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Abstract

The notion of semi-random sources, also known as Santha-Vazirani
(SV) sources, stands for a sequence of n bits, where the dependence
of the i’th bit on the previous i− 1 bits is limited for every i ∈ [n]. If
the dependence of the i’th bit on the remaining n− 1 bits is limited,
then this is a strong SV-source. Even the strong SV-sources are known
not to admit (universal) deterministic extractors, but they have seeded
extractors, as their min-entropy is Ω(n).

It is intuitively obvious that strong SV-sources are more than just
high-min-entropy sources, and this work explores the intuition. Deter-
ministic condensers are known not to exist for general high-min-entropy
sources, and we construct for any constants ε, δ ∈ (0, 1) a deterministic
condenser that maps n bits coming from a strong SV-source with bias
at most δ to Ω(n) bits of min-entropy rate at least 1− ε.

In conclusion we observe that deterministic condensers are closely
related to very strong extractors – a proposed strengthening of the
notion of strong (seeded) extractors: in particular, our constructions
can be viewed as very strong extractors for the family of strong Santha-
Vazirani distributions. The notion of very strong extractors requires
that the output remains unpredictable even to someone who knows not
only the seed value (as in the case of strong extractors), but also the
extractor’s outputs corresponding to the same input value with each of
the preceding seed values (say, under the lexicographic ordering). Very
strong extractors closely resemble the original notion of SV-sources,
except that the bits must satisfy the unpredictability requirement only
on average.
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1 Introduction

According to the principles of quantum mechanics, perfectly unbiased and
independent random bits can be generated in a physical experiment; however,
the imperfectness of practical implementations makes it impossible to deduce
from the postulates of quantum mechanics perfect independence of the
generated bit sequences. Another possibility is using various chaotic system
as a source of of random bits, but in this case it also remains unclear whether
perfect (or arbitrarily close to such) independence can be claimed.

The natural question then is: can we reduce the bias and the dependence
to a negligible minimum by post-processing the generated bits, coming from
a non-perfect source? The post-processing must, of course, be done by a
deterministic algorithm. The answer, surprisingly, is that this is not possible
(at least in some models of the real situation).

In 1986 Santha and Vazirani [SV86] have defined and studied the notion
of semi-random sources, now known as SV-sources. These are sequences of n
bits X1, . . . , Xn, whose values cannot be accurately predicted in the following
sense: for some δ ∈ [0, 1) and any z ∈ {0, 1}i−1 for i ∈ [n], it holds that

1− δ
2
≤ PrPrPr

[
Xi = 1

∣∣X1 = z1, . . . , Xi−1 = zi−1
]
≤ 1 + δ

2
.

If δ ∈ (0, 1) is fixed, we will denote the class of such sources by SVδ.
In 2004 Reingold, Vadhan and Wigderson [RVW04] defined an even

stronger class of entropic bits, which they called strong Santha-Vazirani
sources, where for some δ ∈ [0, 1) and any z ∈ {0, 1}n:

1− δ
2
≤ PrPrPr

[
Xi = 1

∣∣X1 = z1, . . . , Xi−1 = zi−1, Xi+1 = zi+1, Xn = zn
]

≤ 1 + δ

2

for any i ∈ [n]. Similarly, for a fixed δ ∈ (0, 1), we will call such sources
strong SVδ.

A deterministic extractor is a function that maps n bits to (at least) 1 bit
that is nearly-unbiased, as long as the input bits are coming from the corre-
sponding type of entropy source. Santha and Vazirani demonstrated [SV86]
that SV-sources did not admit a (universal) deterministic extractor. Later
Reingold, Vadhan and Wigderson [RVW04] generalized this impossibility
result to the case of strong SV-sources.

It is well known, on the other hand, that seeded extractors (see Sect. 2)
exist for the class of bit sources whose min-entropy is Ω(n); since the SV-
sources, obviously, belong to that class,1 seeded extractors exist, in particular,
for them.

1 Throughout the work we will assume, unless stated otherwise, δ ∈ Ω(1) in the context
of SV-sources.
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The definition of SV-sources is very natural, so it is both important and
interesting to investigate this type of randomness. Intuitively, it is obvious
that SV-sources – especially the strong form – are more structured than
general sources with the same min-entropy and one should be able to use
this fact. This work will explore this intuition.

Deterministic condensers are functions that map n bits to m (< n) bits,
such that the min-entropy rate of the output is higher than the min-entropy
rate of the input. (Min-entropy rate is the ratio of the min-entropy to the
number of bits.) This is certainly not always possible, for instance, if the
input has the maximum min-entropy. Typically we have a class of sources
and a lower bound on their min-entropy rate and we want to achieve higher
lower bound on the min-entropy of the output distributions. Similarly to
deterministic extractors, deterministic condensers do not exist for the class
of all sources whose min-entropy rate is at least a given number.

In this paper we prove two results about SV and strong SV sources.
First we show that for SDδ sources, there are no non-trivial condensers,
which means that in general we cannot improve the min-entropy rate using
condensers. On the other hand, we construct for any constants ε, δ ∈ (0, 1),
a deterministic condenser that maps n bits coming from a strong SVδ source
to Ω(n) bits of min-entropy rate at least 1− ε.

As deterministic condensers are somewhat exotic objects (primarily due
to their non-existence for the general class of high-min-entropy sources), this
work continues by investigating that notion.

The familiar notion of strong (seeded) extractors can be strengthened
further – we call the new type of distribution-transforming objects very strong
extractors – here the output must remain unpredictable even to someone
who knows not only the seed value (as in the case of strong extractors),
but also the extractor’s outputs corresponding to the same input value with
each of the preceding seed values (see Sect. 2). We show that deterministic
condensers can be easily transformed into very strong extractors;2 therefore,
deterministic condensers are “stronger” objects than strong extractors, but
“weaker” than deterministic extractors. Via the same transformation, the
main construction of this work gives a very strong extractor for the class of
strong SV-sources.

2 Preliminaries

For an excellent survey of error correcting codes, see [MS77].
Let [n] = {1, . . . , n} and Zn = Z/nZ ' {0, . . . , n− 1}. Let log be base-2

by default.
2 The reverse transformation is almost possible: the resulting mapping can only guarantee

high entropy rate of the output (see Sect. 5).
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For x ∈ {0, 1}n and i ∈ [n], we will use both xi and x(i) to address the
i’th bit of x. Let |x| denote the Hamming weight of x. For y ∈ {0, 1}n,
let x⊕ y denote the bit-wise XOR of the two vectors. For y ∈ {0, 1}m, let
x ◦ y ∈ {0, 1}n+m denote the corresponding concatenation.

We will often implicitly assume the arithmetic of GF2 and its generalization
to GFn2 (e.g., x⊕ y is the two vectors’ sum in the n-dimensional linear space).
In the context of GFn2 for i ∈ [n] we will write ei to denote the i’th unit
vector in GFn2 and let e0

def
= 0̄ ∈ GFn2 .

For sets A and B we will write A∪· B to denote the union while implying
the sets’ disjointness (the notation, especially the indexed version “

⋃
· ni=1 . . . ”,

is a convenient way of addressing partitions).
For a non-empty finite set A we will denote by UA the uniform distribution

on A. Let µ and ν be distributions on A, we will say that they are ε-close if
the l1-distance between them is at most 2ε.

Let X be a random variable, then

Hmin (µ) = Hmin
X∼µ

(X)
def
= min

{
log

(
1

µ(a)

)∣∣∣∣a ∈ A}
is the min-entropy of µ and

H (µ) = H
X∼µ

(X)
def
=
∑
a∈A

µ(a) · log

(
1

µ(a)

)

is the entropy of µ. If A = {0, 1}n, then Hmin (µ)
n is the min-entropy rate and

H (µ)
n is the entropy rate of µ.
It is intuitively obvious that a distribution is close to the uniform on its

support if and only if the entropy of the distribution is close to the maximum
(the logarithm of its support size). The following statement formalizes this
intuition.

Fact 1. Let µ be a distribution supported on A. Then

log e

2
· ‖µ− UA‖21 ≤ log(|A|)−H (µ)

≤ 1

2
· ‖µ− UA‖1 · log(|A|) +

√
2 log e · ‖µ− UA‖1 · log(|A|).

Proof. Let d def
= ‖µ− UA‖1. By Pinsker’s inequality, see [Pin60],

log e

2
· d2 ≤ dKL

(
µ
∥∥UA) =

∑
a∈A

µ(a) · log

(
µ(a)

UA(a)

)
=
∑
a∈A

µ(a) ·
(

log(|A|)− log

(
1

µ(a)

))
= log(|A|)−H (µ),
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which establishes the desired lower bound on log(|A|)−H (µ).
For every t ≥ 0 let

Bt
def
=

{
x ∈ A

∣∣∣∣µ(x) >
1 + t

|A|

}
, (1)

then

UA(Bt) ≤
µ(Bt)

1 + t
=⇒ d

2
≥ µ(Bt)− UA(Bt) ≥

t

1 + t
· µ(Bt) (2)

=⇒ µ(Bt) ≤
d

2
+
d

2t
.

So,

H (µ) ≥
∑
x 6∈Bt

µ(x) · log

(
1

µ(x)

)
≥ µ(A \Bt) · log

(
|A|

1 + t

)

≥ log(|A|) ·
(

1− d

2
− d

2t

)
− log(1 + t)

≥ log(|A|)− d · log(|A|)
2

− d · log(|A|)
2t

− t · log e,

where the second inequality is (1), the third is (2), and the last one holds, as

log(1 + t) ≤ t · log e. Choosing t =
√

d·log(|A|)
2 log e establishes the desired upper

bound on log(|A|)−H (µ). �

The following are several families of discrete distributions that we will be
interested in.

Definition 1 (Santha-Vazirani sources). Let δ ∈ [0, 1) and X = X1, . . . , Xn

be a random variable distributed over {0, 1}n according to a distribution µ.
If

∀i ∈ [n], z ∈ {0, 1}i−1 : PrPrPr
µ

Xi = 1

∣∣∣∣∣∣
i−1∧
j=1

Xj = zj

 ∈ [1− δ
2

,
1 + δ

2

]
,

then we call X a Santha-Vazirani source with bias δ (SVδ) and µ a Santha-
Vazirani distribution with bias δ. If

∀i ∈ [n], z ∈ {0, 1}n : PrPrPr
µ

Xi = 1

∣∣∣∣∣∣
∧

j∈[n]\{i}

Xj = zj

 ∈ [1− δ
2

,
1 + δ

2

]
,

then we call X a strong Santha-Vazirani source with bias δ and µ a strong
Santha-Vazirani distribution with bias δ.

The following are several types of distribution transformations that we
will be interested in.
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Definition 2 (Deterministic condensers). Let F be a family of distributions
over {0, 1}n. A function h : {0, 1}n → {0, 1}m is a deterministic k-condenser
for F if

Hmin
X∼µ

(h(X)) ≥ k

for every µ ∈ F .
The min-entropy rate of the condenser is k/m. The condenser is non-trivial

if

k

m
> inf

{
Hmin (µ)

n

∣∣∣∣µ ∈ F}.
In the concluding Section 5 we will consider the entropy rate of a condenser,

defined as

inf
{
HX∼µ (h(X))

∣∣µ ∈ F}
m

, (3)

which is, obviously, at least as high as the min-entropy rate of the same
condenser. An object, analogous to a deterministic condenser, but only
guaranteeing certain entropy rate (as opposed to min-entropy) will be called
entropy condenser.

The following statement must be folklore.

Fact2. Let n ≥ m ∈ N and l ∈ [0, n]. No non-trivial deterministic condenser
from {0, 1}n to {0, 1}m exists for the family of all distributions whose min-
entropy is at least l.

In Theorem 1 below we will prove the non-existence of non-trivial con-
denser even for a restricted class of distributions whose min-entropy rate is
at least some bound l, namely for the distributions of SVδ sources (where
l = 2

1+δ ).

Definition 3 (Deterministic extractors). Let ε ∈ [0, 1] and F be a family of
distributions over {0, 1}n. A function h : {0, 1}n → {0, 1}m is a deterministic
ε-extractor for F if the distribution of h(X) is ε-close to U{0,1}m when X ∼ µ
for any µ ∈ F .

It is well-known (and follows from Fact 2) that no non-trivial deterministic
extractor exists for the family of distributions whose min-entropy is at least l.
It was shown in [RVW04] that no non-trivial deterministic extractor exists for
the family of strong SV-sources even for m = 1, which implies that no such
extractors exist for any m. On the other hand, there are known constructions
of seeded extractors for the family of high-min-entropy distributions.
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Definition 4 (Seeded extractors). Let ε ∈ [0, 1] and F be a family of
distributions over {0, 1}n.

A function h : {0, 1}n × [D] → {0, 1}m is a seeded ε-extractor for F if
the distribution of h(X,S) is ε-close to U{0,1}m when S ∼ U[D] and X ∼ µ
for any µ ∈ F .

Of the following two versions that strengthen the notion of seeded extrac-
tors, the first is standard and the second is, to the best of our knowledge,
new.

Definition 5 (Strong and very strong seeded extractors). Let ε ∈ [0, 1], F
be a family of distributions over {0, 1}n and h : {0, 1}n × [D]→ {0, 1}m.

For s ∈ [D] let νµs be the distribution of h(X, s) when X ∼ µ – that is, the
distribution of h(X,S), conditioned on [S = s]. For y1, . . . , ys−1 ∈ {0, 1}m
let νµs,y1,...,ys−1 be the distribution of h(X,S) when X ∼ µ, conditioned on
[S = s, h(X, 1) = y1, . . . , h(X, s − 1) = ys−1] (let it be undefined if the
conditioning is inconsistent).

We call h a strong ε-extractor for F if

EEE
T∼U[D]

[∥∥νµT − U{0,1}m∥∥1] ≤ 2ε.

We call h a very strong ε-extractor for F if

EEE
T∼U[D], Z∼µ

[∥∥∥νµT,h(Z,1),...,h(Z,T−1) − U{0,1}m∥∥∥1] ≤ 2ε.

In other words, a seeded extractor is strong if its output h(X,S) remains
unpredictable even when the seed value S is known, and it is very strong if
the output remains unpredictable even when the seed value S, as well as the
outputs corresponding to the preceding seed values (h(X, 1), . . . , h(X,S− 1))
are known.

The concept of very strong extractors somewhat resembles the original
notion of SV-sources: if we write down the sequence (h(X, 1), . . . , h(X,D)),
then most (not necessarily all, as would be the case for SV-sources) of the
blocks will be sufficiently unpredictable, even conditioned on the previous
blocks. Very strong extractors will be compared to deterministic condensers
in the concluding part of this work (Sect. 5).

3 No condensers for SV sources

It [SV86] Santha and Vazirani proved that in general it is not possible to
extract a bit from SVδ sources that is biased less than δ. Later it was
shown [RVW04] that this is also true for strong SVδ-sources. This implies
that there is no extractor that would produce a distribution that is guaranteed
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to have the statistical distance from uniform less than δ. In other words,
there are no ε-extractors for strong SVδ sources with ε < δ.

In this section we prove another impossibility result for SV-sources (we
will see in Section 4 that the same is not true for strong SVδ-sources).

Theorem 1. There is no non-trivial min-entropy condenser for SVδ-sources
for any 0 < δ < 1. Namely,

1. the min-entropy-rate of any SVδ-source is at least log 2
1+δ , and

2. for every F : {0, 1}n → {0, 1}m, there exists an SVδ-source X, such
that the min-entropy-rate of F (X) is at most log 2

1+δ .

Proof of Theorem 1. 1. Let X be an SVδ-source. Then by definition,

PrPrPr
[
Xi = ai

∣∣X1 = a1, . . . , Xi−1 = ai−1
]
≤ 1 + δ

2

for every i and a1, . . . , ai−1, ai ∈ {0, 1}. Hence

PrPrPr[X = a] =
n∏
i=1

PrPrPr
[
Xi = ai

∣∣X1 = a1, . . . , Xi−1 = ai−1
]
≤
(

1 + δ

2

)n
for every a ∈ {0, 1}n, which proves that the min-entropy rate of X is ≥ 2

1+δ .
2. To prove the second claim, we need the following lemma.

Lemma 1. For every δ ∈ (0, 1) and any non-empty A ⊆ {0, 1}n, there exists
an SVδ-distribution µ, such that

µ(A) ≥
(

1 + δ

2

)n−log |A|
. (4)

First we prove 2., assuming that the lemma is valid.
Let s be such that |F−1(s)| ≥ 2n−m. Then Lemma 1 implies that for

some SVδ-source X it holds that

PrPrPr[F (X) = s] ≥
(

1 + δ

2

)n−(n−m)

=

(
1 + δ

2

)m
.

Hence

H∞[F (X)] ≤ m · log
2

1 + δ
,

as required. �Theorem 1

Now let us prove the lemma.
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Proof of Lemma 1. Denote by p = 1−δ
2 , q = 1+δ

2 . The idea is simple: put as
much weight as possible to A. So we define an SDδ source X by

PrPrPr
[
Xi = 0

∣∣(X1, . . . , Xi−1) = u
]

= q if |{v | u0v ∈ A}| ≥ |{v | u1v ∈ A}|

= p otherwise.

We will prove (4) by induction on n. The base case is clear.
If all a ∈ A start with 0 or all start with 1, the induction step is trivial.

So suppose that this is not the case. Let A0, respectively A1, be those that
start with 0, respectively with 1. Assume without loss of generality that
|A0| ≥ |A1|. We define X so that PrPrPr[X1 = 0] = q and for the conditional
probabilities we will use the two sources that maximize the probabilities that
0v ∈ A0 and 1v ∈ A1. If we denote by a = |A0| and b = |A1|, then for the
induction step, it suffices to prove the following inequality

q · qn−log a + p · qn−log b ≥ qn+1−log(a+b). (5)

This is equivalent to

q · a− log q + p · b− log q ≥ q · (a+ b)− log q. (6)

Let a be fixed and consider the function

f(x) := q · a− log q + p · x− log q − q · (a+ x)− log q

in the domain 0 ≤ x ≤ a. We need to prove that f(x) is non-negative in this
domain. To this end, it suffices to prove:

1. f(0) = 0, which is immediate,

2. f(a) = (q + p)a− log q − q(2a)− log q = a− log q − q2− log qa− log q = 0,

3. f ′(0) > 0 or f ′(a) < 0,

4. f ′(x) has a unique root.

Concerning 3., both are true, but it suffices to prove one of these inequal-
ities. We will check the second one.

f ′(a) = p(− log q)a− log q−1 − q(− log q)(2a)− log q−1

= (− log q)a− log q−1(p− q · 2− log q−1)

= (− log q)a− log q−1(p− 1
2) < 0,

because − log q > 0, as well as a− log q−1 > 0, and p < 1
2 .
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Concerning 4.,

f ′(x) = 0 ⇔

p(− log q)x− log q−1 = q(− log q)(a+ x)− log q−1 ⇔

p
1

− log q−1x = q
1

− log q−1 (a+ x) ⇔

(p
1

− log q−1 − q
1

− log q−1 )x = q
1

− log q−1a.

Since p 6= q, the coefficient at x is non-zero and consequently the equation
has a unique solution. This finishes the proof of the inequality (5) which was
needed for the induction step. �Lemma 1

4 A condenser for strong SV sources

In this section we will show that in contrast to the standard SV sources,
non-trivial deterministic condensers do exist for strong SV sources.

4.1 The construction

In this part we construct a family of functions, which will be shown to act as
deterministic condensers for strong Santha-Vazirani sources in the next part.

The following definition is, essentially, due to [Ham50].

Definition 6 (Hamming code). Let d ∈ N and Md ∈ {0, 1}d×(2
d−1) be

the matrix whose columns are the numbers 1, . . . , 2d − 1 in their binary
representation. Then the set

Hamd
def
=
{
x ∈ {0, 1}2

d−1
∣∣∣Md · x = 0̄

}
is the Hamming code of length 2d − 1.

The Hamming codes are known to have minimum distance 3, which is
easy to see:

x1 6= x2 ∈ Hamd =⇒ Md · (x1 ⊕ x2) = 0̄ =⇒ |x1 ⊕ x2| ≥ 3, (7)

as the columns of Md are linearly independent in GF d2 .
For i ∈ Z2d , let

Ham i
d

def
=
{
x⊕ ei

∣∣x ∈ Hamd

}
. (8)

9



From (7) it follows that these 2d sets are pairwise disjoint. As |Hamd | =

22
d−1−d = 22

d−1/2d,

{0, 1}2
d−1 =

2d−1⋃
·
i=0

Ham i
d . (9)

This is the well-known fact that Hamming codes are perfect. Let

gd : {0, 1}2
d−1 → {0, 1}d (10)

point to the equivalence class of its argument: namely, gd(x) is the binary
representation of such i that x ∈ Ham i

d ; from (9) it follows that gd is well-
defined.

Let n = k·(2d−1) be a multiple of 2d−1, define fd : {0, 1}n → {0, 1}
d

2d−1
·n

as follows:

fd(y1, . . . , yk)
def
= gd(y1) ◦ · · · ◦ gd(yk), (11)

where every yi is a block of length 2d − 1.

4.2 Analysis

Following [RVW04], we will call a distribution ν δ-imbalanced if for every
x, y,

PrPrPr[X = x] ≤ 1 + δ

1− δ
·PrPrPr[Y = y].

Lemma 2. If X is a strong SVδ source, then the distribution of gd(X) is δ
imbalanced.

Proof. As X ∼ µ is a strong SVδ-source (see Def. 1), for all x ∈ {0, 1}2
d−1

and i ∈ [2d − 1],
µ(x⊕ ei)
µ(x)

≤ 1 + δ

1− δ
. (12)

Since the Hamming code is a perfect code of distance 3, for every i 6= j,
there exists k such that ei + ej + ek ∈ Hamd . Hence

Hamd
i = Hamd

j + ek. (13)

Now we can write for u1 ∈ Hamd
i, u2 ∈ Hamd

j ,

µ(g−1d (u1)) =
∑

x∈Hamd
i

µ(x) ≤
∑

x∈Hamd
i

1 + δ

1− δ
· µ(x⊕ ek) (14)

≤ 1 + δ

1− δ
·
∑

x∈Hamd
j

µ(x) =
1 + δ

1− δ
· µ(g−1d (u2)),

where the inequality is (12). Thus gd(X) is δ-imbalanced. �
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Lemma 3. Let ν be δ-imbalanced distribution on {0, 1}d. Then

Hmin (ν) ≥ d− log

(
1 + δ

1− δ

)
. (15)

Proof. As
∑

u∈{0,1}d ν(u) = 1, there exists some u0 ∈ {0, 1}d, such that

ν(u0) ≤ 2−d. Since ν is δ-imbalanced, for all u ∈ {0, 1}d,

ν(u) ≤ 1 + δ

1− δ
· ν(u0) ≤

1 + δ

1− δ
· 2−d,

which proves (15). �

From the two, lemmas we get

Hmin
X∼µ

(gd(X)) ≥ d− log

(
1 + δ

1− δ

)
. (16)

Now let n = k · (2d − 1) for k ∈ N and Y = (Y1, . . . , Yk) ∈ {0, 1}n be
sampled according to a strong SVδ-distribution ν (every Yi consists of 2d − 1
bits). We want to analyze the resulting distribution of fd(Y ) ∈ {0, 1}k·d.

Fix any i ∈ [k] and y1, . . . , yi ∈ {0, 1}2
d−1. By the definition of (strong)

SV-distributions (Def. 1), the distribution of Yi remains strong SVδ when
conditioned upon [Y1 = y1, . . . , Yi−1 = yi−1]; accordingly, from (16) it follows
that

PrPrPr
Y∼ν

[
Yi = yi

∣∣Y1 = y1, . . . , Yi−1 = yi−1
]
≤ 1 + δ

1− δ
· 2−d.

Via the trivial induction this implies

Hmin
Y∼ν

(fd(Y )) ≥ kd− k · log

(
1 + δ

1− δ

)
. (17)

Therefore, fd is a deterministic condenser for the family of strong SVδ-
distributions, whose min-entropy rate is lower-bounded by

1− 1

d
· log

(
1 + δ

1− δ

)
.

Since the min-entropy of a strong SVδ-distribution over {0, 1}n can be as low
as n · log

(
2

1+δ

)
(as witnessed by the mutually independent distribution of n

bits, each taking value “1” with probability 1+δ
2 ), the min-entropy rate of a

strong SVδ-distribution over {0, 1}n can be as low as log
(

2
1+δ

)
and therefore,

fd is a non-trivial deterministic condenser for strong SVδ-distributions as
long as δ ∈ (0, 1).

We have established the following (via an explicit construction).

11



Theorem 2. Let d ∈ N and n be a multiple of 2d − 1. A deterministic
condenser for strong SV-distributions exists that maps n bits to n·d

2d−1 bits and
when the input distribution is a strong SVδ for δ ∈ [0, 1) (whose min-entropy
rate can be as low as log

(
2

1+δ

)
), the generated min-entropy rate is at least

1− 1

d
· log

(
1 + δ

1− δ

)
.

In particular, for any constants ε, δ ∈ (0, 1), a deterministic condenser for
strong SVδ-distributions exists that maps n bits to Ω(n) bits of min-entropy
rate at least 1− ε.

5 Deterministic condensers vs. very strong extrac-
tors

As deterministic condensers are known not to exist for the family of high-
min-entropy distributions (Fact 2), they are not considered in the literature
very often. We conclude this work by discussing these elegant and natural
objects.

Very strong extractors from deterministic condensers. Recall the
notion of entropy rate (as opposed to min-entropy rate) of a condenser, given
by (3).

Claim 1. Let ε ∈ [0, 1], m < n, D be such that D|m and ln 2
2 ε ≤

D
m . Let F

be a family of distributions over {0, 1}n and let h : {0, 1}n → {0, 1}m be a
deterministic entropy condenser for F of entropy rate at least 1− ε. Then
g : {0, 1}n × [D]→ {0, 1}m/D, defined as

g(x, s) = h(x) � (s−1)m
D

+1,..., sm
D

,

i.e., h(x) restricted to bits (s−1)m
D + 1, . . . , smD , is a very strong δ-extractor

for F , where δ =
√

ln 2
2 ε ·

m
D .

In particular, for D = m this gives g : {0, 1}n × [m]→ {0, 1}, which is a

very strong
√

ln 2
2 ε-extractor for F .

As the entropy rate is always at least as high as the min-entropy rate,
it follows from the above statement that the construction of Section 4.1, as
summarized by Theorem 2, also gives very strong extractors for the family of
strong Santha-Vazirani distributions, namely:

Corollary 1. For any constants ε, δ ∈ (0, 1), a very strong single-bit
ε-extractor of seed length log n−O(1) exists for strong SVδ-distributions.

12



Proof of Claim 1. Let µ ∈ F . Similarly to Definition 5, for every s ∈ [D] and
y1, . . . , ys−1 ∈ {0, 1}

m/D let νµs,y1,...,ys−1 be the distribution of g(X,S) when
X ∼ µ, conditioned on [S = s, g(X, 1) = y1, . . . , g(X, s− 1) = ys−1] (let it be
undefined if the conditioning is inconsistent).

Then

EEE
Z∼µ;
T∼U[D]

[
H
(
νµT,g(Z,1),...,g(Z,T−1)

)]
(18)

= EEE
T∼U[D]

[
H
X∼µ

(
g(X,T )

∣∣g(X, 1), . . . , g(X,T − 1)
)]

=
1

D
·
D∑
t=1

H
X∼µ

(
g(X, t)

∣∣g(X, 1), . . . , g(X, t− 1)
)

=
1

D
· H
X∼µ

(h(X)) ≥ 1

D
· (1− ε) ·m = (1− ε) · m

D
.

Accordingly,

EEE
Z∼µ;
T∼U[D]

[∥∥∥νµT,h(Z,1),...,h(Z,T−1) − U{0,1}m/D

∥∥∥2
1

]

≤ 2 ln 2 · EEE
Z∼µ;
T∼U[D]

[
m

D
−H

(
νµT,g(Z,1),...,g(Z,T−1)

)]

≤ 2 ln 2 · ε · m
D
,

where the first inequality is Fact 1 and the second one is (18). The result
follows from the concavity of square root. �Claim 1

Deterministic entropy condensers from very strong extractors. It
is not hard to see that a very strong extractor is not necessarily a good
deterministic min-entropy condenser: while we require from very strong
extractors to behave nearly-uniformly only on average, bounding the min-
entropy of the condenser’s output requires that the probability of a most
likely (i.e., worst-case) output value is not too high.

On the other hand, we have seen that deterministic entropy condensers
are very strong extractors (Claim 1). It turns out that the connection between
very strong extractors and deterministic entropy (as opposed to min-entropy)
condensers is two-way:

Claim 2. Let δ ∈ [0, 1], F be a family of distributions over {0, 1}n and
h : {0, 1}n × [D]→ {0, 1}m be a very strong δ-extractor for F . Then

H
X∼µ

(h(X, 1), . . . , h(X,D)) ≥ D ·m−D ·m · δ −D ·
√

4 log e ·m · δ

13



for every µ ∈ F . That is, the entropy rate of (h(X, s))Ds=1 is at least

1− δ −
√

4 log e · δm .

Proof. Similarly to Definition 5, for every s ∈ [D] and y1, . . . , ys−1 ∈ {0, 1}m
let νµs,y1,...,ys−1 be the distribution of h(X,S) when X ∼ µ, conditioned on
[S = s, h(X, 1) = y1, . . . , h(X, s − 1) = ys−1] (let it be undefined if the
conditioning is inconsistent).

Then

H
X∼µ

(h(X, 1), . . . , h(X,D))

=
D∑
t=1

H
X∼µ

(
h(X, t)

∣∣h(X, 1), . . . , h(X, t− 1)
)

= D · EEE
T∼U[D]

[
H
X∼µ

(
h(X,T )

∣∣h(X, 1), . . . , h(X,T − 1)
)]

= D · EEE
Z∼µ;
T∼U[D]

[
H
(
νµT,h(Z,1),...,h(Z,T−1)

)]

= Dm−D · EEE
Z∼µ;
T∼U[D]

[
m−H

(
νµT,h(Z,1),...,h(Z,T−1)

)]
. (19)

By Claim 1,

EEE
Z∼µ;
T∼U[D]

[
m−H

(
νµT,h(Z,1),...,h(Z,T−1)

)]

≤ m

2
· EEE
Z∼µ;
T∼U[D]

[∥∥∥νµT,h(Z,1),...,h(Z,T−1) − U{0,1}m∥∥∥1]

+
√

2 log e ·m · EEE
Z∼µ;
T∼U[D]

[√∥∥∥νµT,h(Z,1),...,h(Z,T−1) − U{0,1}m∥∥∥1
]

≤ m

2
· EEE
Z∼µ;
T∼U[D]

[∥∥∥νµT,h(Z,1),...,h(Z,T−1) − U{0,1}m∥∥∥1]

+

√√√√2 log e ·m · EEE
Z∼µ;
T∼U[D]

[∥∥∥νµT,h(Z,1),...,h(Z,T−1) − U{0,1}m∥∥∥1],
where the latter inequality follows from the concavity of square root. As h is
a very strong δ-extractor,

EEE
Z∼µ;
T∼U[D]

[∥∥∥νµT,h(Z,1),...,h(Z,T−1) − U{0,1}m∥∥∥1] ≤ 2δ
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and

EEE
Z∼µ;
T∼U[D]

[
m−H

(
νµT,h(Z,1),...,h(Z,T−1)

)]
≤ m · δ +

√
4 log e ·m · δ.

From (19),

H
X∼µ

(h(X, 1), . . . , h(X,D)) ≥ D ·m−D ·m · δ −D ·
√

4 log e ·m · δ,

and the result follows. �

Conclusion. We have established the following.

Theorem 3. Let F be a family of distributions over {0, 1}n.
If h : {0, 1}n → {0, 1}m is a deterministic entropy condenser for F

of entropy rate at least 1 − ε, where ε ≤ 2D
ln 2·m for some D|m, then gh :

{0, 1}n × [D]→ {0, 1}m/D, defined as

gh(x, s) = h(x) � (s−1)m
D

+1,..., sm
D

,

is a very strong
√

ln 2
2 ε ·

m
D -extractor for F .

If δ ∈ [0, 1] and g : {0, 1}n × [D]→ {0, 1}m is a very strong δ-extractor
for F , then hg : {0, 1}n → {0, 1}D·m, defined as

hg(x) = h(X, 1) ◦ · · · ◦ h(X,D)

is a deterministic entropy condenser for F of entropy rate at least 1− δ −√
4 log e · δm .

6 Conclusions

We conclude our article with an open problem. We have shown that there
is an essential difference between SV-sources and strong SV-sources: for
the former, there are no non-trivial condensers, while for the latter we have
constructed them. But this only concerns min-entropy, so we pose as an open
problem the following.

Problem 1. Does there exist non-trivial entropy condensers for SVδ sources?
If so, how much can one condense the entropy of these sources?

Acknowledgements

We are grateful to anonymous reviewers for a number of very useful sugges-
tions.

15



References

[Ham50] R. W. Hamming. Error detecting and error correcting codes. Bell
System Technical Journal 29, pages 147–160, 1950.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-
Correcting Codes. Elsevier-North-Holland, 1977.

[Pin60] M. S. Pinsker. Информационная устойчивость гауссовских
случайных величин и процессов. Докл. АН СССР 133(1), pages
28–30, 1960.

[RVW04] O. Reingold, S. Vadhan, and A. Wigderson. A Note on Extracting
Randomness from Santha-Vazirani Sources. Unpublished, 2004.

[SV86] M. Santha and U. V. Vazirani. Generating Quasi-Random Se-
quences from Slightly-Random Sources. Journal of Computer and
System Sciences 33(1), pages 75–87, 1986.

16


	Introduction
	Preliminaries
	No condensers for SV sources
	A condenser for strong SV sources
	The construction
	Analysis

	Deterministic condensers vs. very strong extractors
	Conclusions
	Acknowledgements
	References

