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Abstract

We study the interpretation of Grzegorczyk’s Theory of Concatenation
TC in structures of decorated linear order types satisfying Grzegorczyk’s
axioms. We show that TC is incomplete for this interpretation. What
is more, the first order theory validated by this interpretation interprets
arithmetical truth. We also show that every extension of TC has a model
that is not isomorphic to a structure of decorated order types.

We provide a positive result, to wit a construction that builds struc-
tures of decorated order types from models of a suitable concatenation
theory. This construction has the property that if there is a representa-
tion of a certain kind, then the construction provides a representation of
that kind.
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1 Introduction

In his paper [Grz05], Andrzej Grzegorczyk introduces a theory of concatena-
tion TC. The theory has a binary function symbol ∗ for concatenation and two
constants a and b. The theory is axiomatized as follows.

TC1. ` (x ∗ y) ∗ z = x ∗ (y ∗ z)

TC2. ` x ∗ y = u ∗ v → ((x = u ∧ y = v) ∨
∃w ((x ∗w = u ∧ y = w ∗ v) ∨ (x = u ∗w ∧ y ∗w = v)))

TC3. ` x ∗ y 6= a

TC4. ` x ∗ y 6= b

TC5. ` a 6= b

Axioms TC1 and TC2 are due to Tarski. Grzegorczyk calls axiom TC2: the
editor axiom. We will consider two weaker theories. The theory TC0 has the
signature with just concatenation, and is axiomatized by TC1,2. The theory
TC1 is axiomatized by TC1,2,3. We will also use TC2 for TC.

The theories we are considering have various interesting interpretations. first
they are, of course, theories of strings with concatenation. I.o.w., they are theo-
ries of free semigroups. Secondly they are theories of wider classes of structures,
to wit structures of decorated linear order types, which will be defined below.

The theories TCi are theories for concatenation without the empty string,
i.e., without the unit element. Adding a unit ε one obtains another class of
theories TCε

i , theories of free monoids, or theories of structures of decorated
linear order types including the empty linear decorated order type. The basic
list of axioms is as follows.

TCε1. ` ε ∗ x = x ∧ x ∗ ε = x

TCε2. ` (x ∗ y) ∗ z = x ∗ (y ∗ z)

TCε3. ` x ∗ y = u ∗ v → ∃w ((x ∗ w = u ∧ y = w ∗ v) ∨ (x = u ∗ w ∧ y ∗ w = v))

TCε4. ` a 6= ε

TCε5. ` x ∗ y = a→ (x = ε ∨ y = ε)

TCε6. ` b 6= ε

TCε7. ` x ∗ y = b→ (x = ε ∨ y = ε)

TCε8. ` a 6= b

We take TCε
0 to be the theory axiomatized by TCε1, 2, 3. We take TCε

1 to be
TCε

0 + TCε4, 5 and TCε := TCε
2 to be TCε

1 + TCε6, 7, 8.

2



One can show that TC is bi-interpretable with TCε, in which a unit ε is added
via one dimensional interpretations without parameters.1 The theory TC1 is bi-
interpretable with TCε

1 via two-dimensional interpretations with parameters.
The situation for TC0 seems to be more subtle. See also [Vis07]. In Section 6,
we will study an extension of TCε

0.

Andrzej Grzegorczyk and Konrad Zdanowski have shown that TC is essentially
undecidable. This result can be strengthened by showing that Robinson’s Arith-
metic Q is mutually interpretable with TC. Note that TC0 is undecidable —since
it has an extension that parametrically interprets TC— but that TC0 is not es-
sentially undecidable: it is satisfied by a one-point model. Similarly TC1 is
undecidable, but it has as an extension the theory of finite strings of a’s, which
is a notational variant of Presburger Arithmetic and, hence decidable.

We will call models of TC0 concatenation structures, and we will call models of
TCi concatenation i-structures. The relation of isomorphism between concate-
nation structures will be denoted by ∼=. We will be interested in concatenation
structures, whose elements are decorated linear order types with the operation
concatenation of decorated order types. Let a non-empty class A be given. An
A-decorated linear ordering is a structure 〈D,≤, f〉, where D is a non-empty
domain, ≤ is a linear ordering on D, and f is a function from D to A. A
mapping φ is an isomorphism between A-decorated linear order types 〈D,≤, f〉
and 〈D′,≤′, f ′〉 iff it is a bijection between D and D′ such that, for all d, e in
D, we have d ≤ e ⇔ φd ≤′ φe, and fd = f ′φd. Our notion of isomorphism
gives us a notion of A-decorated linear order type. We have an obvious notion
of concatenation between A-decorated linear orderings which induces a corre-
sponding notion of concatenation for A-decorated linear order types. We use
α, β, . . . to range over such linear order types. Since, linear order types are
classes we have to follow one of two strategies: either to employ Scott’s trick
to associate a set object to any decorated linear order type or to simply refrain
from dividing out isomorphism but to think about decorated linear orderings
modulo isomorphism. We will employ the second strategy.

We will call a concatenation structure whose domain consists of (represen-
tatives of) A-decorated order types, for some A, and whose concatenation is
concatenation of decorated order types: a concrete concatenation structure. It
seems entirely reasonable to stipulate that e.g. the interpretation of a in a con-
crete concatenation structure is a decorated linear order type of a one element
order. However, for the sake of generality we will refrain from making this
stipilation.

Grzegorczyk conjectured that every concatenation 2-structure is isomorphic
to a concrete concatenation structure. We prove that this conjecture is false. (i)
Every extension of TC1 has a model that is not isomorphic to a concatenation
1-structure and (ii) The set of principles of valid in all concrete concatenation
2-structures interprets arithmetical truth.

1Albert Visser thinks he can improve this to: TC and TCε are definitionally equivalent.
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The plan of the paper is as follows. We show, in Section 2, that we have, for all
decorated order types α, β and γ, the following principle:

(†) β ∗ α ∗ γ = α ⇒ β ∗ α = α ∗ γ = α.

This fact was already known. It is due to Lindenbaum, credited to him in
Sierpiński’s book [Sie58] on p. 248. It is also problem 6.13 of [KT06]. Our
proof, however, is different.

It is easy to see that every group is is a concatenation structure and that
(†) does not hold in the two element group. We show, in Section 5, that ev-
ery concatenation structure can be extended to a concatenation structure with
any number of atoms. It follows that there is a concatenation structure with
at least two atoms in which (†) fails. Hence, TC is incomplete for concrete
concatenation structures. In Section 3, we provide a counterargument of a
different flavour. We provide a tally interpretation that defines the natural
numbers (with concatenation in the role of addition) in every concrete concate-
nation 2-structure. It follows that for every extension of TC1 is satisfied by a
concatenation 1-structure that is not isomorphic to any concrete concatenation
1-structure, to wit any model of that extension that contains a non-standard
element. In Section 4, we strengthen the result of Section 3, by showing that
in concrete concatenation 2-structures we can add multiplication to the natural
numbers. It follows that the set of arithmetically true sentences is interpretable
in the concretely valid consequences of TC2.

Finally, in Section 6 we prove a positive result. We provide a mapping from
aribitrary models of a variant of an extension of TC0 to structures of decorated
order types. As we have shown such a construction cannot always provide a
representation. We show that, for a restricted class of representations, we have:
if a model has a representation in the class, then the construction yields such a
representation.
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2 A Principle for Decorated Order Types

In this section we prove a universal principe that holds in all concatenation
structures, which is not provable in TC. There is an earlier proof of this principle.
See: [KT06], problem 6.13. Our proof, however, is different.
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Theorem 2.1 Let α0, α1, α2 be decorated order types. Suppose α1 = α0∗α1∗α2.
Then α1 = α0 ∗ α1 = α1 ∗ α2.

Proof

Suppose α1 = α0 ∗α1 ∗α2. Consider a decorated linear ordering A := 〈A,≤, f〉
of type α1, By our assumption, we may partition A into A0, A1, A2, such that:

〈A,≤, f〉 = 〈A0,≤� A0, f � A0〉 ∗ 〈A1,≤� A1, f � A1〉 ∗ 〈,≤� A2, f � A2〉,

where Ai := 〈Ai,≤� Ai, f � Ai〉 is an instance of αi, Let φ : A → A1 be an
isomorphism.

Let φnA(i) := 〈φn[A(i)],≤� φn[A(i)], f � φn[A(i)]〉. We have: φnAi is of order
type αi and φnA is of order type α1.

Clearly, φA0 is an initial substructure of φA = A1. So, A0 and φA0 are
disjoint and φA0 adjacent to the right of A0. Similarly, for φnA0 and φn+1A0.
Take Aω

0 :=
⋃

i∈ω φiA0. We find that Aω
0 := 〈Aω

0 ,≤� Aω
0 , f � Aω

0 〉 is initial in A
and of decorated linear order type αω

0 . So α1 = αω
0 ∗ ρ, for some ρ. It follows

that α0 ∗ α1 = α0 ∗ αω
0 ∗ ρ = αω

0 ∗ ρ = α1. The other identity is similar. 2

So, every concrete concatenation structure validates that α1 = α0 ∗ α1 ∗ α2

implies α1 = α0 ∗α1 = α1 ∗α2. We postpone the proof that this principle is not
provable in TC to Section 5.

3 Definability of the Natural Numbers

In this section, we show that the natural numbers can be defined in every
concrete concatenation 1-structure. We define:

• x ⊆ y :↔ x = y ∨ ∃u (u ∗ x = y) ∨ ∃v (x ∗ v = y) ∨ ∃u, v (u ∗ x ∗ v = y).

• x ⊆ini y :↔ x = y ∨ ∃v (x ∗ v = y).

• x ⊆end y :↔ x = y ∨ ∃u (u ∗ x = y).

• (n : Ña) :↔ ∀m⊆inin (m = a ∨ ∃k ⊆ini m (k 6= m ∧m = k ∗ a)).

The use of ‘:’ in n : Ña is derived from the analogous use in type theory. We
could read it as: n is of sort Na. We write m,n : Ña for: (m : Ña)∧(n : Ña).
Etc.

We prove the main theorem of this section.

Theorem 3.1 In any concrete concatenation structure, we have:

Ña = {an+1 | n ∈ ω}.

I.o.w, Ña is precisely the class of natural numbers in tally representation (start-
ing with 1). Note that ∗ on this set is addition.
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Proof

Consider any concrete concatenation 1-structure A. It is easy to see that every
an+1 is in Ña.

Clearly, every element of of Ña is either a or it has a predecessor. The
axioms of TC1 guarantee that this predecessor is unique. This justifies the
introduction of the partial predecessor function pd on Ña. Let α be the order
type corresponding to a. Let β0 be any element of Ña. If, for some n, pdnβ0 is
undefined, then β0 is clearly of the form αk+1, for k in ω.

We show that the other possibility cannot obtain. Suppose βn := pdnβ0 is
always defined. Let A be a decorated linear ordering of type α and let Bi be
a decorated linear ordering of type βi. We assume that the domain A of A is
disjoint from the domains Bi of the Bi. Thus, we may implement Bi+1 ∗ A just
by taking the union of the domains.

Let φi be isomorphisms from Bi+1 ∗ A to Bi. Let Ai := (φ0 ◦ · · · ◦ φi)(A).
Then, the Ai are all of type α and, for some C, we have B0

∼= C ∗ · · · ∗ A1 ∗ A0.
Similarly B1

∼= C ∗ · · · ∗ A2 ∗A1. Let ω̆ be the opposite ordering of ω. It follows
that β0 = γ ∗ αω̆ = β1 = pd(β0). Hence, β0 is not in Ña.2 A contradiction. 2

We call a concatenation structure standard if Ña defines the tally natural num-
bers. Since, by the usual argument, any any extension of TC1 has a model with
non-standard numbers, we have the following corollary.

Corollary 3.2 Every extension of TC1 has a model that is not isomorphic
to a concrete concatenation 1-structure. In a different formulation: for ev-
ery concatenation 1-structure there is an elementarily equivalent concatenation
1-structure that is not isomorphic to a concrete concatenation 1-structure.

Note that the non-negative tally numbers with addition form a concrete concate-
nation 1-structure. Thus, the concretely valid consequences of TC1+∀x (x : Ña),
i.e., the principles valid in every concrete concatenation 1-structure satisfying
∀x (x : Ña) are decidable.

4 Definability of Multiplication

If we have two atoms to work with, we can add multiplication to our tally
numbers. This makes the set of concretely valid consequences of TC non-
arithmetical. The main ingredient of the definition of multiplication is the
theory of relations on tally numbers. In TC, we can develop such a theory. We
represent the relation {〈x0, y0〉, . . . , 〈xn−1, yn−1〉}, by:

bb ∗ x0 ∗ b ∗ y0 ∗ bb ∗ x1 ∗ . . . bb ∗ xn−1 ∗ b ∗ yn−1 ∗ bb.

We define:

• r : REL :↔ bb ⊆end r,
2Note that we are not assuming that γ is in A.
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• ∅ := bb,

• x[r]y :↔ x, y : Ña ∧ bb ∗ x ∗ b ∗ y ∗ bb ⊆ r.

• adj(r, x, y) := r ∗ x ∗ b ∗ y ∗ bb.

Clearly, we have: TC ` ∀u, v ¬u[∅]v. To verify that this coding works we need
the adjunction principle.

Theorem 4.1 We have:

TC ` (r : REL ∧ x, y, u, v : Ña) → (u[adj(r, x, y)]v ↔ (u[r]v ∨ (u = x ∧ v = y))).

We can prove this result by laborious and unperspicuous case splitting. However,
it is more to do the job with the help of a lemma. Consider any model of TC0.
Fix an element w. We call a sequence (w0, . . . , wk) a partition of w if we
have that w0 ∗ · · · ∗ wk = w. The partitions of w form a category with the
following morphisms. f : (u0, . . . , un) → (w0, . . . , wk) iff f is a surjective and
weakly monotonic function from n + 1 to k + 1, such that, for any i ≤ k, wi =
us ∗ · · · ∗ u`, where f(j) = i iff s ≤ j ≤ `. We write (u0, . . . , un) ≤ (w0, . . . , wk)
for: ∃f f : (u0, . . . , un) → (w0, . . . , wk). In this case we say that (u0, . . . , un) is
a refinement of (w0, . . . , wk).

Lemma 4.1 Consider any concatenation structure. Consider a w in the struc-
ture. Then, any two partitions of w have a common refinement.

Proof

Fix any concatenation structure. We first prove that, for all w, all pairs of
partitions (u0, . . . , un) and (w0, . . . , wk) of w have a common refinement, by
induction of n + k.

If either n or k is 0, this is trivial. Suppose (u0, . . . , un+1) and (w0, . . . , wn+1)
are partitions of w. By the editor axiom, either (a) u0 ∗ · · · ∗ un = w0 ∗ · · · ∗wk

and un+1 = wk+1, or there is a v such that (b) u0 ∗ · · · ∗ un ∗ v = w0 ∗ · · · ∗ wk

and un+1 = v ∗ wk+1, or (c) u0 ∗ · · · ∗ un = w0 ∗ · · · ∗ wk ∗ v and v ∗ un+1 =
wk+1. We only treat case (b), the other cases being easier or similar. By the
induction hypothesis, there is a common refinement (x0, . . . xm) of (u0, . . . , un, v)
and (w0, . . . , wn). Let this be witnessed by f , resp. g. It is easily seen that
(x0, . . . xm, wk+1) is the desired refinement with witnessing functions f ′ and g′,
where f ′ := f [m + 1 7→ n + 1], g′ := g[m + 1 7→ k + 1]. Here f [m + 1 7→ n + 1]
in the result of extending f to assign n + 1 to m + 1. 2

We turn to the proof of Theorem 4.1. The verification proceeds more or less as
one would do it for finite strings.
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Proof

Consider any concatenation 2-structure. Suppose REL(r). The right-to-left
direction is easy, so we treat left-to-right. Suppose x, y, u and v are tally
numbers. and u[adj(r, x, y)]v. There are two possibilities. Either r = bb or r =
r0∗bb. We will treat the second case. Let s := adj(r, x, y). One the following four
partitions is a partition of s: (i) (b, b, u, b, v, b, b), or (ii) (w, b, b, u, b, v, b, b), or
(iii) (b, b, u, b, v, b, b, z), or (iv) (w, b, b, u, b, v, b, b, z). We will treat cases (ii)
and (iv).

Suppose σ := (w, b, b, u, b, v, b, b) is a partition of s. We also have that τ :=
(r0, b, b, x, b, y, b, b) is a partition of s. Let (t0, . . . , tk) be a common refinement
of σ and τ , with witnessing functions f and g. The displayed b’s in these
partitions must have unique places among the ti. We define mσ to be the
unique i such that f(i) = m, provided that σm = b. Similarly, for mτ . (To
make this unambiguous, we assume that if σ = τ , we take σ as the common
refinement with f and g both the identity function.)

We evidently have 7σ = 7τ = k and 6σ = 6τ = k − 1. Suppose 4σ < 4τ .
It follows that b ⊆ v. So, v would have an initial subsequence that ends in b,
which is impossible. So, 4σ 6< 4τ . Similarly, 4τ 6< 4σ. So 4σ = 4τ . It follows
that v = y. Reasoning as in the case of 4σ and 4τ , we can show that 2σ = 2τ

and, hence u = x.

Suppose ρ := (w, b, b, u, b, v, b, b, z) is a partition of s. We also have that τ :=
(r0, b, b, x, b, y, b, b) is a partition of s. Let (t0, . . . , tk) be a common refinement
of ρ and τ , with witnessing functions f and g. We consider all cases, where
1τ < 6ρ. Suppose 6ρ = 1τ + 1 = 2τ . Note that 7ρ = 6ρ + 1, so we find: b ⊆ x,
quod non, since x is in Ña. Suppose 2τ < 6ρ < 4τ . In this case we have a b
as substring of x. Quod non. Suppose 6ρ = 4τ . Since 7ρ = 6ρ + 1, we get a b
in y. Quod non. Suppose 4τ < 6ρ < 6τ . In this case, we get a b in y. Quod
impossibile. Suppose 6ρ ≥ 6τ = k − 1. In this place there is no place left for z
among the ti. So, in all cases, we obtain a contradiction. So the only possibility
is 6ρ ≤ 1τ . Thus, it follows that u[r]v. 2

We can now use our relations to define multiplication of tally numbers in the
usual way. See e.g. Section 2.2 of [Bur05]. In any concrete concatenation 2-
structure, we can use induction to verify the defining properties of multiplication
as defined. It follows that we can interpret all arithmetical truths in the set of
concretely valid consequences of TC.

Corollary 4.2 We can interpret true arithmetic in the set of all principles valid
in concrete concatenation 2-structures.

5 The Sum of Concatenation Structures

In this section we show that concatenation structures are closed under sums.
This result will make it possible to verify the claim that the universal principle
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of Section 2 is not provable in TC. The result has some independent interest,
since it provides a good closure property of concatenation structures.

Consider two concatenation structures A0 and A1. We write ? for concate-
nation in the Ai. We may assume, without loss of generality, that the domains
of A0 and A1 are disjoint. We define the sum B := A0 ⊕ A1 as follows.

• The domain of B consists of non-empty sequences w0 · · ·wn−1, where the
wj are alternating between elements of the domains of A0 and A1. In
other words, if wj is in the domain of Ai, then wj+1, if it exists, is in the
domain of A1−i.

• The concatenation σ ∗ τ of σ := w0 · · ·wn−1 and τ := v0 · · · vk−1 is
w0 · · ·wn−1v0 · · ·wk−1, in case wn−1 and v0 are in the domains of dif-
ferent structures Ai. The concatenation σ∗τ is w0 · · · (wn−1 ?v0) · · ·wk−1,
in case wn−1 and v0 are in in the same domain.

In case σ∗τ is obtained via the first case, we say that σ and τ are glued together.
If the second case obtains, we say that σ and τ are clicked together.

Theorem 5.1 The structure B = A0 ⊕ A1 is a concatenation structure.

Proof

Associativity is easy. We check the editor property TC2. Suppose σ0 ∗ σ1 =
z0 · · · zm−1 = τ0 ∗ τ1. We distinguish a number of cases.

Case 1. Suppose both of the pairs σ0, σ1 and τ0, τ1 are glued together. Then,
for some k, n > 0, we have σ0 = z0 · · · zk−1, σ1 = zk · · · zm−1, τ0 = z0 · · · zn−1,
and τ1 = zn · · · zm−1.

So, if k = n, we have σ0 = τ0 and σ1 = τ1.
If k < n, we have τ0 = σ0 ∗ (zk · · · zn−1) and σ1 = (zk · · · zn−1)∗ τ1. The case

that n < k is similar.

Case 2. Suppose σ0, σ1 is glued together and that τ0, τ1 is clicked together. So,
there are k, n > 0, u0, and u1 such that σ0 = z0 · · · zk−2u0, σ1 = u1zk · · · zm−1,
u0 ? u1 = zk−1, τ0 = z0 · · · zn−1, and τ1 = zn · · · zm−1.

Suppose k ≤ n. Then, τ0 = σ0 ∗ (u1zk · · · zn−1) and σ1 = (u1zk · · · zn−1)∗ τ1.
Note that, in case k = n, the sequence zk · · · zn−1 is empty. The case that k ≥ n
is similar.

Case 3. This case, where σ0, σ1 is clicked together and τ0, τ1 is glued together,
is similar to case 2.

Case 4. Suppose that σ0, σ1 and τ0, τ1 are both clicked together. So, there
are k, n > 0, u0, u1, v0, v1 such that σ0 = z0 · · · zk−2u0, σ1 = u1zk · · · zm−1,
u0 ? u1 = zk−1, τ0 = z0 · · · zn−2v0, τ1 = v1zn · · · zm−1 and v0 ? v1 = zn−1.

Suppose k = n. We have u0 ? u1 = zk−1 = v0 ? v1. So, we have either (a)
u0 = v0 and u1 = v1, or, for some w, either (b) u0 ? w = v0 and u1 = w ? v1,

9



or (c) u0 = v0 ? w and w ? u1 = v1. In case (b), we have: σ0 ∗ w = τ0 and
σ1 = w ∗ τ1. We leave (a) and (c) to the reader.

Suppose k < n. We have:

σ0 ∗ (u1zk · · · zn−2v0) = τ0 and σ1 = (u1zk · · · zn−2v0) ∗ τ1.

The case that k > n is similar. 2

It is easy to see that ⊕ is a sum or coproduct in the sense of category theory.
The following theorem is immediate.

Theorem 5.2 If a is an atom of Ai, then a is an atom of A0 ⊕ A1.

Finally, we have the following theorem.

Theorem 5.3 Let A be any set and let B := 〈B, ∗〉 be any concatenation struc-
ture. We assume that A and B are disjoint. Then, there is an extension of B
with at least A as atoms.

Proof

Let A∗ be the free semi-group on A. We can take as the desired extension of
B, the structure A∗ ⊕B. 2

Remark 5.4 The whole development extends with only minor adaptations,
when we replace axiom TC2 by:

• ` x ∗ y = u ∗ v → ((x = u ∧ y = v) ∨̇ (∃!w (x ∗ w = u ∧ y = w ∗ v) ∨
∃!w (x = u ∗ w ∧ y ∗ w = v))

Here ∨̇ is exclusive or.

6 A Canonical Construction

Although we know that not every concatenation structure can be represented
by decorated linear orderings, i.e., as a concrete concatenation structure, there
may exist a canonical construction of a concrete concatenation structure which
is a representation whenever there exists any concrete representation. In this
section we shall propose such a construction, but we can only show that it is
universal in a restricted subclass of all concrete representations.

It will be now more convenient to work with a theory for monoids, rather
than for semigroups, as we did in the previous sections. We will work in the
theory TCε

0 plus the following axiom.

TCε9. ` x ∗ y ∗ z = y → (x = ε ∧ z = ε).
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We do not postulate the existence of irreducible elements, as they do not play
any role in what follows, but they surely can be present.

We shall call elements of a model M of TCε
! : words. When possible, the

concatenation symbol ∗ will be omitted.

Lemma 6.1 In a model M of TCε
! the binary relation ∃u(xu = y) defines an

ordering on the elements of M.

Definition 6.1 Let w be a word.

• A k-partition of w is a k-tuple (w1, . . . , wk) such that w1 . . . wk = w; we
shall often abbreviate it by w1 . . . wk.

• An ordering relation is defined on 3-partitions of w by

u1u2u3 ≤ v1v2v3 ≡ ∃x1, x3(v1x1 = u1 ∧ x3v3 = u3).

The axioms ensure that for any two partitions there is a unique common refine-
ment.

Definition 6.2 [Word Ultrafilters] Let w be a word and S a set of 3-partitions
of w. We shall call S a word ultrafilter (wuf) on w if

1. εwε ∈ S

2. xεy 6∈ S for any x, y

3. if U ∈ S, V is a 3-partition of w and U ≤ V , then V ∈ S

4. if xyz ∈ S and y = y1y2 then exactly one of the following two cases holds:
(x, y1, y2z) ∈ S or (xy1, y2, z) ∈ S.

Let S be a wuf on w and xyz ∈ S. Then we define the natural restriction of S
to y which is a wuf Sy on y defined by:

(r, s, t) ∈ Sy :⇔ (xr, s, tz) ∈ S.

We shall define an ordering on wuf’s on a fixed w and an equivalence on wuf’s
on all words of M .

• Let S and T be wuf’s on w, then we define

S < T :⇔ ∃u, v ((ε, u, v) ∈ S ∧ (u, v, ε) ∈ T ).

• Let S and T be wuf’s on possibly different words, then we define

S ∼ T ⇔ ∃x, x′, y, z, z′ (xyz ∈ S ∧ x′yz′ ∈ T ∧ Sy = Ty).
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Definition 6.3 Let w be a word. The canonical decorated ordering associated
with w is the ordering of all wuf’s on w, where each wuf S is decorated by [S]∼,
the equivalence class of ∼ containing S. This decorated ordering will be denoted
by C(w).

Here are some basic properties of C(w).

• The topological space determined by the ordering is compact and totally
disconnected. In particular, it has the largest and the smallest elements.

• For every proper prefix x of w, there is a uniquely determined pair of
wuf’s which forms a gap (no wuf in between). Thus there is a natural
embedding of the ordering of the prefixes into C(w). More precisely, we
have have two mappings φ−w and φ+

w such that for a proper prefix x the
pair φ−w(x), φ+

w(x) is the gap corresponding to x. If x = ε (or x = w) then
only φ+

w(x) (or φ−w(x)) is defined and it is the least (largest) element of
C(w). Furthermore the images of these mappings are dense sets in C(w).

• Vice versa, every gap in C(w) corresponds to a prefix (or equivalently to
a 2-partition).

• If a is an atom (irreducible element in M), then it determines a principal
wuf. For a given atom a all such principal wuf’s are equivalent.

Definition 6.4 ρ is a regular representation of M by decorated orderings, if
for every 2-partition x1x2 = w of w ∈ M, there exists a unique 2-partition
A1A2 = ρ(w) such that A1

∼= ρ(x1) and A2
∼= ρ(x2).

We do not know if every concatenation structure that has a concrete represnta-
tion also has a concrete regular representation.

If ρ is regular, we have an analogous property for k-partitions for every k.
For a k-partition (x1, . . . , xk) of w in M, we shall write

ρk(x1, . . . , xk) = (A1, . . . , Ak),

where (A1, . . . , Ak) is the uniquely determined k-partition of ρ(x1 . . . xk) such
that Ai

∼= ρ(xi), for i = 1, . . . , k.

Theorem 6.5 1. If the canonical mapping C is a representation of M, then
it is a regular representation of M.

2. If there exists a regular representation ρ of M, then so is also C.

Proof

Ad 1. Let uv = w be in M and suppose we have two different 2-partitions
AB = C(w), A′B′ = C(w), with A ∼= A′ ∼= C(u), B ∼= B′ ∼= C(v). Suppose
that A is a proper initial segment of A′. Since AB corresponds to a 2-partition
uv, there is a gap between A and B. Since A is a proper initial segment of A′

12



the gap is in A′. As every gap corresponds to a 2-partition of the preimage in
C, there exists y and D such that A′ = AD and D ∼= C(y). Hence u = uy,
which is possible only if y = ε. But then D is empty, which is a contradiction.

Ad 2. Our strategy is

(i) to construct an order preserving mapping h : Supp(ρ(w)) → Supp(C(w)),
for every w ∈ M , and then

(ii) to show that if ι : C(u) → C(v) is an isomorphism, then for every
S ∈ Supp(C(u)) the fibers of S and ι(S), as decorated orderings, are
isomorphic, i.e.,

h−1(S) ∼= h−1(ι(S)),

or they are both empty.

Ad (i). Let w ∈ M , let j ∈ Supp(ρ(w)). We define

h(j) = {(x, y, z) | ∃A,B, D (j ∈ B and ρ3(x, y, z) = (A,B,D))}.

One can readily verify that h(j) is a wuf, and that h is order preserving.

Ad (ii). Let S ∈ Supp(C(u)) and T ∈ Supp(C(v)) such that T = ι(S). Then
S and T have the same decoration, which means that S ∼ T . By definition,
there exist 3-partitions (x, y, z) ∈ S and (x′, y, z′) ∈ T such that Sy = Ty. Let
ρ3(x, y, z) = (A,B, D) and ρ3(x′, y, z′) = (A′, B′, D′). Then B ∼= B′, as ρ is a
representation. Let us denote this isomorphism by κ.

Take an arbitrary 3-partition y1y2y3 = y and let

ρ5(x, y1, y2, y3, z) = (A,B1, B2, B3, D),

ρ5(x′, y1, y2, y3, z
′) = (A′, B′

1, B
′
2, B

′
3, D

′).

Then Bi
∼= B′

i, for i = 1, 2, 3. By the regularity of ρ, the segments B1, B2, B3 in
B and the segments B′

1, B
′
2, B

′
3 in B′ are uniquely determined by their isomor-

phism types, whence:
κ(Bi) = B′

i, for i = 1, 2, 3. (1)

The fiber ι−1(S) is defined as the intersection of all segments B2 that belong
to 5-partitions (x, y1, y2, y3, z) such that (y1, y2, y3) ∈ Sy = Ty. Similarly, the
fiber ι−1(T ) is defined as the intersection of all segments B′

2 that belong to
5-partitions (x′, y1, y2, y3, z

′) such that (y1, y2, y3) ∈ Sy = Ty. According to (1),
for all such 3-partitions, κ : (B1, B2, B3) ∼= (B′

1, B
′
2, B

′
3). Hence κ is also an

isomorphism of ι−1(S) onto ι−1(T ), or both fibers are empty. 2
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