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Abstract. We study the singular periodic boundary value problem of the form
(|u′|p−2 u′

)′
= f(t, u), u(0) = u(T ), u′(0) = u′(T ),

where p ∈ (1,∞) and f ∈ Car([0, T ] × (0,∞) can have a repulsive space singularity at x = 0.
Contrary to previous results by Mawhin and Jebelean, Liu Bing and Rach̊unková and Tvrdý, we need
not assume any strong force conditions. Our main existence results rely on a new antimaximum principle
for periodic quasilinear periodic problem, which has an independent meaning.
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1 . Introduction

This paper deals with singular periodic problems of the form

(φp(u
′))′ = f(t, u),(1.1)

u(0) = u(T ), u′(0) = u′(T ),(1.2)

where

(1.3) 0 < T < ∞, p ∈ (1,∞), φp(y) = |y|p−2 y for y ∈ R
and f satisfies the Carathéodory conditions on [0, T ]×(0,∞), i.e. f has the following
properties: (i) for each x ∈ (0,∞) the function f(., x) is measurable on [0, T ] ; (ii) for
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almost every t ∈ [0, T ] the function f(t, .) is continuous on (0,∞) ; (iii) for each
compact set K ⊂ (0,∞) the function mK(t) = supx∈K |f(t, x)| is Lebesgue integrable
on [0, T ].

Second order nonlinear differential equations or systems with singularities appear
naturally in the description of particles submitted to Newtonian type forces or to forces
caused by compressed gases, see e.g. [12], [15] or [16]. The mathematical interest in
periodic singular problems increased when the paper [22] by Lazer and Solimini appeared
in 1987. Motivated by the model equation u′′ = a u−α + e(t) with α > 0, a 6= 0
and e integrable on [0, T ], they investigated the existence of positive solutions to the
Duffing equation u′′ = g(u)+e(t) using topological arguments and the lower and upper
functions method. The restoring force g was allowed to have an attractive singularity
or a strong repulsive singularity at origin. The results by Lazer and Solimini have
been generalized or extended e.g. by Habets and Sanchez [18], Mawhin [27], del Pino,
Manásevich and Montero [10], Omari and Ye [29], Zhang [42] and [44], Ge and Mawhin
[17], Rach̊unková and Tvrdý [32] or Rach̊unková, Tvrdý and Vrkoč [37]. All of these
papers, when dealing with the repulsive singularity, supposed that the strong force
condition is satisfied. For the case of the weak singularity, first results were delivered
by Rach̊unková, Tvrdý and Vrkoč in [36]. Further results were delivered later also by
Bonheure and De Coster [2] and Torres [39].

Regular periodic problems with φ− or p -Laplacian on the left hand side were
considered by several authors, see e.g. del Pino, Manásevich and Murúa [11] or Yan [41].
General existence principles for the regular vector problem, based on the homotopy to
the averaged nonlinearity, were presented by Manásevich and Mawhin in [25] (see also
Mawhin [28]).

In the well-ordered case, the lower/upper functions method was extended to periodic
problems with a φ -Laplacian operator on the left hand side by Cabada and Pouso in
[5], Jiang and Wang in [21] and Staněk in [38]. The general existence principle valid
also when lower/upper functions are non-ordered was given by Rach̊unková and Tvrdý
in [34] and, for the case when impulses are admitted, also in [33].

The singular periodic problem for the Liénard type equation

(1.4)
(|u′|p−2 u′

)′
+ h(u) u′ = g(u) + e(t)

with g having either an attractive singularity or a strong repulsive singularity at x = 0
was treated by Liu [24], Jebelean and Mawhin [19] and [20] and Rach̊unková and Tvrdý
[35].

Let us recall that a function g is said to have an attractive singularity at x = 0 if

lim inf
x→0+

g(x) = −∞.

Alternatively, we say that g has a repulsive singularity at the origin if

(1.5) lim sup
x→0+

g(x) = +∞
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and g has a strong repulsive singularity at the origin if

(1.6) lim
x→0+

∫ 1

x

g(s) ds = +∞.

For a more detailed survey of the recent development we refer to [31, Section 5].

The main goal of this paper is a new existence result, Theorem 4.4, for problem
(1.1), (1.2). As in [36, Theorem 2.5] (see also [31, Theorem 5.26]), where the classical
case p = 2 was treated, we need not to assume that f satisfies any strong force
condition. Our main tools are the lower and upper function method and a generalization
of a classical antimaximum principle to the quasilinear periodic problem

(1.7) (φp(u
′))′ + λφp(u) = e(t), u(0) = u(T ), u′(0) = u′(T )

established below in Theorem 3.2.
Our main result applies, in particular, to the Duffing type model problem

(1.8) (φp(u
′))′ + µp up−1 = a u−α + e(t), u(0) = u(T ), u′(0) = u′(T ),

where a > 0, α > 0, 1 < p ≤ 2 and µp = (πp/T )p is the least eigenvalue of a ho-
mogeneous Dirichlet problem related to (1.7) and e ∈ L1[0, T ]. In particular, we get
that problem (1.8) has a positive solution if inf esst∈[0,T ] e(t) > 0. It is worth mention-
ing that for α ∈ (0, 1) the function g(x) = a x−α does not satisfy the strong force
condition (1.6).

2 . Preliminaries

As usual, for an arbitrary subinterval I of R we denote by C(I) the set of functions
x : I → R which are continuous on I, C1[0, T ] stands for the set of functions
x ∈ C[0, T ] with the first derivative continuous on [0, T ]. Further, L1[0, T ] is the set
of functions x : [0, T ] → R which are measurable and Lebesgue integrable on [0, T ].
AC[0, T ] is the set of functions absolutely continuous on [0, T ]. For x ∈ L1[0, T ] we
put

‖x‖∞ = sup ess
t∈[0,T ]

|x(t)| and x =
1

T

∫ T

0

x(s) ds.

If f : [0, T ]× (0,∞) → R satisfies the Carathéodory conditions on [0, T ]× (0,∞) we
write

(2.1) f ∈ Car([0, T ]× (0,∞)).

2.1 . Definition. A function u : [0, T ] → R is a solution to problem (1.1,) (1.2)
if φp(u

′) ∈ AC[0, T ], u > 0 on [0, T ], (φp(u
′(t)))′ = f(t, u(t)) for a.e. t ∈ [0, T ],

u(0) = u(T ) and u′(0) = u′(T ).
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Notice that the requirement φ(u′) ∈ AC[0, T ] implies that u ∈ C1[0, T ].
The singular problem (1.1), (1.2) will be also investigated through regular auxiliary

problems of the form

(φp(u
′))′ = f̃(t, u), u(0) = u(T ), u′(0) = u′(T ),(2.2)

or

(φp(u
′))′ = f̃(t, u), u(a) = u(b) = 0,(2.3)

where f̃ ∈ Car([0, T ] × R) and a, b ∈ R, a < b. As usual, by a solution of problem
(2.2) we understand a function u such that φp(u

′) ∈ AC[0, T ], (1.2) is true and

(φp(u
′(t)))′ = f̃(t, u(t)) for a.e. t ∈ [0, T ]. Analogously, u is a solution to (2.3) if

φp(u
′) ∈ AC[a, b], u(a) = u(b) = 0 and (φp(u

′(t)))′ = f̃(t, u(t)) for a.e. t ∈ [a, b].

The lower and upper functions method combined with the topological degree argu-
ment is an important tool for proofs of solvability of boundary value problems. For our
purposes the following definitions of lower and upper functions associated with problems
(2.2) or (2.3) are suitable.

2.2 . Definition. Let f̃ ∈ Car([0, T ] × R). We say that a function σ ∈ C[0, T ] is
a lower function of problem (2.2) if φp(σ

′) ∈ AC([0, T ]) and

(2.4)

{
(φp(σ

′(t)))′ ≥ f̃(t, σ(t)) for a.e. t ∈ [0, T ],

σ(0) = σ(T ), σ′(0) ≥ σ′(T ).

Analogously, σ ∈ C[0, T ] is a lower function of (2.3) if φp(σ
′) ∈ AC([a, b]) and

(2.5)

{
(φp(σ

′(t)))′ ≥ f̃(t, σ(t)) for a.e. t ∈ [a, b],

σ(a) ≤ 0, σ(b) ≤ 0.

If the inequalities in (2.4) or (2.5) are reversed, then σ is called an upper function
of (2.2) or of (2.3), respectively.

The next two assertions based on the lower and upper functions method will be
useful for our purposes.

2.3 . Proposition. ([34, Theorem 3.2] or [31, Lemma 5.9]) Assume (1.3) and

f̃ ∈ Car([0, T ]×R). Furthermore, let σ1 and σ2 be a lower and an upper function of
(2.2) and let there be m ∈ L1[0, T ] such that

f̃(t, x, y) > m(t) (or f̃(t, x) < m(t)) for a.e. t ∈ [0, T ] and all x ∈ R.

Then problem (2.2) has a solution u such that

min{σ1(τu), σ2(τu)} ≤ u(τu) ≤ max{σ1(τu), σ2(τu)} for some τu ∈ [0, T ].
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2.4 . Proposition. ([6, Theorem 2.1] or [40] or [30, Lemma 3.2] or [7, Theorem 3.5])

Assume (1.3), f̃ ∈ Car([0, T ]× R) and let a, b ∈ R, a < b be given. Furthermore,
let σ1 and σ2 be a lower and an upper function of (2.3) such that σ1 ≤ σ2 on [a, b].

Then problem (2.3) has a solution u such that σ1 ≤ u ≤ σ2 on [a, b].

3 . Sign properties of quasilinear periodic problems

First, let us recall some basic known facts concerning initial value problems of the form

(φp(u
′))′ + λ φp(u) = 0,(3.1)

u(t0) = 0, u′(t0) = d,(3.2)

where p ∈ (1,∞), t0 ∈ R, λ ∈ R and d ∈ R. As in [8] (see also e.g. [1], [9], [13],
[14], [43], [45], [26]), let us put

πp = 2 (p− 1)1/p

∫ 1

0

(1− sp)−1/p ds.

Clearly, π2 = π. Furthermore, it is known that

πp = 2 (p− 1)
1
p

(π/p)

sin (π/p)
.

(See [14, Sec. 1.1.2], but take into account that our definition differs slightly from that

used in [14], where πp = 2
∫ 1

0
(1 − sp)−1/p ds.) It is known (see [14, Theorem 1.1.1])

that for each t0 ∈ R, λ ∈ R and d ∈ R problem (3.1), (3.2) has a unique solution
u on R which can be, by [8, sec. 3]), expressed as

u(t) = d λ−1/p sinp(λ
1/p (t− t0)) for t ∈ R,

where the function sinp : R → [−(p− 1)1/p, (p− 1)1/p] is defined as follows.
Let w : [0, πp/2] → [0, (p− 1)1/p] be the inverse function to

x ∈ [0, πp/2] 7→
∫ x

0

ds

(1− sp

p−1
)1/p

∈ [0, (p− 1)1/p].

Further, put w̃(t) = w(πp − t) for t ∈ [πp/2, πp] and then w̃(t) = −w̃(−t) for
t ∈ [−πp, 0]. Finally, we define sinp : R → R as the 2 πp− periodic extension of w̃ to
the whole R. In particular, if d = 0, then u ≡ 0 on R. Obviously, we have

sinp(t) = 0 if and only if t = nπp, n ∈ N ∪ {0},
sinp(t) = (p− 1)1/p if and only if t = (2 n + 1)

πp

2
, n ∈ N ∪ {0},

and
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sinp(t) > 0 for t ∈ (2 nπp, (2 n + 1) πp), n ∈ N ∪ {0}.
As a corollary, we immediately obtain that for given a, b ∈ R, a < b, the corresponding
Dirichlet problem

(3.3) (φp(u
′))′ + λφp(u) = 0, u(a) = u(b) = 0

possesses a nontrivial solution, i.e. λ is an eigenvalue for (3.3), if and only if

(3.4) λ ∈
{(

nπp

b− a

)p

: n ∈ N ∪ {0}
}

.

In particular,

(3.5) µp =
(πp

T

)p

.

is the least eigenvalue for (3.3) with b − a = T, wherefrom the following assertion
follows.

3.1 . Proposition. Let p ∈ (1,∞), a, b ∈ R, a < b, and let λ = µp, where µp is
given by (3.5). Then problem (3.3) has a nontrivial solution if and only if b−a ≥ T.

It is easy to check that the function

G(t, s) =
T

2 π
sin

(π

T
|t− s|

)
, t, s ∈ [0, T ],

is the Green function for v′′ + µ2 v = 0, v(0) = v(T ), v′(0) = v′(T ) and G(t, s) is
nonnegative on [0, T ]×[0, T ]. Hence, for classical linear second order periodic problems,
the following antimaximum principle is true:

for each h ∈ L1[0, T ] such that h ≥ 0 a.e. on [0, T ], all solutions v of the problem

v′′ + µ2 v = h(t), v(0) = v(T ), v′(0) = v′(T )

are nonnegative on [0, T ].

3.2 . Theorem. Let p ∈ (1,∞) and let µ ∈ L1[0, T ] be such that

(3.6) 0 ≤ µ ≤ µp a.e. on [0, T ] and µ > 0,

and let v ∈ C1[0, T ] be such that φp(v
′) ∈ AC[0, T ],

(φp(v
′(t)))′ + µ(t) φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ](3.7)

and

v(0) = v(T ), v′(0) = u′(T ).(3.8)

Then v ≥ 0 on [0, T ].
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Proof. Let v ∈ C1[0, T ] be such that φp(v
′) ∈ AC[0, T ] and (3.6) and (3.7) hold.

Without any loss of generality we may assume that v is does not vanish on [0, T ].

Step 1. First, we show that

(3.9) max{v(t) : t ∈ [0, T ]} > 0.

Assuming, on the contrary, that v ≤ 0 on [0, T ], we get by (3.7)

(φp(v
′(t)))′ ≥ −µ(t) φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ].

Therefore, v′ is nondecreasing on [0, T ] and, taking into account (3.8), we deduce that
v′ = 0 on [0, T ]. Consequently, v(t) ≡ v(0) ≤ 0 on [0, T ]. Hence, (3.7) reduces to

−µ(t) (−v(0))p−1 ≥ 0 for a.e. t ∈ [0, T ].

However, as µ ≥ 0 a.e. on [0, T ] and µ > 0, this is possible if and only if v(0) = 0,
i.e. v ≡ 0 on [0, T ], which contradicts our assumption that v does not vanish
identically on [0, T ].

Step 2. Assume that min{v(t) : t ∈ [0, T ]} < 0. Let us extend v and µ to T -
periodic functions on R. In view of Step 1, there are a, b ∈ R such that v ≥ 0 on
(a, b), v(a) = v(b) = 0 and

(3.10) 0 < b− a < T.

Moreover, v > 0 on (a, b). Indeed, if v(τ) = 0 for some τ ∈ (a, b), then necessarily
also v′(τ) = 0, i.e. v ≡ 0 on R. In virtue of (3.6) and (3.7), we have

(3.11) (φp(v
′(t)))′ + µp φp(v(t)) ≥ (φp(v

′(t)))′ + µ(t) φp(v(t)) ≥ 0 for a.e. t ∈ [a, b].

Furthermore, put

a0 = a− T − b + a

2
, b0 = a0 + T

and

σ2(t) = d µ−1/p
p sinp

(
µ1/p

p (t− a0)
)

for t ∈ R
with d > 0 large enough, i.e. such that σ2(t) > v(t) ≥ 0 on [a, b]. We have

(3.12) (φp(σ
′
2(t)))

′
+ µp φp(σ2(t)) = 0 for a.e. t ∈ [a, b].

Thus, σ2 is an upper function for (3.3). Moreover, in view of (3.11), σ1 = v is a lower

function for (3.3). Hence, by Proposition 2.4, where we put f̃(t, x) = −µp φp(x) for t,
x ∈ R, there exists a nontrivial solution u to (3.3). This, due to (3.10), contradicts
Proposition 3.1. ¤
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4 . Main results

First, let us recall the following a priori estimate (see [34, Lemma 2.4] or [31, Lemma
5.8]).

4.1 . Lemma. Let p ∈ (1,∞) and let ψ ∈ L1[0, T ]. Then

(4.1) ‖v′‖∞ ≤ φ−1
p (‖ψ‖1)

holds for each v ∈ C1[0, T ] fulfilling φp(v
′) ∈ AC[0, T ], v(0) = v(T ), v′(0) = v′(T )

and (φp(v
′(t)))′ ≥ ψ(t) (or (φp(v

′(t)))′ ≤ ψ(t)) for a.e. t ∈ [0, T ].

Next, we prove an existence principle which relies on the comparison of the given
problem (1.1), (1.2) with the related quasilinear problem fulfilling the antimaximum
principle.

4.2 . Theorem. Assume (1.3), (2.1) and p ∈ [2,∞). Furthermore, let r > 0,
A ≥ r, µ, β ∈ L1[0, T ] be such that µ(t) ≥ 0 a.e. on [0, T ], µ > 0,

β ≤ 0 and f(t, x) ≤ β(t) for a.e. t ∈ [0, T ] and all x ∈ [A,B](4.2)

and

f(t, x) + µ(t) φp(x− r) ≥ 0 for a.e. t ∈ [0, T ] and all x ∈ [r, B],(4.3)

where

B − A ≥ T

2
φ−1

p (‖m‖1),

m(t) = max
{

sup{f(t, x) : x ∈ [r, A]}, β(t), 0
}

for a.e. t ∈ [0, T ]

and




v ≥ 0 on [0, T ] holds for each v ∈ C1[0, T ] such that

φp(v
′) ∈ AC[0, T ],

(φp(v
′(t)))′ + µ(t) φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ],

v(0) = v(T ), v′(0) = v′(T ).

(4.4)

Then problem (1.1), (1.2) has a solution u such that

(4.5) r ≤ u ≤ B on [0, T ] and ‖u′‖∞ < φ−1
p (‖m‖1).

Proof. Part I. First, assume that β < 0.
Step 1. Put

(4.6) f̃(t, x) =





f(t, r)− µ(t) φp(x− r) if x ≤ r,

f(t, x) if x ∈ [r, B],

f(t, B) if x ≥ B
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and consider problem (2.2). We have f̃ ∈ Car([0, T ]×R). Furthermore, by (4.2)–(4.6),
the inequalities

f̃(t, x) ≤ β(t) if x ≥ A(4.7)

and

f̃(t, x) + µ(t) φp(x− r) ≥ 0 for all x ∈ R(4.8)

are valid for a.e. t ∈ [0, T ]. In particular, in view of (4.6), we have

(4.9) f̃(t, x) ≥ h(t) := −µ(t) φp(B − r) for a.e. t ∈ [0, T ] and all x ∈ R,

with h ∈ L1[0, T ].
By (4.8), σ2 ≡ r is an upper function of (2.2). Further, if b = β − β, then

b∈L1[0, T ] and b = 0 and it is easy to see that there is a uniquely defined σ0 ∈ C1[0, T ]
such that φp(σ

′
0) ∈ AC[0, T ],

(φp(σ0(t)
′))′ = b(t) for a.e. t ∈ [0, T ] and σ0(0) = σ0(T ) = 0.

Now, let us choose c∗ > 0 such that c∗ + σ0 ≥ A on [0, T ] and define σ1 = c∗ + σ0.
By (4.7) we have

σ1(0) = σ1(T ) = c∗,

(φp(σ
′
1(t)))

′
= β(t)− β > β(t) ≥ f̃(t, σ1(t)) for a.e. t ∈ [0, T ],

and

φp(σ
′
0(T ))− φp(σ

′
0(0)) = T b = 0.

Consequently, σ1 is a lower function of (2.2). Therefore, by (4.9) and by Proposition 2.3,
the regular problem (2.2) has a solution u such that u(tu) ≥ r for some tu ∈ [0, T ].

Step 2. We show that

(4.10) u ≥ r on [0, T ].

To this aim, set v = u− r. By virtue of (4.8), we have

(
φ′p(v

′(t))
)′

+ µ(t) φp(v(t)) = f̃(t, u(t)) + µ(t) φp(u(t)− r) ≥ 0

for a.e. t ∈ [0, T ]. By (4.4) it follows that v(t) ≥ 0 on [0, T ], i.e. (4.10) is true.

Step 3. We show that

(4.11) u ≤ B on [0, T ].

Indeed, by the definition of m and by (4.6) and (4.7) we have

f̃(t, x) ≤ m(t) for a.e. t ∈ [0, T ] and all x ≥ r.



10

Hence, we can use Lemma 4.1 to get the estimate

(4.12) ‖u′‖∞ ≤ φ−1
p (‖m‖1).

If u ≥ A were valid on [0, T ], then taking into account the periodicity of u′ and (4.7)
we would get

0 =

∫ T

0

f̃(t, u(t)) dt ≤
∫ T

0

β(t) dt = T β < 0,

a contradiction. Hence,
min{u(s) : s ∈ [0, T ]} < A.

Now, assume that
u∗ := max{u(s) : s ∈ [0, T ]} > A

and extend u to be T -periodic on R. There are s1, s2 and s∗ ∈ R such that

s1 < s∗ < s2, s2 − s1 < T, u(s1) = u(s2) = A and u(s∗) = u∗ > A.

In particular, due to (4.12),

2 (u(s∗)− A) =

∫ s∗

s1

u′(s) ds +

∫ s∗

s2

u′(s) ds ≤ T φ−1
p (‖m‖1),

wherefrom the estimate

u(t)− A ≤ T

2
φ−1

p (‖m‖1) ≤ B − A on [0, T ]

follows. Thus, (4.11) is true.

Step 4. The estimates (4.10) and (4.11) mean that r ≤ u ≤ B holds on [0, T ]. In
view of (4.6), we conclude that u is a solution to (1.1), (1.2).

Part II. Now, let β = 0. Put n0 = max{1
r
, 1

B−A
, 3}. For an arbitrary n ∈ N, define

(4.13) f̃n(t, x) =





f(t, r) if x ≤ r,

f(t, x) if x ∈ [r, A],

f(t, x)− µ(t) φp

(
1
n

x−A
x−A+1

)
if x ∈ (A,B],

f(t, B)− µ(t) φp

(
1
n

B−A
B−A+1

)
if x ≥ B.

Taking into account (4.2), we get

f̃n(t, x) = f(t, x)− µ(t) φp

(
1

n

x− A

x− A + 1

)
≤ β(t)− µ(t) φp

(
1

n

x− A

x− A + 1

)

≤ β(t)− µ(t) φp(
1

2n2
) if x ∈ [A +

1

n
,B]

and
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f̃n(t, x) = f(t, B)− µ(t) φp

(
1

n

B − A

B − A + 1

)
≤ β(t)− µ(t) φp(

1

2n2
) if x ≥ B

for a.e. t ∈ [0, T ] and all n ∈ N such that n ≥ n0. Thus,

(4.14)

{
f̃n(t, x) ≤ βn(t) := β(t)− µ(t) φp(

1
2n2 )

for x ≥ A + 1
n

, for a.e. t ∈ [0, T ] and all n ≥ n0.

Clearly,

(4.15) βn < 0 and βn(t) ≤ β(t) for a.e. t ∈ [0, T ].

Furthermore, by (4.3) and (4.13), we have

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)

)
≥ f(t, r) ≥ 0 if x ∈ [r − 1

n
, r],

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)

)
= f(t, x) + µ(t) φp (x− r) ≥ 0 if x ∈ [r, A],

and, taking into account that

ξα + ηα ≤ (ξ + η)α holds for all ξ, η ≥ 0 and each α ≥ 1,

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)

)

= f(t, x)− µ(t) φp

(
1

n

x− A

x− A + 1

)
+ µ(t) φp

(
x− r +

1

n

)

≥ f(t, x) + µ(t) φp (x− r) ≥ 0 if x ∈ [A,B],

and

f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)

)

= f(t, B)− µ(t) φp

(
1

n

B − A

B − A + 1

)
+ µ(t) φp

(
x− (r − 1

n
)

)

≥ f(t, B) + µ(t) φp (B − r) ≥ 0 if x ≥ B.

To summarize,

(4.16) f̃n(t, x) + µ(t) φp

(
x− (r − 1

n
)

)
≥ 0 for all x ≥ r − 1

n
.
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For a.e. t ∈ [0, T ] and all n ∈ N, put

m̃n(t) := max
{

sup{f̃n(t, x) : x ∈ [r − 1

n
,A +

1

n
]}, bn(t)

}
.

In view of (4.13) and (4.15), we have

m̃n(t) ≤ m(t) for a.e. t ∈ [0, T ] and n >
1

B − A
.

This together with (4.14)-(4.16) means that, for each n ∈ N large enough, Part I of
this proof ensures the existence of a solution un to the auxiliary problem

(φp(u
′
n))′ = f̃n(t, un), un(0) = un(T ), u′n(0) = u′n(T )

which satisfies the estimates

r − 1

n
≤ un(t) ≤ B +

1

n
on [0, T ] and ‖u′n‖∞ ≤ φ−1

p (‖m‖1).

Now, notice that

|f̃n(t, x)− f̃(t, x)| ≤ µ(t) φp

(
1

n

)
for a.e. t ∈ [0, T ], all x ∈ R and all n ∈ N,

where

f̃(t, x) =





f(t, r) if x ≤ r,

f(t, x) if x ∈ [r, B],

f(t, B) if x ≥ B.

Thus, in a standard way (using the Arzelá-Ascoli and the Lebesgue Dominated Conver-
gence Theorem) we can show that the sequence {un}∞n=1 contains a subsequence which
converges in C1[0, T ] to a solution u of the problem

(φp(u
′))′ = f̃(t, u), u(0) = u(T ), u′(0) = u′(T )

which satisfies necessarily the estimate (4.5), i.e. solves also (1.1), (1.2). ¤

The next supplementary assertion concerning the case p ∈ (1, 2) follows immedi-
ately from Part I of the previous proof.

4.3 . Theorem. Let all assumptions of Theorem 4.2 be satisfied, with the exceptions
that p ∈ (1, 2) is allowed and β < 0 is required in (4.2).

Then problem (1.1), (1.2) has a solution u such that (4.5) is true.

Theorems 3.2, 4.2 and 4.3 yield the following new existence criterion.
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4.4. Theorem. Assume (1.3) and (2.1). Furthermore, let p ∈ (1,∞), µp = (πp/T )p

and let r > 0, A ≥ r, B > A and β ∈ L1[0, T ] be such that (4.2), with β < 0, if
p ∈ (1, 2), and (4.3) hold, where

B − A ≥ T

2
φ−1

p (‖m‖1)

and

m(t) = max
{

sup{f(t, x) : x ∈ [r, A]}, β(t), 0
}

for a.e. t ∈ [0, T ].

Then problem (1.1), (1.2) has a solution u such that (4.5) is true.

In particular, for the Duffing type equation (φp(u
′))′ = g(u) + e(t) we have

4.5 . Corollary. Let p ∈ (1,∞). Suppose that f(t, x) = g(x) + e(t) for x ∈ (0,∞)
and a.e. t ∈ [0, T ], where g ∈ C(0,∞), e ∈ L1[0, T ], and

e + lim sup
x→∞

g(x) < 0(4.17)

and there is r > 0 such that

e(t) + g(x) + µp (xp−1 − rp−1) ≥ 0 for a.e. t ∈ [0, T ] and all x ≥ r.(4.18)

Then problem (1.1), (1.2) has a solution u such that u(t) ≥ r on [0, T ].

Proof. Due to (4.17), we can find A ≥ r such that

g(x) + e <
1

2

(
e + lim sup

x→∞
g(x)

)
< 0 for x ∈ [A,∞).

Consequently,

f(t, x) = g(x) + e(t) = (g(x) + e) + (e(t)− e) <
1

2

(
e + lim sup

x→∞
g(x)

)
+ e(t)− e

for a.e. t ∈ [0, T ] and all x ∈ [A,∞). Therefore, (4.2) holds with

β(t) := e(t) + 1
2

(
lim sup

x→∞
g(x)− e

)
,

β < 0 and B > A arbitrarily large. Finally, by virtue of (4.18), f satisfies (4.3)
with B > r arbitrarily large. Now, the assertion follows by Theorem 4.4. ¤

For the case p ≥ 2 we have an existence result under weaker assumptions.

4.6 . Corollary. Let p ≥ 2. Assume the hypothesis of the previous result, replacing
condition (4.17) by the following one:

There is B > 0 such that e + g(x) ≤ 0 for all x ≥ B.
Then problem (1.1), (1.2) has a solution u such that u(t) ≥ r on [0, T ].
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4.7 . Example. Consider the problem

(4.19) (φp(u
′))′ = g(u) + e(t), u(0) = u(T ), u′(0) = u′(T ),

with 1 <p <∞; g(x):=−k xp−1+ a
xα for x> 0; a> 0, α > 0, k≥ 0; and e ∈ L1[0, T ]

essentially bounded below, i.e.

e∗ := inf ess{e(t) : t∈ [0, T ]}> −∞.

We need to find conditions under which assumptions (4.17) and (4.18) are satisfied.

It is easy to see that if k > 0, then the assumption (4.17) of Corollary 4.5 is satisfied
for all e∈L1[0, T ], while in the case k = 0 this condition holds whenever e< 0.

Denote µ =
(πp

T

)p
,

hr(x) :=
a

xα
+ µ (x− r)p−1 − k xp−1 for r > 0 and x≥ r or r = 0 and x> r.

We can see that to verify condition (4.18) it suffices to show that

(4.20) ∃ r > 0 such that e∗ + hr(x) ≥ 0 for all x≥ r.

Since limx→∞ hr(x) =−∞ if k >µ, p> 1 and r≥ 0 and also if k = µ, p > 2 and
r > 0, condition (4.20) can not be satisfied in these cases. It remains to consider the
following two possibilities:

(i) 1 <p≤ 2, 0≤ k≤µ,

(ii) 2 <p <∞, 0≤ k < µ.

Case (i). If 1 <p≤ 2, then the inequality (x− r)p−1 ≥ xp−1− rp−1 holds for all r≥ 0
and x≥ r. Therefore, hr(x)≥h0(x)− µ rp−1 for all x≥ r, i.e.

κ(r)≥κ(0)− µ rp−1 for all k ∈ [0, µ),

where κ(r) stands for

κ(r) := inf{hr(x) : x ∈ (r,∞)} for r≥ 0.

It follows that condition (4.20) is satisfied provided e∗ +κ(0) > 0 and r =
(

e∗+κ(0)
µ

) 1
p−1

.

Notice that

(4.21)




κ(0) = a

(
α + p− 1

p− 1

) (
(p− 1) (µ− k)

α a

) α
α + p− 1

if k ∈ [0, µ),

κ(0) = 0 if k = µ.
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In particular, if k = µ, problem (4.19) possesses a positive solution whenever e∗ > 0.

Case (ii). Let p> 2. First, assume that k = 0. Then, for each r≥ 0 there is exactly
one x̃r ∈ (0,∞) such that κ(r) = hr(x̃r). We can check that

lim
r→0+

x̃r = x̃0 =

(
α a

(p−1) µ

) 1
α+p−1

and lim
r→0+

κ(r) = lim
r→0+

hr(x̃r) = h0(x̃0) = κ(0),

where κ(0) is given by (4.21). In particular, if κ(0)+e∗ > 0, then there is r > 0 such
that κ(r) + e∗ > 0, which means that (4.20) and hence also (4.18) are satisfied.

Now, assume that 0 <k < µ and let e∗≥ 0. Denote

g̃r(x) = µ (x−r)p−1− k xp−1 for r > 0 and x≥ r.

We have g̃ ′r(x) = 0 if and only if x = x̃r, where x̃r:= r
(
1−

(k

µ

) 1
p−2

)−1

and

g̃r(x̃r) = µ rp−1
(
1−

(k

µ

) 1
p−2

)1−p ((k

µ

) p−1
p−2−k

)
= inf {g̃r(x) : x ∈ (0,∞)} .

Furthermore, g̃r is strictly increasing on [x̃r,∞) and g̃r(x)≥ 0 for all x≥ ξr, where

ξr:= r
(
1−

(k

µ

) 1
p−1

)−1

∈ (x̃r,∞). Thus, e∗ + hr(x) = e∗ + a
xα + g̃r(x)≥ 0 for x≥ ξr. On

the other hand, for x∈ [r, ξr] we have e∗ + hr(x)≥ e∗ + a
ξr

α + g̃r(x̃r). Consequently,

condition (4.20) is satisfied whenever

(4.22) e∗ +
a

ξr
α + g̃r(x̃r)≥ 0.

Now, since limr→0+ x̃r = limr→0+ ξr = 0, we have

lim
r→0+

g̃r(x̃r) = 0 and lim
r→0+

a

ξr
α =∞.

Thus, we can see that (4.22) and hence also (4.20) hold.

Finally, let us consider the case that p> 2, 0 <k < µ and e∗ = −η∗ <0. We want
again to show that (4.20) is true. To this aim let us rewrite the inequality e∗ + hr(x)≥ 0
as follows

h̃r(x) := − η∗
xp−1

+
a

xα+p−1
+ µ

(
1− r

x

)p−1

≥ k.

First, notice that limx→∞ h̃r(x) = µ> k and there is δ > 0 such that

h̃r(r) =
a− η∗ rα

rα+p−1
≥ k for all r∈ (0, δ).
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Indeed, it suffices to choose δ > 0 in such a way that both inequalities

δα+p−1≤ a

2k
and η∗ δα≤ a

2

hold. Furthermore, h̃ ′
r(x) = 0 if and only if

(4.23) ρr(x) = σ(x)

holds, where

ρr(x):= r µ (p−1)
(
1− r

x

)p−2

and σ(x):=
a (α+p−1)

xα+p−2
− η∗ (p−1)

xp−2
.

We can see that, for each r > 0, the function ρr is strictly increasing on [r,∞), while
ρr(r) = 0 and limx→∞ ρr(x) = rµ (p−1) > 0. On the other hand, σ′(x) = 0 if and only
if x = ξ∗, where

ξ∗ =

(
a (α+p−1) (α+p−2)

η∗ (p−1) (p−2)

) 1
α

.

Furthermore, σ is strictly decreasing on (0, ξ∗], strictly increasing on [ξ∗,∞), σ(ξ∗)<0,
limx→∞ σ(x) = 0 and σ(x) = 0 if and only if x = ξ, where

ξ =

(
a (α+p−1)

η∗ (p−1)

) 1
α

.

As a result, for each r∈ (0, ξ) there is exactly one point x̃r ∈ (r, ξ) such that (4.23)

holds for x = x̃r. Consequently, h̃r(x̃r) = inf{h̃r(x) : x∈ [r,∞)}. Now, we can show
that

lim
r→0+

h̃r(x̃r) = h̃0(ξ) = µ−
(

α a

p−1

)(
η∗ (p−1)

a (α+p−1)

)α+p−1
α

.

Therefore, if

(4.24) µ− k >

(
α a

p−1

)(
η∗ (p−1)

a (α+p−1)

)α+p−1
α

,

then there exist r∈ (0, min{δ, ξ}) such that h̃r(x)≥ k holds for each x≥ r. In other
words, provided (4.24) is true, condition (4.20) is satisfied. Now, it is a question of rou-
tine, to verify that condition (4.24) is equivalent to condition κ(0) + e∗ > 0 with κ(0)
given by (4.21).

To summarize, by Corollary 4.5 problem (4.19) has a positive solution if:

k = 0, 1 <p <∞, e < 0 and e∗ > −a

(
α+p−1

p−1

)(
(p−1) µ

α a

) α
α+p−1

or
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0 <k < µ, 1 < p≤ 2 and e∗ > −a

(
α+p−1

p−1

)(
(p−1) (µ−k)

α a

) α
α+p−1

or

0 <k = µ, 1 < p≤ 2 and e∗≥ 0.

In particular, if k = µ and 1 <p≤ 2, then problem (4.19) has a positive solution
whenever e∗ > 0.
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Differential Equations Vol. 1, A. Caňada, P. Drábek, A. Fonda, eds., Elsevier, North Holland,
Amsterdam (2004), Chapter 3, pp. 161–357.

[14] O. Došlý and Řehák, Half-Linear Differential Equations. North-Holland Mathematics Studies
202, Elsevier, Amsterdam (2005).

[15] R. Faure, Solutions périodiques d’equations différentielles et mèthode de Leray-Schauder (Cas
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Birkhäuser, Boston (2001), pp. 37–63.



Periodic problem with quasilinear differential operator and weak singularity 19

[29] P. Omari and W.Y. Ye, Necessary and sufficient conditions for the existence of periodic solutions
of second order ordinary differential equations with singular nonlinearities. Differ. Integral Equ.
8 (1995), 1843–1858.
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North Holland, Amsterdam (2006), Chapter 6, pp. 605–721.
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