BDDCML

solver library based on Multi-Level Balancing Domain Decomposition by Constraints
copyright (C) 2010-2014 Jakub Sistek
version 2.4

Jakub Sistek

Table of Contents

1 Introduction........... 1
2 Howtouse BDDCMLccuiiiiniiin... 2
3 Notes for C/CH++ users........................ 4
3.1 Header file ...t 4
3.2 Cross—compilation.......... ...t 4
3.3 Libraries of Fortran compiler........................... ... 4

4 Description of interface functions............. 5
4.1 bddeml _dnit. ... 5
Cianterface 5
Fortran interface o 5
Descriptiono 5
Parameters. 5

4.2 bddcml_upload_global_data...........cooviuiiiinnnniennnnn... 7
Cianterface 7
Fortran interface 7
Descriptiono 7
Parameters.o 8

4.3 bddcml_upload_subdomain_data 10
Cianterface. 10
Fortran interface 10
Description 11
Parameters 11

4.4 bddcml_setup_preconditioner.............. il 15
Canterface. 15
Fortran interface 15
Description 15
Parameters 15

4.5 bAACml _SO0LVe ..ottt 17
Canterface 17
Fortran interface 17
Description 17
Parameters 17

4.6 bddcml_download_local_solution.............ccoviuuiunnnnn. 19
Canterface. ... 19
Fortran interface i 19
Description 19
Parameters 19

4.7 bddcml_download_global_solution.......................... 20

Coanterfaceo 20

Fortran interface 20
Description 20
Parameters 20
4.8 bddcml_download_local_reacCtions...........oovueeiuuennn.. 21
Cinterface. ... 21
Fortran interface i 21
Description 21
Parameters 21
4.9 bddcml_download_global_reactions......................... 22
Cianterface. ... 22
Fortran interface 22
Description 22
Parameters 22
4.10 bddcml_change_global _data............ccoouuiiiininiaann... 23
Cinterface. ... 23
Fortran interface 23
Description 23
Parameters 23
4.11 bddcml_change_subdomain_datacccoviviinnnn. 24
Cinterface. ... 24
Fortran interface 24
Description 24
Parameters 24
4.12 bddcml_setup_new_data............ ..o 26
Cinterface.o 26
Fortran interface 26
Description 26
Parameters ... 26
4.13 bddcml_dotprod_subdomain................ ...l 27
Canterface 27
Fortran interface 27
Description 27
Parameters 27
4.14 bddcml _finalizZe.........oiuniiiiii 28
Canterface 28
Fortran interface 28
Description 28

Parameters 28

ii

Chapter 1: Introduction 1

1 Introduction

The BDDCML (Balancing Domain Decomposition by Constraints - Multi-Level) is a library
for solving large sparse linear systems resulting from computations by the finite element
method (FEM). Domain decomposition technique is employed which allows distribution of
the computations among processors.

The main goal of the package is to provide a scalable implementation of the (Adaptive)
Multilevel BDDC method. Codes are written in Fortran 95 with MPI library. A library
is provided, which is supposed to be called from users’ applications. It provides a simple
interface functions callable from Fortran and C.

Balancing Domain Decomposition by Constraints (BDDC) has quickly evolved into a very
popular method. However, for very large numbers of subdomain, the coarse problem be-
comes a large problem to be solved in its own right. In Multilevel BDDC, the coarse problem
is solved only approximately by recursive application of BDDC to higher levels.

The main web site of the BDDCML project is
http://www.math.cas.cz/ sistek/software/bddcml.html

In case of questions, reporting a bug, or just of interest, feel free to contact Jakub Sistek at
sistek@math.cas.cz.

http://www.math.cas.cz/~sistek/software/bddcml.html
mailto:sistek@math.cas.cz

Chapter 2: How to use BDDCML 2

2 How to use BDDCML

The library provides a simple interface callable from Fortran and C. Although main parts
of the solver are purely algebraic, the solver needs also to get some information of the
computational mesh. This requirement is mainly motivated by selection of corners within
the method, for which existing algorithms rely on geometry.

Two different modes are possible for input:
e user can either provide information about global mesh and a file with element matrices
(global loading),

e user can provide division into subdomains on the first level and pass subdomain matrices
for each subdomain to the routine (local loading).

The solution process is divided into the following sequence of called functions. Their pa-
rameters are described in separate sections.

1. bddcml_init — initialization of the solver
2.

e bddcml_upload_global_data — loading global data about computational mesh
and matrix (use for global loading)

e bddcml_upload_subdomain_data — loading data for one subdomain mesh and ma-
trix (use for local loading)

3. bddcml_setup_preconditioner — prepare preconditioner

4. bddcml_solve — solve loaded system by a preconditioned Krylov subspace iterative
method (PCG or BiCGstab) or steepest descent iterative method

e bddcml_download_local_solution — get the solution restricted to a subdomain
from the solver (use for local loading)

e bddcml_download_global_solution — get the global solution from the solver (use
for global loading)

6. bddcml_finalize — clear solver data and deallocate memory

Two examples are presented in the ‘examples’ folder. Both are written in Fortran 90. The
‘bddcml_global.f90’ demonstrates the use of global input, while the ‘bddcml_local.f90’
demonstrates the use of localized subdomain input. Optionally, one can ask for nodal
reactions at Dirichlet boundary conditions by

e bddcml_download_local_reactions — get the reactions restricted to a subdomain
from the solver (use for local loading)

e bddcml_download_global_reactions — get the global reactions from the solver (use
for global loading)

The solver supports efficient handling of multiple-right hand side, for which the matrix as
well as preconditioner are reused. Moreover, the Krylov method is accelerated by storing
some of the Krylov basis. One can re-run the Krylov method for a new right-hand side
and/or values of Dirichlet boundary conditions as

Chapter 2: How to use BDDCML 3

e bddcml_change_global_data — changing global data about right-hand side or
Dirichlet b.c. (use for global loading)

e bddcml_change_subdomain_data — changing data for one subdomain about right-
hand side or Dirichlet b.c. (use for local loading)

2. bddcml_setup_new_data — after right-hand side or Dirichlet b.c. has changed, recreate
related internal arrays

3. bddcml_solve — solve the system again for the new data

Chapter 3: Notes for C/C++ users 4

3 Notes for C/C++ users

Since BDDCML is written in Fortran 95 language, users who want to use BDDCML from
C/C++ need to overcome a few issues related to this fact.

3.1 Header file

There is a C interface provided in the file ‘bddcml_interface_c.h’ that has to be included
in applications. In C++, users should include this file using the extern directive as

extern "C" {
#include <bddcml_interface_c.h>

3.2 Cross-compilation

Fortran compilers change the name of subroutines as they appear in the code when they
generate symbols out of them (this is mainly related to historical reasons). Some Fortran
compilers append ‘_’ at the end of the name, some append ‘__’, some do not do anything
to the name and some change all letters to upper case. In order to combine C and Fortran
code, it is necessary to mimic the behaviour of the Fortran compiler in a C/C++ code by
modifying names of the C functions (both when calling Fortran routine from a C function
and vice versa). For a somewhat generic behaviour of this naming convention, there is an
F_SYMBOL macro defined in ‘bddcml_interface_c.h’ which changes the C names to match
the name expected by Fortran. This is based on a preprocessor variable used in compiling

C/C++ code. Possible values include:
e Add_ - append ‘_’ at the end of the function name (this is most common and used e.g.
by gfortran or Intel Fortran Compiler)
e Add__ - append ‘__’ at the end of the function name (used e.g. by g95)
e UPPER - change all letters to uppercase

This should appear on command line as e.g. ~-DAdd_ during compiling. If nothing is defined,
no change is done to the symbol name, which is in fact correct for certain Fortran compilers,
such as those by IBM.

3.3 Libraries of Fortran compiler

If C code is called from Fortran, no additional libraries are usually needed. However, in
the opposite case, i.e. the one encountered if BDDCML is used from a C/C++ code, one needs
to explicitly specify the libraries of Fortran compiler in the linking sequence when the final
executable is build by a C++ linker. For example, if combining g++ and gfortran, it is
necessary to add

-L/usr/lib -1lmpi_£77 -lgfortran

when linking an executable by g++. Obviously, the path may be different from this example
on a particular machine.

Chapter 4: Description of interface functions 5)

4 Description of interface functions

In this chapter, detailed description of the solver interface functions with explanation of
individual arguments is given

4.1 bddcml_init

C interface

void bddcml_init(int *nl, int *nsublev, int *lnsublev, int *nsub_loc_1, int
xcomm_init, int *verbose_level, int *numbase, int *just_direct_solve_int);
Fortran interface

subroutine bddcml_init(nl, nsublev,lnsublev, nsub_loc_1, comm_init,
verbose_level, numbase, just_direct_solve_int)

integer, intent(in) :: nl
integer, intent(in) :: lnsublev
integer, intent(in) :: mnsublev(lnsublev)

integer, intent(inout):: nsub_loc_1
integer, intent(in):: comm_init
integer, intent(in):: verbose_level

integer, intent(in) :: numbase
integer, intent(in):: just_direct_solve_int
Description

Prepares internal data structures for the solver.

Parameters

nl given number of levels, n1 >= 2, n1 = 2 corresponds to standard (two-level)
BDDC method

nsublev array with GLOBAL numbers of subdomains for each level. Need to be mono-
tonically decreasing from nsublev(1l) = sum(nsub_loc_1) to nsublev(nl) =
1

lnsublev length of array nsublev - should match nl
nsub_loc_1
LOCAL number of subdomains assigned to the process.
e >= (0 number of local subdomains - sum up across processes to nsublev|0]
e -1 let solver decide, the value is returned (determining linear partition)
comm_init
initial global communicator (possibly MPI_COMM_WORLD). This should be com-
municator in Fortran. When called from C, it should NOT be of type MPI_Comm

but of type int *, and user should use the MPI_Comm_c2f function to convert
the C MPI_Comm communicator to Fortran communicator of type int *.

Chapter 4: Description of interface functions 6

verbose_level
level of verbosity

e 0 - only errors printed
e 1 - some output

e 2 - detailed output
numbase first index of arrays (0 for C, 1 for Fortran)

just_direct_solve_int
Only perform a direct solve (0 - for a regular iterative solve with BDDC
preconditioner, 1 - call parallel or serial MUMPS solver instead)

Chapter 4: Description of interface functions 7

4.2 bddcml_upload_global_data

C interface

void bddcml_upload_global_data(int *nelem, int *nnod, int *ndof, int *ndim,

int *meshdim, int *inet, int *linet, int *nnet, int *1lnnet, int *nndf, int

*1nndf, double *xyz, int *1xyzl, int *1xyz2, int *ifix, int *1ifix, double
*fixv, int *1fixv, double *rhs, int *1rhs, double *sol, int *1sol, int *idelm,

int *neighbouring, int *load_division_int);

Fortran interface

subroutine bddcml_upload_global_data(nelem,nnod,ndof ,ndim,meshdim,&
inet,linet,nnet,lnnet,nndf,lnndf,xyz,lxyzl,1xyz2,& ifix,1ifix, fixv,1fixv,
rhs,1rhs, sol,lsol, idelm, & neighbouring, load_division_int)

integer, intent(in):: nelem
integer, intent(in):: nnod
integer, intent(in):: ndof
integer, intent(in) :: ndim
integer, intent(in) :: meshdim
integer, intent(in):: linet
integer, intent(in):: inet(linet)
integer, intent(in):: lnnet
integer, intent(in):: nnet(lnnet)
integer, intent(in):: lnndf
integer, intent(in):: nndf(lnndf)
integer, intent(in):: lxyzl, lxyz2
real(kr), intent(in):: xyz(lxyzl,lxyz2)
integer, intent(in):: 1lifix
integer, intent(in):: ifix(1lifix)
integer, intent(in):: 1fixv
real(kr), intent(in):: fixv(1fixv)
integer, intent(in):: 1lrhs
real(kr), intent(in):: rhs(lrhs)
integer, intent(in):: lsol
real(kr), intent(in):: sol(lsol)
integer, intent(in) idelm
integer, intent(in) :: neighbouring
integer, intent(in) load_division_int
Description

If no distribution of data exists in the user application, it may be left to the solver. This
routine loads global information on mesh connectivity and coordinates. Matrix is passed as
unassembled matrices of individual elements which will be read from opened file unit idelm
and assembled within the solver. If partitionining into subdomains on the basic level exists
in user’s application, routine bddcml_upload_subdomain_data should be used instead.

Chapter 4: Description of interface functions 8

Parameters

nelem GLOBAL number of elements

nnod GLOBAL number of nodes

ndof GLOBAL number of degrees of freedom, i.e. size of matrix

ndim number of space dimensions

meshdim mesh dimension. For 3D elements = ndim, for 3D shells = 2, for 3D beams = 1

inet GLOBAL array with Indices of Nodes on ElemenTs - this defines connectivity
of the mesh.

linet length of array inet. It is given as a sum of entries in array nnet.

nnet GLOBAL array with Number of Nodes on ElemenTs. For each element, it gives
number of nodes it is connected to. This is important to locate element entries
in array inet

lnnet length of array nnet. It is equal to nelem.

nndf GLOBAL array with Number of Nodal Degrees of Freedom. For each node, it
gives number of attached degrees of freedom.

lnndf length of array nndf. It is equal to nnod.

Xyz GLOBAL Coordinates of nodes as one array (all X, all Y, all Z) or as two-

dimensional array in Fortran (X | Y | Z). Rows are defined by nodes, columns
are defined by dimension.

1xyz1,1xyz2

ifix

lifix

fixv

1fixv
rhs
1rhs

sol

1sol

dimensions of array xyz. In C, lenght of xyz is defined as 1xyz1 * 1xyz2. In
Fortran, dimension of xyz is given used as xyz(1lxyzl,lxyz2). The lxyzl is
equal to nnod. The 1xyz2 is equal to ndim.

GLOBAL array of Indices of FIXed variables - all degrees of freedom with
Dirichlet boundary condition are marked by 1, degrees of freedom not prescribed
are marked by 0, i.e. non-zero entries determine fixed degrees of freedom. The
values of prescribed boundary conditions are given by corresponding entries of
array fixv.

length of array ifix, equal to ndof.

GLOBAL array of FIXed Variables - where ifix is non-zero, fixv stores value
of Dirichlet boundary condition. Where ifix is zero, corresponding value in
fixv is meaningless.

length of array fixv, equal to ndof.
GLOBAL array with Right-Hand Side
length of array rhs, equal to ndof.

GLOBAL array with initial SOLution guess. This is used as initial approxima-
tion for iterative method.

length of array sol, equal to ndof.

Chapter 4: Description of interface functions 9

idelm opened Fortran unit with unformatted file with element matrices

neighbouring
how many nodes should be shared by two elements to call them adjacent in
graph. This parameter is used for division of mesh on the basic level by
ParMETIS or METIS. Often, one gets better results if he specifies this num-
ber to define adjacency only if elements share a face in 3D or edge in 2D. E.g.
for linear tetrahedra, the recommended value is 3.

load_division_int
Should division from file ‘partition_11.ES’ be used? (0 - partition is created
in the solver, 1 - partition is read) If partition is read, the file contains for each
element, number of subdomain it belongs to. Begins from 1.

Chapter 4: Description of interface functions 10

4.3 bddcml_upload_subdomain_data

C interface

void bddcml_upload_subdomain_data(int *nelem, int *nnod, int *ndof, int
*ndim, int *meshdim, int *isub, int *nelems, int *nnods, int *ndofs, int *inet,
int *linet, int *nnet, int *lnnet, int *nndf, int *1nndf, int *isngn, int
*lisngn, int *isvgvn, int *lisvgvn, int *isegn, int *lisegn, double *xyz,

int *1xyzl, int *1xyz2, int *ifix, int *1ifix, double *fixv, int *1fixv,
double *rhs, int *1rhs, int *is_rhs_complete, double *sol, int *1sol, int
*matrixtype, int *i_sparse, int *j_sparse, double *a_sparse, int *la, int
*is_assembled_int, double *user_constraints, int *luser_constraintsli,

int *luser_constraints2, double *element_data, int *lelement_datal, int
*lelement_data2, double *dof_data, int *1ldof_data);

Fortran interface

subroutine bddcml_upload_subdomain_data(nelem, nnod, ndof, ndim, meshdim,

& isub, nelems, nnods, ndofs, & inet,linet, nnet,lnnet, nndf,lnndf, &
isngn,lisngn, isvgvn,lisvgvn, isegn,lisegn, & xyz,lxyzl,lxyz2, & ifix,lifix,
fixv,1fixv, & rhs,1lrhs, is_rhs_complete_int, & sol,1lsol, & matrixtype,
i_sparse, j_sparse, a_sparse, la, is_assembled_int,& user_constraints,luser_
constraintsl,luser_constraints2,& element_data,lelement_datal,lelement_
data2, & dof_data,ldof_data)

integer, intent(in):: nelem

integer, intent(in):: nnod

integer, intent(in):: ndof

integer, intent(in):: ndim

integer, intent(in):: meshdim
integer, intent(in):: isub

integer, intent(in):: nelems
integer, intent(in):: nnods

integer, intent(in):: ndofs

integer, intent(in):: linet

integer, intent(in):: inet(linet)
integer, intent(in):: lnnet

integer, intent(in):: nnet(lnnet)
integer, intent(in):: lnndf

integer, intent(in):: nndf(lnndf)
integer, intent(in):: lisngn
integer, intent(in):: isngn(lisngn)
integer, intent(in):: lisvgvn
integer, intent(in):: isvgvn(lisvgvn)
integer, intent(in):: lisegn
integer, intent(in):: isegn(lisegn)
integer, intent(in):: lxyzl, lxyz2

real(kr), intent(din)::

xyz(1xyzl,1lxyz2)

Chapter 4: Description of interface functions 11

integer, intent(in):: 1lifix
integer, intent(in):: ifix(1lifix)
integer, intent(in):: 1fixv
real(kr), intent(in):: fixv(1fixv)
integer, intent(in):: 1lrhs
real(kr), intent(in):: rhs(lrhs)
integer, intent(in):: lsol
real(kr), intent(in):: sol(lsol)

integer, intent(in):: is_rhs_complete_int
integer, intent(in):: matrixtype

integer, intent(in):: i_sparse(la)
integer, intent(in):: j_sparse(la)
real(kr), intent(in):: a_sparse(la)
integer, intent(in):: la

integer, intent(in):: is_assembled_int
integer, intent(in):: luser_constraintsl
integer, intent(in):: luser_constraints2

real(kr), intent(in)::user_constraints(luser_constraintsix*&
luser_constraints?2)

integer, intent(in):: lelement_datal

integer, intent(in):: lelement_data2

real(kr), intent(in):: element_data(lelement_datal*lelement_data2)
integer, intent(in):: 1dof_data

real(kr), intent(in):: dof_data(ldof_data)

Description

If distribution of data into subdomains exists already in the user application, data should be
loaded into the solver using this routine. It may be called repeatedly by each process if more
than one subdomain are assigned to that process. It loads the local mesh of the subdomain
and assembled subdomain matrix in the coordinate format. Most data are localized to
subdomain.

If partitionining into subdomains does not exist in user’s application, routine bddcml_
upload_global_data should be preferred.

Parameters

nelem GLOBAL number of elements

nnod GLOBAL number of nodes

ndof GLOBAL number of degrees of freedom, i.e. size of matrix
ndim number of space dimensions

meshdim mesh dimension. For 3D elements = ndim, for 3D shells = 2, for 3D beams = 1
isub GLOBAL index of subdomain which is loaded

nelems LOCAL number of elements in subdomain

Chapter 4:

nnods
ndofs

inet
linet
nnet
1nnet

nndf

Inndf

isngn
lisngn

isvgvn

lisvgvn

isegn

lisegn

Xyz

Description of interface functions 12

LOCAL number of nodes in subdomain mesh
LOCAL number of degrees of freedom in subdomain mesh

LOCAL array with Indices of Nodes on ElemenTs - this defines connectivity of
the subdomain mesh.

length of array inet. It is given as a sum of entries in array nnet.

LOCAL array with Number of Nodes on ElemenTs. For each element, it gives
number of nodes it is connected to. This is important to locate element entries
in array inet

length of array nnet. It is equal to nelems.

LOCAL array with Number of Nodal Degrees of Freedom. For each node, it
gives number of attached degrees of freedom.

length of array nndf. It is equal to nnods.

array of Indices of Subdomain Nodes in Global Numbering (local to global map
of nodes). For each local node gives the global index in original mesh.

length of array isngn. It is equal to nnods.

array of Indices of Subdomain Variables in Global Variable Numbering (local
to global map of variables). For each local degree of freedom gives the global
index in original matrix.

length of array isvgvn. It is equal to ndofs.

array of Indices of Subdomain Elements in Global Numbering (local to global
map of elements). For each subdomain element gives global number in original
mesh.

length of array isegn. It is equal to nelems.

LOCAL array with coordinates of nodes as one array (all X, all Y, all Z) or
as two-dimensional array in Fortran (X | Y | Z). Rows are defined by nodes,
columns are defined by dimension.

1xyz1,1xyz2

ifix

lifix

fixv

dimensions of array xyz. In C, lenght of xyz is defined as 1xyz1l * 1xyz2. In
Fortran, dimension of xyz is used as xyz(lxyzl,lxyz2). The lxyzl is equal
to nnods. The 1xyz2 is equal to ndim.

LOCAL array of Indices of FIXed variables - all degrees of freedom with Dirich-
let boundary condition are marked by 1, degrees of freedom not prescribed are
marked by 0, i.e. non-zero entries determine fixed degrees of freedom. The
values of prescribed boundary conditions are given by corresponding entries of
array fixv.

length of array ifix, equal to ndofs.

LOCAL array of FIXed Variables - where ifix is non-zero, fixv stores value
of Dirichlet boundary condition. Where ifix is zero, corresponding value in
fixv is meaningless.

Chapter 4: Description of interface functions 13

1fixv length of array fixv, equal to ndofs.

rhs LOCAL array with Right-Hand Side. Values at nodes repeated among subdo-
mains are copied and not weighted.

lrhs length of array rhs, equal to ndofs.
is_rhs_complete
is the subdomain right-hand side complete?

e 0 - no, e.g. if only local subassembly of right-hand side was performed -
interface values are not fully assembled, solver does not apply weights

e 1 - yes, e.g. if local right-hand side is a restriction of the global array
to the subdomain - interface values are complete and repeated for more
subdomains, solver applies weights to handle multiplicity of these entries

sol LOCAL array with initial SOLution guess. This is used as initial approximation
for iterative method.

lsol length of array sol, equal to ndofs.

matrixtype
Type of the matrix. This parameter determines storage and underlying direct
method of the MUMPS solver for factorizations. Matrix is loaded in coordinate
format by three arrays described below. Options are

e (0 unsymmetric - whole matrix is loaded

e 1 symmetric positive definite - only upper triangle of the matrix is loaded

e 2 general symmetric - only upper triangle of the matrix is loaded
i_sparse array of row indices of non-zero entries in LOCAL numbering with respect to

subdomain degrees of freedom, i.e. indices are in the range [0, ndofs-1] in C (
and in [1, ndofs] in Fortran)

j_sparse array of column indices of non-zero entries in LOCAL numbering with respect
to subdomain degrees of freedom, see i_sparse for their ranges

a_sparse array of values of non-zero entries

la length of previous arrays i_sparse, j_sparse, a_sparse (equal to number of
non-zeros if the matrix is loaded already assembled)

is_assembled_int
is the matrix assembled? The solver comes with fast assembly routine so the
users might want to pass just unassembled matrix for each subdomain (i.e. copy
of element matrices equipped with global indexing), and let the solver assemble
it.
e 0 - no, it can contain repeated entries, will be assembled by solver
e 1 - yes, it is sorted and does not contain repeated index pairs
luser_contraintsl, luser_constraints?2

dimension of array with user constraints, luser_constraints2 should equal to
nnods if user wants to use this feature. Otherwise both can be set to 0.

Chapter 4: Description of interface functions 14

user_contraints
linearized matrix of user’s constraints, one row per constraint, stored row-by-
row. Each row has entries for all nodes (in columns) and may contain several
constraints (at rows). It may be left empty if no additional contraints are
demanded by call to bddcml_setup_preconditioner.

lelement_datal, lelement_data2
dimension of array with data for elements, lelement_data2 should equal to
nelems if user wants to use this feature. Otherwise both can be set to 0.

element_data
linearized matrix with element data, one row per field, stored row-by-row. Each
row has entries for all elements (in columns). Single row is currently optionally
used for generating interface weigths in the BDDC method, so called p-scaling.

ldof_data
dimension of array with data for subdomain degrees of freedom, ldof_data
should equal to ndofs if user wants to use this feature. Otherwise it can be set
to 0.

dof_data coeflicients for each local degree of freedom currently optionally used for gen-
erating interface weigths in the BDDC method. The array should be positive,
dof_data > 0.

Chapter 4: Description of interface functions 15

4.4 bddcml_setup_preconditioner

C interface

void bddcml_setup_preconditioner (int *matrixtype, int *use_defaults_int,
int *parallel_division_int, int *use_arithmetic_constraints_int, int *use_

adaptive_constraints_int, int *use_user_constraints_int, int *weights_type);

Fortran interface

subroutine bddcml_setup_preconditioner (matrixtype, use_defaults_int, &
parallel_division_int, & use_arithmetic_constraints_int, & use_adaptive_
constraints_int, & use_user_constraints_int, & weights_type)

integer,intent(in) :: matrixtype
integer,intent(in) :: use_defaults_int
integer,intent(in) :: parallel_division_int
integer,intent(in) :: use_arithmetic_constraints_int
integer,intent(in) :: use_adaptive_constraints_int
integer,intent(in) :: use_user_constraints_int
integer,intent(in) :: weights_type

Description

Calling this function prepares internal data of the preconditioner. Local factorizations are
performed for each subdomain at each level and also the resulting coarse problem on the
final level is factored. This might be quite costly routine. Once the preconditioner is set-
up, it can be reused for new right hand sides (if the matrix is not changed) by calling
bddcml_upload_subdomain_data followed by bddcml_solve.

Parameters

matrixtype
Type of the matrix. This parameter determines storage and underlying direct
method of the MUMPS solver for factorizations. Should keep the value inserted
to bddcml_upload_subdomain_data. Options are

e (0 unsymmetric - whole matrix is loaded
e 1 symmetric positive definite - only upper triangle of the matrix is loaded
e 2 general symmetric - only upper triangle of the matrix is loaded

use_defaults_int
If > 0, other options are ignored and the solver uses default options.

parallel_division_int
If > 0, solver will use ParMETIS to create division on first level. This option is
only used for global input (bddcml_upload_global_data) and only applies to
the first level. Otherwise, METIS is used. Default is 1.

use_arithmetic_constraints_int
If > 0, solver will use continuity of arithmetic averages on faces in 2D and faces
and edges in 3D to form the coarse space. Default is 1.

Chapter 4: Description of interface functions 16

use_adaptive_constraints_int
If > 0, solver will use adaptive averages on faces in 2D and faces in 3D. This
might be costly and should be used for very ill-conditioned problems. A gen-
eralized eigenvalue problem is solved at each face and weighted averages are
derived from eigenvectors. For solving individual eigenproblems, BLOPEX pack-
age is used. Default is 0.

use_user_constraints_int
If > 0, solver will use array USER_CONSTRAINTS supplied in routine bddcml_
upload_subdomain_data for construction of additional constraints on subdo-
main faces. This may be used e.g. for enforcing flux-based constraints for
advection-diffusion problems. Default is 0.

weights_type
Type of weights to be used on interface (default 0). Possible choices

e 0 — weights computed by cardinality, i.e. arithmetic average, the mean
value of solution from neighbouring subdomains. Good choice for many
problem types except those with large variations in material coefficients
and/or sizes of elements.

e 1 — weights from diagonal stiffness, corresponding diagonal entry in the
matrix. Good choice for symmetric positive definite problems with large
variations in material coefficients and/or sizes of elements. Not good for
homogenous problems with irregular subdomains, such as those from graph
partitioners, in combination with nodal elements. This option takes into
account different sizes of elements and material coefficients.

e 2 — weights based on loaded element data. For this choice, the first row of
array element_data from function bddcml_upload_subdomain_data must
contain element coefficients to be used here. This allows definition of the so
called p-scaling. Good choice for problems with large variations in material
coefficients if irregular subdomains from graph partitioners are used in
combination with nodal finite elements.

e 3 — weights based on loaded data for degees of freedom. For this choice,
array dof _data from function bddcml_upload_subdomain_data must con-
tain coeflicients for each subdomain degree of freedom. This allows defi-
nition of general user-defined weigths on degrees of freedom tailored to
particular applications.

Chapter 4: Description of interface functions 17

4.5 bddcml_solve

C interface

void bddcml_solve(int *comm_all, int *method, double *tol, int
*maxit, int *ndecrmax, int *recycling_int, int *max_number_of_
stored_vectors, int *num_iter, int *converged_reason, double
*condition_number) ;

Fortran interface

subroutine bddcml_solve(comm_all,method,tol,maxit,ndecrmax, &
recycling_int, max_number_of_stored_vectors, & num_iter,converged_
reason,condition_number)

integer, intent(in) :: comm_all

integer, intent(in) :: method

real(kr), intent(in) :: tol

integer, intent(in) :: maxit

integer, intent(in) :: ndecrmax

integer, intent(in) :: recycling_int

integer, intent(in) :: max_number_of_stored_vectors

integer, intent(out) :: num_iter

integer, intent(out) :: converged_reason

real(kr), intent(out) :: condition_number
Description

This function launches the solution procedure for prepared data. System is
solved either by preconditioned conjugate gradient (PCG) method or by precon-
ditioned stabilized Bi-Conjugate Gradient (BiCGstab) method. Alternatively
to Krylov subspace methods one can use steepest descent iteration.

Parameters

comm_all global communicator. Should be the same as comm_init for
bddcml_init function.
method Krylov subspace iterative method

e -1 - use defaults - tol, maxit, and ndecrmax not accessed,

BiCGstab method used by default,
0 - use PCG,
e 1 - use BiCGstab,

e 2 - use steepest descent method,

e 5 - use parallel direct solver instead of an iterative method.
tol desired accuracy of relative residual (default 1.e-6).
maxit limit on number of iterations (default 1000).

ndecrmax limit on number of iterations with non-decreasing residual (default
30) - used to stop a diverging process.

Chapter 4: Description of interface functions 18

recycling_int

If > 0, the Krylov subspace will be recycled in the Krylov subspace
method (default 0). This can save time for solutions for many
right-hand sides. The option triggers explicit orthogonalization to
the stored Krylov basis. Therefore, even if this option is used with
just one right-hand side solve, it can help the convergence for nu-
merically complicated problems, where natural orthogonality of the
basis may be lost. The approach to recycling is based on Farhat,
C., Crivelli, L., Roux, X.: Extending substructure based iterative
solvers to multiple load and repeated analyses. Comput. Methods
in Appl. Mech. Engrg. 117 (1994), 195-209.

max_number_of_stored_vectors

num_iter

limit on the size of the Krylov subspace basis explicitly kept in the
solver (default 100). Only meaningful if recycling_int > 0.

on output, resulting number of iterations.

converged_reas on

on output, contains reason for convergence/divergence
e (0 - converged relative residual,
e -1 - reached limit on number of iterations,

e -2 - reached limit on number of iterations with non-decreasing
residual.

condition_number

on output, estimated condition number (for PCG only).

Chapter 4: Description of interface functions 19

4.6 bddcml_download_local_solution

C interface

void bddcml_download_local_solution(int *isub, double *sols, int
x1sols);

Fortran interface

subroutine bddcml_download_local_solution(isub, sols,lsols)
integer, intent(in):: isub
integer, intent(in):: 1sols
real(kr), intent(out):: sols(lsols)

Description

Subroutine for getting local solution, i.e. restriction of solution vector to sub-
domain (no weights are applied).

Parameters
isub GLOBAL index of subdomain
sols LOCAL array of solution restricted to subdomain

lsols length of array sols, equal to ndofs.

Chapter 4: Description of interface functions 20

4.7 bddcml_download_global_solution

C interface

void bddcml_download_global_solution(double *sol, int *1sol);

Fortran interface

subroutine bddcml_download_global_solution(sol, 1sol)

integer, intent(in):: 1sol
real(kr), intent(out):: sol(lsol)

Description

This function downloads global solution of the system from the solver at the
root, process.

Parameters

sol GLOBAL array of solution
lsol length of array sol, equal to ndof

Chapter 4: Description of interface functions 21

4.8 bddcml_download_local_reactions

C interface

void bddcml_download_local_reactions(int *isub, double *reas, int

x1lreas);

Fortran interface

subroutine bddcml_download_local_reactions(isub, reas,lreas)
integer, intent(in):: isub
integer, intent(in):: Ilreas
real(kr), intent(out):: reas(lreas)

Description

Subroutine for getting local reactions at unknowns fixed by Dirichlet boundary
conditions, i.e. restriction of vector of reactions to subdomain (no weights are
applied). Global vector of reactions is given by r = Ax - b, where A is the matrix
WITHOUT Dirichlet boundary conditions fixed, x is the solution, and b the
original right-hand side.

Parameters
isub GLOBAL index of subdomain
reas LOCAL array of vector of reactions restricted to subdomain. It

contains nonzeros only at unknowns marked in the IFIX array (see
bddcml_upload_local_data).

lreas length of array reas, equal to ndofs.

Chapter 4: Description of interface functions 22

4.9 bddcml_download_global_reactions

C interface

void bddcml_download_global_reactions(double *rea, int *lrea) ;

Fortran interface

subroutine bddcml_download_global_reactions(rea, lrea)

integer, intent(in):: 1lrea
real(kr), intent(out):: rea(lrea)
Description

Subroutine for getting global reactions at unknowns fixed by Dirichlet boundary
conditions at the root process. Global vector of reactions is given by r = Ax -
b, where A is the matrix WITHOUT Dirichlet boundary conditions fixed, x is
the solution, and b the original right-hand side.

Parameters

rea GLOBAL array of reactions. It contains nonzeros only at unknowns
marked in the IFIX array (see bddcml_upload_global_data).

lrea length of array rea, equal to ndof

Chapter 4: Description of interface functions 23

4.10 bddcml_change_global_data

C interface

void bddcml_change_global_data(int *ifix, int *1ifix, double
*fixv, int *1fixv, double *rhs, int *1rhs, double *sol, int *1sol);

Fortran interface

subroutine bddcml_change_global_data(ifix,lifix, fixv,1fixv,
rhs,1lrhs, sol,lsol)

integer, intent(in):: lifix

integer, intent(in):: ifix(1lifix)

integer, intent(in):: 1fixv

real(kr), intent(in):: fixv(1fixv)

integer, intent(in):: 1lrhs

real(kr), intent(in):: rhs(lrhs)

integer, intent(in):: 1lsol

real(kr), intent(in):: sol(lsol)

Description

A function for loading another right hand side, when global loading is used.
Position of fixed variables, the IFIX array, is not allowed to change. Parameters
correspond to routine bddcml_upload_global_data.

Parameters

ifix GLOBAL array of Indices of FIXed variables - all degrees of free-
dom with Dirichlet boundary condition are marked by 1, degrees of
freedom not prescribed are marked by 0, i.e. non-zero entries deter-
mine fixed degrees of freedom. The values of prescribed boundary
conditions are given by corresponding entries of array fixv.

lifix length of array ifix, equal to ndof.

fixv GLOBAL array of FIXed Variables - where ifix is non-zero, fixv
stores value of Dirichlet boundary condition. Where ifix is zero,
corresponding value in fixv is meaningless.

1fixv length of array fixv, equal to ndof.

rhs GLOBAL array with Right-Hand Side

lrhs length of array rhs, equal to ndof.

sol GLOBAL array with initial SOLution guess. This is used as initial

approximation for iterative method.

lsol length of array sol, equal to ndof.

Chapter 4: Description of interface functions 24

4.11 bddcml_change_subdomain_data

C interface

void bddcml_change_subdomain_data(int *isub, int *ifix, int
*¥1ifix, double *fixv, int *1fixv, double *rhs, int *1rhs, int

xis_rhs_complete, double *sol, int *1sol);

Fortran interface

subroutine bddcml_change_subdomain_data(isub, & ifix,lifix,
fixv,1fixv, & rhs,1lrhs, is_rhs_complete_int, & sol,1lsol)
integer, intent(in):: isub
integer, intent(in):: lifix
integer, intent(in):: ifix(1lifix)
integer, intent(in):: 1lfixv
real(kr), intent(in):: fixv(1fixv)
integer, intent(in):: 1lrhs
real(kr), intent(in):: rhs(lrhs)
integer, intent(in):: is_rhs_complete_int
integer, intent(in):: lsol
real(kr), intent(in):: sol(lsol)

Description

A function for loading another right hand side, when subdomain-by-subdomain
loading is used. Position of fixed variables, the IFIX array, is not allowed to
change. Parameters correspond to routine bddcml_upload_subdomain_data.
It should be called repeatedly by each process if more than one subdomain are
assigned to that process. This call should be followed by calling bddcml_setup_
new_data before another call to bddcml_solve.

If partitionining into subdomains does not exist in user’s application, routine
bddcml_change_global_data should be preferred.

Parameters
isub GLOBAL index of subdomain which is loaded
ifix LOCAL array of Indices of FIXed variables - all degrees of free-

dom with Dirichlet boundary condition are marked by 1, degrees of
freedom not prescribed are marked by 0, i.e. non-zero entries deter-
mine fixed degrees of freedom. The values of prescribed boundary
conditions are given by corresponding entries of array fixv.

lifix length of array ifix, equal to ndofs.

fixv LOCAL array of FIXed Variables - where ifix is non-zero, fixv
stores value of Dirichlet boundary condition. Where ifix is zero,
corresponding value in fixv is meaningless.

1fixv length of array fixv, equal to ndofs.

Chapter 4: Description of interface functions 25

rhs LOCAL array with Right-Hand Side. Values at nodes repeated
among subdomains are copied and not weighted.

lrhs length of array rhs, equal to ndofs.

is_rhs_complete
is the subdomain right-hand side complete?

e 0 - no, e.g. if only local subassembly of right-hand side was
performed - interface values are not fully assembled, solver does
not, apply weights

e 1 - yes, e.g. if local right-hand side is a restriction of the
global array to the subdomain - interface values are complete
and repeated for more subdomains, solver applies weights to
handle multiplicity of these entries

sol LOCAL array with initial SOLution guess. This is used as initial
approximation for iterative method.

lsol length of array sol, equal to ndofs.

Chapter 4: Description of interface functions 26

4.12 bddcml_setup_new_data

C interface

void bddcml_setup_new_data();

Fortran interface

subroutine bddcml_setup_new_data

Description

Setting up internal data-structures for handling new values of Dirichlet bound-
ary conditions and right hand side — creating new reduced right-hand side.

Needs to be called after calling bddcml_change_subdomain_data or bddcml_
change_global_data and before another call to bddeml_solve.

Parameters

This routine currently does not take any arguments.

Chapter 4: Description of interface functions 27

4.13 bddcml_dotprod_subdomain

C interface
void bddcml_dotprod_subdomain(int *isub, double *vecl, int *lvecl,

double *vec2, int *1lvec2, double *dotprod) ;

Fortran interface

subroutine bddcml_dotprod_subdomain(isub, vecl,lvecl, vec2,lvec?2,

dotprod)
integer, intent(in) :: isub
integer, intent(in) :: 1lvecl
real(kr), intent(in) :: vecl(lvecl)
integer, intent(in) :: 1lvec2
real(kr), intent(in) :: vec2(lvec?2)
real(kr), intent(out) :: dotprod

Description

Auxiliary subroutine to compute scalar product of two vectors of lenght of
subdomain exploiting interface weights from the solver. This routine is useful if
we want to compute global norm or dot-product based on vectors restricted to
subdomains. Since interface values are contained in several vectors for several
subdomains, this dot product or norm cannot be determined without weights.

Parameters

isub GLOBAL index of subdomain

vecl LOCAL first vector for dot-product

lvecl length of vec1

vec2 LOCAL second vector for dot-product, may be same array as vecl
lvec2 length of vec2, should be same as 1lvecl

dotprod on exit, returns vecl’ * weights * vec2

Chapter 4: Description of interface functions

4.14 bddcml_finalize
C interface
void bddcml_finalize();

Fortran interface

subroutine bddcml_finalize

Description

Finalization of the solver. All internal data are deallocated.

Parameters

This routine currently does not take any arguments.

28

	Introduction
	How to use BDDCML
	Notes for C/C++ users
	Header file
	Cross-compilation
	Libraries of Fortran compiler

	Description of interface functions
	bddcml_init
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_upload_global_data
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_upload_subdomain_data
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_setup_preconditioner
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_solve
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_download_local_solution
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_download_global_solution
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_download_local_reactions
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_download_global_reactions
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_change_global_data
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_change_subdomain_data
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_setup_new_data
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_dotprod_subdomain
	C interface
	Fortran interface
	Description
	Parameters

	bddcml_finalize
	C interface
	Fortran interface
	Description
	Parameters

