Complexity of Circuit Satisfiability

R. Paturi and P. Pudlák

November 16, 2009

R. Paturi and P. Pudlák Complexity of Circuit Satisfiability

definitions

- Description length of a circuit of size s is $m = s \log s$.
- **CircuitSat**(*n*, *m*) is the (parameterized) problem: for a given circuit with description length *m* and *n* input variables to decide if it is satisfiable.
- One-sided error probabilistic circuit C (Turing machine M) for CircuitSat:

for a given string encoding a circuit D, if C (respectively, M) accepts, then D is satisfiable.

- The *success probability* of a probabilistic circuit *C* (Turing machine *T*) is the probability that it accepts every satisfiable *D*.
- It is possible to generalize our results to **NP**(*n*, *m*), where *m* is the input size and *n* is the number of nondeterministic bits needed to specify the instance.

- polynomial time probabilistic algorithms for k-CNF-SAT with success probability 2^{-(1-c/k)n}, [PPZ], [Schoening];
- slightly superpolynomial [PPSZ];
- polynomial time probabilistic algorithms for CNF-SAT with success probability 2^{-(1-¹/_{log m})n}, [Schuler].

Conjecture

No probabilistic polynomial time algorithm for **CircuitSat** achieves the success probability $2^{-\delta n}$ for any $\delta < 1$.

If CircuitSat(n, m) can be decided with probabilistic circuits of size $m^{O(1)}$ with success probability $2^{-\delta n}$ for $\delta < 1$, then there exists a $\mu < 1$ such that CircuitSat(n, m) can be decided by deterministic circuits of size $2^{O(n^{\mu} \log^{1-\mu} m)}$.

The consequence amounts to $2^{n^{\mu}}$, $\mu < 1$, size deterministic circuits for **CircuitSat**($n, n^{O(1)}$).

If **CircuitSat**(*n*, *m*) can be decided by a probabilistic Turing machine running in time m^{O(1)} with success probability $2^{-\delta n}$ for $\delta < 1$, then W[P] = FPT.

If CircuitSat(n, m) can be decided with probabilistic circuits of size $m(\log m)^{O(1)}$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n, m) can be decided by deterministic circuits of size $m^{O(1)}n^{O(\log \log m)}$.

We can weaken the assumption to $\delta = 1 - \varepsilon / \log n$, for $\varepsilon > 0$.

If CircuitSat(n, m) can be decided with probabilistic circuits of size $2^{o(n)}m(\log m)^{O(1)}$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n, m) can be decided by deterministic circuits of size $2^{o(n)}m^{O(1)}$.

Thank You

R. Paturi and P. Pudlák Complexity of Circuit Satisfiability

æ

⊸ ≣ ⊁

▲□ ▶ ▲ 目