∂K and from $\partial w_{K} / \partial \tau_{K}=g_{K}-\mathbf{F} \cdot \nu$ on ∂K - see Lemma 2.

- Find solution $y_{K h} \in W_{h}(K)$ of the finite dimensional local problem

$$
\left(\mathcal{A}^{-1} \operatorname{curl} y_{K h}, \operatorname{curl} v\right)_{K}=-\left(\mathcal{A}^{-1} \overline{\mathbf{p}}_{K}, \operatorname{curl} v\right)_{K} \quad \forall v \in W_{h}(K)
$$

- Evaluate estimate

$$
\|e\|^{2} \leq \sum_{K \in T_{h}}\left\|\overline{\mathbf{p}}_{K}+\operatorname{curl} y_{K}\right\|_{\mathcal{A}^{-1}, K}^{2}
$$

The combined method - exactness of the estimator

Lemma 3. Let the finite element solution $u_{h} \in V_{h}$ be exact, i.e., $u_{h}=$ u and let the matrix \mathcal{A} be constant. If the vector $\overline{\mathbf{p}}_{K} \in Q_{K}\left(f, g_{K}, \bar{u}_{h}\right)$ is constructed as described above then the combined error estimator is exact, i.e., $\overline{\mathbf{p}}_{K}+\operatorname{curl} y_{K}=0$.

Proof. From the equilibrated residual method follows that

$$
g_{K}=\nabla \bar{u} \cdot \nu_{K} \text { on } \partial K
$$

This implies that

$$
\begin{aligned}
Q_{K}\left(f, g_{K}, \bar{u}_{h}\right) & =\left\{\mathbf{q} \in H^{1}(\operatorname{div}, K):(\mathbf{q}, \nabla v)_{K}=0 \quad \forall v \in V(K)\right\} \\
& =\operatorname{curl} W(K)
\end{aligned}
$$

Moreover, the extension of w_{K} is polynomial, because f is polynomial, see Lemma 1. Therefore, $\overline{\mathbf{p}}_{K}$ is also polynomial and $\overline{\mathbf{p}}_{K} \in \operatorname{curl} W_{h}(K)$. Thus, the solution of the local problem

$$
\left(\mathcal{A}^{-1} \operatorname{curl} y_{K}, \operatorname{curl} v\right)_{K}=-\left(\mathcal{A}^{-1} \overline{\mathbf{p}}_{K}, \operatorname{curl} v\right)_{K} \quad \forall v \in W_{h}(K)
$$

satisfies curl $y_{k}=-\overline{\mathbf{p}}_{K}$.

NUMERICAL EXPERIMENTS

- Finite element method:
$V_{h} \ldots$ continuous and piecewise quadratic functions with zero on Γ_{D}.
- Equilibrated residual method:
$V_{h}(K) \ldots$ degree three polynomials with zero on Γ_{D}.
- The method of hypercircle:
$W_{h} \ldots$ continuous and piecewise quadratic functions with zero on 「 N .
- The combined methods:
$W_{h}(K) \ldots$ degree three polynomials with zero on $\partial K \backslash \Gamma_{\mathrm{D}}$.

Remark: If we consider interior element K, then $\operatorname{dim} V_{h}(K)=10$ and $\operatorname{dim} W_{h}(K)=1$. Thus, the combined method performs faster.

Example 1

Consider the following data:

$$
\begin{aligned}
\Omega & =[-1,1]^{2} \\
\Gamma_{\mathrm{D}} & =\partial \Omega \\
\Gamma_{\mathrm{N}} & =\emptyset \\
\mathcal{A} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \\
g_{1} & =0 \\
f\left(x_{1}, x_{2}\right) & =2\left(2-x_{1}^{2}-x_{2}^{2}\right) \\
u\left(x_{1}, x_{2}\right) & =\left(x_{1}^{2}-1\right)\left(x_{2}^{2}-1\right)
\end{aligned}
$$

Comparison of effectivity indices

$N_{\text {tri }}$	equilibrated residual method	method of hypercircle	combined method
2	1.43	1.11	1.06
4	1.23	1.25	1.01
8	1.34	1.20	1.00
16	1.30	1.30	1.16
32	1.39	1.23	1.29
64	1.32	1.32	1.27
128	1.41	1.25	1.52
256	1.33	1.34	1.33
512	1.41	1.25	1.64
1024	1.33	1.34	1.36

First five meshes:

Thank you for your attention.

