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licSome motivation for domain decomposition (DD)

Using Finite Element Method (FEM) for problems described by
partial differential equations (PDEs) results in solving very large
sparse systems of algebraic equations – difficulties with solution by
conventional numerical methods

direct methods slow due to the problem size – complexity O(1/h3)
in 2D, O(1/h6) in 3D, h – mesh size,
state-of-the-art: multifrontal method
iterative methods have attractive complexity O(1/hn), n – space
dimension, but become slow due to large condition number –
suitable preconditioner needed!
state-of-the-art: Krylov subspace methods (PCG, BICGSTAB,
GMRES)
combination of these approaches – synergy in domain
decomposition (DD) methods

way to parallelize FEM – naturally distribute both work and memory
requirements

multigrid (MG) solvers are efficient, but difficult to parallelize and
balance load
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licThe abstract problem

Variational setting

u ∈ U : a(u, v) = 〈f , v〉 ∀v ∈ U

a (·, ·) symmetric positive definite form on U

〈·, ·〉 is inner product on U

U is finite dimensional space (typically finite element functions)

Matrix form
u ∈ U : Au = f

A symmetric positive definite matrix on U

A large, sparse, condition number κ(A) = λmax

λmin
= O(1/h2)

Linked together

〈Au, v〉 = a (u, v) ∀u, v ∈ U
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licFamilies of domain decomposition methods

How subdomains are formed?

overlapping methods – subdomains not disjoint – overlap

nonoverlapping methods (a.k.a. substructuring) – subdomains
disjoint

How method is used?

self-standing iterative methods – simple iteration

one step of the method used as preconditioner for another iterative
method (PCG, BICGSTAB, GMRES,. . . )

Jakub Š́ıstek Primal methods of iterative substructuring 8 / 69



IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
licFamilies of domain decomposition methods

How subdomains are formed?

overlapping methods – subdomains not disjoint – overlap

nonoverlapping methods (a.k.a. substructuring) – subdomains
disjoint

How method is used?

self-standing iterative methods – simple iteration

one step of the method used as preconditioner for another iterative
method (PCG, BICGSTAB, GMRES,. . . )
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licFamilies of domain decomposition methods

How subdomain solutions are organised?

one-by-one – multiplicative methods (better efficiency, worse
parallelization)

simultaneously – additive methods (worse efficiency, simpler
parallelization)

How many levels are involved?

one–level methods – simple, poor performance for large number of
subdomains N

two–level methods – involve coarse level (good efficiency, worse
parallelization) – dominant today

multi–level methods – when coarse problem becomes ‘too large’ (not
the same as multigrid)
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idea goes back to Hermann Schwarz (1870) – for solution of
Dirichlet problem on ‘general’ domain – split domain into two simple
subdomains with known analytical solution

nowadays known as Alternating Schwarz Method

multiplicative correction by subdomain problems

Ω1 2

δ

Ω

Ω1, Ω2 . . . subdomains

δ . . . size of overlap
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Let us look for a solution of the Poisson’s equation given on a
domain Ω as

−∆u = f ,

u = 0 on ∂Ω.

1 Given uk , solve

−4uk+1/2 = f on Ω1,

uk+1/2 = uk on Γ1.

2 Given uk+1/2, solve

−4uk+1 = f on Ω2,

uk+1 = uk+1/2 on Γ2.
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Ω1 Ω2Γ 2

u
u u

1Γ

u

u

1/2

0

1

3/2
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instead of serial setting, solve problems on both subdomains
independently

1 Given uk , solve

−4uk+1
1 = f on Ω1,

uk+1
1 = uk on Γ1,

−4uk+1
2 = f on Ω2,

uk+1
2 = uk on Γ2.

2 Get new solution by addition

uk+1 = uk+1
1 + uk+1

2
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Ω1 Ω2Γ 2

u1

u
u u

1Γ

1

1

1

2

u0
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derivatives of Alternating Schwarz Method

multiplicative correction

difficult for parallelization

in general better convergence

derivatives of Additive Schwarz Method (ASM)

additive correction

simple for parallelization

in general worse convergence

used as preconditioners (e.g. PETSc library – PCASM)

condition number κ depends on size of overlap δ as O(1/δ), i.e.
small overlap – poor preconditioner, large overlap – expensive
subdomain solutions

may involve coarse level
e.g. [Blaheta et al. (2009)], [Dohrmann, Widlund (2009)]
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idea goes back to substructuring – a trick used in seventies to fit
larger FE problems into memory

Ω1 Ω2

Γ

Ω1, Ω2 . . . subdomains (substructures)
Γ . . . interface

unknowns at interface are shared by more subdomains, remaining
(interior) unknowns belong to a single subdomain

the first step is reduction of the problem to the interface Γ
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recall the matrix problem
Au = f

reorder unknowns so that those at interior u1
o and u2

o are first, then
interface uΓ  A1

oo A1
oΓ

A2
oo A2

oΓ

A1
Γo A2

Γo AΓΓ

 u1
o

u2
o

uΓ

 =

 f 1
o

f 2
o

fΓ


eliminate interior unknowns – subdomain by subdomain = in
parallel  A1

oo A1
oΓ

A2
oo A2

oΓ

S

 u1
o

u2
o

uΓ

 =

 f 1
o

f 2
o

g


S =

∑
assembly

Ai
ΓΓ − Ai

Γo(Ai
oo)
−1

Ai
oΓ =

∑
assembly

S i

g =
∑

assembly

f i
Γ − Ai

Γo(Ai
oo)
−1

f i
o =

∑
assembly

g i
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Reduced (Schur complement) problem

SuΓ = g

S . . . Schur complement with respect to interface

g . . . reduced right hand side

the process is also known as ‘static condensation’

Algorithm of substructuring

1 Form local Schur complements Si for each subdomain and build the
global Schur complement S and right-hand side g (parallel)

2 Solve problem for interface unknowns SuΓ = g

3 Resolve (in parallel) interior unknowns by back-substitution in

Aoouo = fo − AoΓuΓ
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if global matrix S is formed explicitly and problem SuΓ = g solved
by a direct method in an efficient (tree–based) way – very much the
idea of multifrontal method (an MPI version in MUMPS library)

but the interface problem can be solved by an iterative method
(PCG, BICGSTAB, GMRES, . . . ) – iterative substructuring

Appealing consequences of iterative substructuring

problem SuΓ = g is usually much better conditioned than the
original problem Au = f – for SPD problems κ(S) = O(1/Hh)
(H >> h is the subdomain size) compared to κ(A) = O(1/h2) –
lower number of iterations

iterative methods for SuΓ = g are simpler for parallelization

Krylov subspace methods require only actions of S on a vector p –
explicit construction of S may be avoided – large savings of both
time and memory – how?
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Krylov subspace methods require only actions of S on a vector p –
explicit construction of S may be avoided – large savings of both
time and memory – how?
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In setup:
1 factorize matrix Aoo (block diagonal = in parallel)
2 form condensed right hand side by solving

Aooh = fo ,

and inserting g = fΓ − AΓoh.

In each iteration, for given p construct Sp as[
Aoo AoΓ

AΓo AΓΓ

] [
w
p

]
=

[
0

Sp

]
1 Solve (in parallel) discrete Dirichlet problem

Aoow = −AoΓp

2 Get Sp (in parallel) as

Sp = AΓow + AΓΓp

After iterations, for given uΓ, resolve (in parallel) interior unknowns
by back-substitution in

Aoouo = fo − AoΓuΓ

Jakub Š́ıstek Primal methods of iterative substructuring 21 / 69



IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
licA practical algorithm of iterative substructuring

In setup:
1 factorize matrix Aoo (block diagonal = in parallel)
2 form condensed right hand side by solving

Aooh = fo ,

and inserting g = fΓ − AΓoh.

In each iteration, for given p construct Sp as[
Aoo AoΓ

AΓo AΓΓ

] [
w
p

]
=

[
0

Sp

]
1 Solve (in parallel) discrete Dirichlet problem

Aoow = −AoΓp

2 Get Sp (in parallel) as

Sp = AΓow + AΓΓp

After iterations, for given uΓ, resolve (in parallel) interior unknowns
by back-substitution in

Aoouo = fo − AoΓuΓ
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DD methods based on Schur complement with respect to interface
are called primal DD methods – they formulate the interface
problem in primal unknowns

but another approach exists: disconnect the subdomains completely
and enforce continuity at interface weakly by Lagrange multipliers λ

Ω1
Ω2

λ1

λ2

λ3

λ4

this represents adding constraints of the type

u1
k = u2

k or u1
k − u2

k = 0

where uk represents an unknown at the interface
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Lead to the saddle point problem with matrix of constraints B[
A BT

B 0

] [
u
λ

]
=

[
f
0

]

we can eliminate all primal unknowns (parallel) and get

BA
−1

BTλ = BA
−1

f

another interface problem – now for dual unknowns – dual DD
methods (FETI/TFETI, FETI-DP, . . . )

almost the same size as the Schur complement

solved by an iterative method for λ (same tricks as before)

when solved for λ, primal unknowns are recovered (in parallel) from
Au = f − BTλ

may involve factorization of singular subdomain matrices – A
−1

replaced by A
+

[Brzobohatý et al. 2011]
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Brief overview of domain decomposition methods

Iterative substructuring

Domain decomposition preconditioners
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Recall the reduced problem
SuΓ = g

that is solved by a Krylov subspace method.

while κ(S) = O(1/Hh) is quite nice conditioning, it is not sufficient
for large problems – a preconditioner M ≈ S−1 needed – the best
we can do these days is

κ(MS) ≤ C (1 + log(H/h))2

convergence independent of number of subdomains and size of the
problem, depends only on ratio of subdomain size H and element
size h

M is realized in parallel by a domain decomposition method
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Matrix S can be obtained by subdomain contributions S i as

S =
N∑
i=1

R iS iR iT

R i . . . mapping of subdomain interface unknowns into global
interface unknowns

similar to assembly of global matrix from element matrices

First idea:

S−1 ≈
N∑
i=1

R i (S i )−1R iT

it is still behind the methods but some technical details need to be
added
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still neither (S i )−1 nor S i are formed explicitly – instead,
z i

Γ = (S i )−1r iΓ is found by solving discrete Neumann problem[
Ai
oo Ai

oΓ

Ai
Γo Ai

ΓΓ

] [
z i
o

z i
Γ

]
=

[
0
r iΓ

]
for floating subdomains, matrix Ai is singular – inverse (Ai )−1 has to
be replaced by generalized inverse (Ai )+

we obtain different solutions for the same interface unknowns from
adjacent subdomains – some averaging needed to get value of zΓ
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Neumann–Neumann method

S−1 ≈
N∑
i=1

R iD i (S i )+D iR iT

[De Roeck, Le Tallec (1991)]

D i . . . weights;
∑N

i=1 R iD iR iT = I

one-level method

convergence deteriorates for growing number of subdomains N – the
approximation of the original problem by preconditioner worsens

lack of mechanism for propagation of boundary conditions from the
physical boundary to subdomains inside

such mechanism of global correction needed for optimal
preconditioning! – coarse problem
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BDD

Balancing Domain Decomposition, [Mandel (1993)]

adds coarse problem to the Neumann–Neumann method

two-level method, multiplicative coarse correction

optimal preconditioning κ(MBDDS) ≤ C (1 + log(H/h))2

solve consistent singular systems for each subdomain

coarse problem built upon nullspaces of subdomain matrices

FETI/TFETI

Finite Element Tearing and Interconnecting

[Farhat, Roux (1990)], [Dostál, Horák, Kučera (2006)]

dual methods

implicit coarse problem
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Jakub Š́ıstek Primal methods of iterative substructuring 29 / 69



IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
licDD preconditioners with constraints

FETI-DP

Finite Element Tearing and Interconnecting - Dual Primal

[Farhat et al. (2000)]

functions in FETI and BDD have spikes at corners of subdomains –
make these unknowns primal and add them to the coarse problem –
solved as continuous

important advantage: no floating subdomains – no singular
subdomain matrices – can use robust existing sparse direct solvers!
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standard (two-level) BDDC

Balancing Domain Decomposition based on Constraints

introduced in [Dohrmann (2003)], convergence theory in [Mandel,
Dohrmann (2003)]

non-overlapping additive DD preconditioner in PCG

two-level method, additive global coarse correction

for many subdomains, exact solution of the global coarse problem
may become expensive

extension to multiple levels

Three-level BDDC [Tu (2007) – 2D, 3D] – basic theory

Multispace and multilevel BDDC [Mandel, Soused́ık, Dohrmann
(2008)] - extension to arbitrary number of levels
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U ⊂ W̃ ⊂ W
continuous continuous no continuity
at all nodes at selected at interface
at interface corners

enough constraints to fix floating subdomains, i.e. rigid body modes
eliminated from the space

continuity at corners, and of averages (arithmetic or weighted) over
edges or faces considered

a (·, ·) symmetric positive definite form on W̃

corresponding matrix Ã symmetric positive definite, almost block
diagonal structure, larger dimension than A
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licVirtual mesh

original mesh
of the problem

corresponds to
space U

mesh disconnected
at interface

corresponds to

space W̃
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Variational form

MBDDC : r 7−→ u = Ew , w ∈ W̃

a (w , z) = 〈r ,Ez〉 , ∀z ∈ W̃

Matrix form

Ãw = ET r

MBDDC r = Ew

Condition number bound [Mandel, Dohrmann (2003)]

κ =
λmax(MBDDCS)

λmin(MBDDCS)
≤ ω = sup

w∈W̃

‖(I − E )w‖2
a

‖w‖2
a

.
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In implementation, space W̃ is decomposed into W̃∆ of independent

subdomain spaces and energy-orthogonal coarse space W̃Π

W̃ = W̃∆ ⊕ W̃Π.

Local energy minimization problems

On each subdomain – coarse degrees of freedom – basis functions Ψi –
prescribed values of coarse degrees of freedom, minimal energy elsewhere,[

Ai C iT

C i 0

] [
Ψi

Λi

]
=

[
0
I

]
.

Ai . . . local subdomain stiffness matrix

C i . . . matrix of constraints – selects unknowns into coarse degrees
of freedom

Matrix of coarse problem AC assembled from local matrices
ACi = ΨiTAiΨi = −Λi .
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subdomain problems
(independent)

coarse problem
(global)
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Get residual at interface nodes r
(k)
Γ = g − Su

(k)
Γ and produce

preconditioned residual z
(k)
Γ = MBDDC r

(k)
Γ by

1 1. Distribution of residual
subdomain problems (global) coarse problem

for i = 1, . . . ,N

r i = E iT r
(k)
Γ

rC =
N∑
i=1

R iT
C ΨiTE iT r

(k)
Γ

2 Correction of solution[
Ai C iT

C i 0

] [
z i

µi

]
=

[
r i

0

]
ACuC = rC

3 Combination of subdomain and coarse corrections

z
(k)
Γ =

N∑
i=1

E i
(
ΨiR i

CuC + z i
)

brown formulae – operations in parallel
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global coarse problem eventually becomes a bottleneck of parallel
processing for very large problems – solve only approximately e.g.
by

several multigrid cycles – [Klawonn, Rheinbach (2010)] (hybrid
FETI-DP)
by one iteration of BDDC – Three-level BDDC
recursive application of BDDC – Multilevel BDDC

BDDC is especially suitable for multilevel extension because the
coarse problem has the same structure as the original FE problem
(unlike in most other DD methods)

apply BDDC with subdomains playing the role of elements

A basis function from W̃Π is energy minimal subject to
given values of coarse degrees of freedom on the
substructure. The function is discontinuous across the
interfaces between the substructures but the values of
coarse degrees of freedom on the different substructures
coincide.
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U
q

level 1 UI1 ⊂ U1 ⊂ W̃1

q
W̃Π1 ⊕ W̃∆1

q
level 2 UI2 ⊂ U2 ⊂ W̃2

q
W̃Π2 ⊕ W̃∆2

q
...

...
q

level L− 1 UIL−1 ⊂ UL−1 ⊂ W̃L−1

q
W̃ΠL−1 ⊕ W̃∆L−1

Local problems and the coarse problem actually solved are in colour.
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mathematical efficiency worsens with each additional level

Theorem [Mandel, Soused́ık, Dohrmann (2008)]

The condition number bound κ(MBDDCS) ≤ ω of Multilevel BDDC is
given by

κ(MBDDCS) ≤ ω = ΠL−1
`=1ω` , ω` = sup

w`∈W̃`

‖(I − E`) w`‖2
a

‖w`‖2
a

.
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1st level

2nd level

subdomain problems
(independent)

3rd level

coarse problem
(global)
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BDDCML solver library

http://www.math.cas.cz/∼sistek/software/bddcml.html

current version 1.3

library in Fortran 95 + MPI library

built on top of MUMPS direct solver (both serial and parallel)

parallel PCG and BICGSTAB (for overlapping vectors)

FEM mesh

subdomain
problems

MUMPS
coarse
problem

FEM mesh

subdomain
problems
1st level

MUMPS

subdomain
problems
2nd level

coarse
problem

Two-level BDDC Three-level BDDC
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Theorem (Mandel, Dohrmann, Tezaur ’05)

The abstract BDDC preconditioner satisfies

κ =
λmax(MBDDCS)

λmin(MBDDCS)
≤ ω = sup

w∈W̃

‖(I − E )w‖2
a

‖w‖2
a

.

‖·‖2
a = a(·, ·) = 〈S ·, ·〉 . . . energy norm on space W̃

S – Schur complement with respect to interface

E is the operator of projection

E : W̃ → U, Range(E ) = U
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Generalized eigenvalue problem

The operator norm ω corresponds to the largest eigenvalue of

(I − E )T S (I − E ) w = λSw .

Select k largest eigenvalues and corresponding eigenvectors
λi ,wi , i = 1, . . . , k and define a row of a matrix D for each of them as

di = wT
i (I − E )T S (I − E ) ,

D =


d1

d2

...
dk

 .
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Redefine space

W̃ =
{

w ∈ W̃ init : Dw = 0
}
.

Functions from W̃ are
{

(I − E )T S (I − E )
}

-orthogonal to k

eigenvectors that spoil the condition number the most.

Theorem (Mandel, Soused́ık, Š́ıstek (online in 2011))

The abstract BDDC preconditioner based on W̃ satisfies

κ =
λmax(MBDDCS)

λmin(MBDDCS)
≤ ωD = λk+1.

A simple consequence of Courant-Fisher-Weyl minimax principle.
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Because the solution of the global generalized eigenvalue problem would
be prohibitively expensive, solve a number of small eigenproblems
localized to pairs of adjacent subdomains.

Subdomains Ωi and Ωj are called adjacent, if they share a face. They
form a pair denoted by ij and A denotes the set of all such pairs.

Local eigenproblem for ij-pair

(I − Eij)
T Sij (I − Eij) wij = λijSijwij

Definition

Heuristic indicator of the condition number ω̃ is defined as

ω̃ = max
ij∈A

λmax
ij .

Positive side effect – recognizes troublesome faces ⇒ do not add
constraints where they are not necessary, i.e. ‘adaptivity’.
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Algorithm

To generate constraints that will guarantee that the condition number
indicator ω̃ ≤ τ for a given target value τ :

Consider arithmetic averages on all edges as initial constraints.
For all faces Fij

1 Compute the largest local eigenvalues and corresponding
eigenvectors, until the first mij is found such that λij

mij ≤ τ , put

k = 1, . . . ,mij − 1.

2 Compute the constraint weights d ij
k =

[
d i
k d j

k

]
as

d ij
k = w ijT

k

(
I − E ij

)T
Sij

(
I − E ij

)
.

3 Take one block, e.g., d i
k and keep nonzero weights for the face Fij .

4 Add this row to local matrices of constraints Ci and Cj .
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independent distribution of subdomains and their pairs may lead to
difficult communication pattern

solve eigenproblems in rounds with size of number of processes

within each round, first determine communication pattern, then
perform LOBPCG iterations

process

subdomain
data

eigenproblem

eigenproblem

process

subdomain
data

eigenproblem

eigenproblem

process

subdomain
data

eigenproblem

eigenproblem

process

subdomain
data

eigenproblem

eigenproblem

eigenproblemeigenproblem eigenproblem eigenproblem

An example of a possible parallel layout of local eigenproblems with
communication pattern marked for two of them.
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IBM SP6

Location: CINECA, Italy
Architecture: IBM P6-575 Infiniband Cluster
Processor Type: IBM Power6, 4.7 GHz
Computing Cores: 5376
Computing Nodes: 168
RAM: 21 TB (128 GB/node)
access gained through the HPC Europa 2 project

graphics from CINECA website
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problem of geocomposite provided by Prof. Blaheta and Dr. Starý
(Institute of Geonics of AS CR)

cubic sample, edge 75 mm

11.8M linear tetrahedral elements, 6.1M unknowns

arithmetic averages on edges and faces

required precision . . . relative residual = ‖res‖
‖g‖ < 10−6

material distribution displacement
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number of procs 64 128 256 512 1024

2 levels (1024/1), 46 PCG its, cond. ∼50
set-up phase (sec) 61.0 37.7 25.7 23.2 39.5

iterations (sec) 22.3 19.9 27.8 44.9 97.5

3 levels (1024/128/1), 56 PCG its, cond. ∼79
set-up phase (sec) 49.5 29.0 18.4 12.6 11.0

iterations (sec) 28.5 22.6 16.7 14.7 13.2

4 levels (1024/128/16/1), 131 PCG its, cond. ∼568
set-up phase (sec) 49.4 28.6 17.8 12.3 9.1

iterations (sec) 60.6 33.2 21.2 15.4 11.8
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Darwin

Location: University of Cambridge, UK
Architecture: Dell PowerEdge 1950 1U Cluster
Processor Type: Intel Xeon 5100 (Woodcrest), 2 cores, 3.0 GHz
Computing Cores: 2048
Computing Nodes: 512 (2 CPUs each)
RAM: 4096 GB (2 GB/core )

graphics from website of High Performance Computing Services of University of Cambridge
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licWeak scaling for Stokes flow in 3D cavity

full Taylor–Hood finite elements

comparison of PETSc (built-in ASM + BiCGstab) and BDDCML
(BDDC + BiCGstab)

partitions by METIS

size of subdomain problems ∼50k

PETSc BDDC (2-l) BDDC (3-l)

elms size cores its time its time subs/lev its. time

403 1.7M 32 282 533s 18 122s 32/4/1 22 126s
503 3.2M 64 396 805s 19 132s 64/8/1 25 205s
643 6.7M 128 384 536s 21 186s 128/16/1 30 194s
803 13.1M 256 n/a n/a 21 178s 256/32/1 36 201s

1003 25.4M 512 n/a n/a 20 205s 512/64/1 35 211s
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Fox

Location: CTU Supercomputing Centre, Prague
Architecture: SGI Altix UV
Processor Type: Intel Xeon 2.67GHz
Computing Cores: 72
Computing Nodes: 12
RAM: 576 GB (8 GB/core)

Image courtesy of SGI
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nonlinear elasticity with St. Venant–Kirchhoff constitutive law

domain of unit cube with nine stiff rods with Young modulus E2,
remaining material of variable E1, with E2/E1 called contrast

loaded by own weight

323, 643, and 1283 tri-linear cubic elements, 23 and 43 subdomains,
four tested cases:

1 8 subdomains, H/h = 16,
2 8 subdomains, H/h = 32,
3 64 subdomains, H/h = 16,
4 64 subdomains, H/h = 32.

required precision . . . relative residual = ‖res‖
‖g‖ < 10−6

number of computed eigenpairs set to 10 or 15

maximum number of LOBPCG iterations limited by 15

tolerance on residual in LOBPCG set to 10−9

LOBPCG preconditioned by local BDDC [Soused́ık 2010]
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Example of division. Deformed shape (magnified)
coloured by magnitude of

displacement.
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Jakub Š́ıstek Primal methods of iterative substructuring 65 / 69



IN
ST
IT
U
TE

of
M
ATH

EMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
licComputational time vs. contrast

20
40
60
80

100
120
140
160
180
200

100 102 104 106 108 1010

so
lu

ti
on

 t
im

e 
[s

]

E/E [-]

set-up, ad. av., 10 eigv.
iterations, ad. av., 10 eigv.
total, ad. av., 10 eigv.
set-up, ad. av., 15 eigv.
iterations, ad. av., 15 eigv.
total, ad. av., 15 eigv.
set-up, arith. av.
iterations, arith. av.
total, arith. av.

20
40
60
80

100
120
140
160
180
200

100 102 104 106 108 1010

so
lu

ti
on

 t
im

e 
[s

]

E/E [-]

0

500

1000

1500

2000

2500

100 102 104 106 108 1010

so
lu

ti
on

 t
im

e 
[s

]

E/E [-]

0

500

1000

1500

2000

2500

100 102 104 106 108 1010

so
lu

ti
on

 t
im

e 
[s

]

E/E [-]

323 elems, H/h = 16 (top left), 643 elems, H/h = 16 (top right),
643 elems, H/h = 32 (bot. left), 1283 elems, H/h = 32 (bot. right)
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Implementation of Multilevel BDDC

powerful combination of Krylov subspace methods with
preconditioners by combination of iterative substructuring and
domain decomposition

multilevel extension useful for maintaining scalability on large
number of subdomains despite the worse mathematical efficiency

adaptive BDDC able to solve problems not solvable by standard
BDDC, but expensive for simple problems

Future work

parallel implementation of Adaptive Multilevel BDDC – may keep
the efficiency for multilevel BDDC (Matlab tests in [Soused́ık
(2010)])

apply and optimize BDDCML for flow problems – CPU hours
provided by PRACE-DECI project HIFLY (11/2011 – 10/2012)
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domain decomposition

multilevel extension useful for maintaining scalability on large
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adaptive BDDC able to solve problems not solvable by standard
BDDC, but expensive for simple problems

Future work

parallel implementation of Adaptive Multilevel BDDC – may keep
the efficiency for multilevel BDDC (Matlab tests in [Soused́ık
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apply and optimize BDDCML for flow problems – CPU hours
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licMonographs on Domain Decomposition

Smith, B. F., Bjørstad, P. E., and Gropp, W. D.
Domain decomposition.
Cambridge University Press, Cambridge, 1996.

Quarteroni, A., and Valli, A.
Domain decomposition methods for partial differential equations.
Oxford University Press, New York, 1999.

Toselli, A., and Widlund, O.
Domain decomposition methods—algorithms and theory.
Springer-Verlag, Berlin, 2005.

Kruis, J.
Domain decomposition methods for distributed computing.
Saxe-Coburg Publications, Stirling, 2006.

And chapters on DD are present in many other FEM as well as LA books.
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