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Abstract

We investigate the algorithmic properties of circuits of bounded treewidth. Here the
treewidth of a circuit C is defined as the treewidth of the underlying undirected graph of C,
after the vertices corresponding to input gates have been removed. Thus, boolean formulae
correspond to circuits of treewidth 1.

• Our first main result is an algorithm for counting the number of satisfying assignments
of circuits with n input gates, treewidth ω, and at most s · n gates. The running time

of our algorithm is 2n(1−
1

O(s·ω·4ω)
), which for formulae instantiates to 2n(1−1/O(s)).

This is the first algorithm to achieve exponential speed-up over brute force for the
satisfiability of linear size circuits with treewidth bounded by a constant greater than
1. For treewidth 1, i.e., boolean formulae, our algorithm significantly outperforms the
previously fastest 2n(1−1/O(s2)) time satisfiability algorithm by Santhanam [32].

• Our second main result is an algorithm for True Quantified Boolean Circuit Satisfia-
bility for circuits of treewidth ω, in which every input gate has fan-out at most s. The

running time of our algorithm is 2n(1−
1

O(s·ω·4ω)
). Our algorithm is the first to achieve

exponential speed-up over brute force for such circuits. Indeed, even for quantified
boolean formulae where every variable appears at most s times, the previously best
known algorithm by Santhanam [32] has running time 2n(1−1/O(f(s)·logn)).

• Utilizing the structural properties of low treewidth circuits which helped us obtain
improved exponential-time algorithms for satisfiability, we also show that the number
of wires of any constant treewidth circuit that computes the majority function must
be super-linear.

1 Introduction

Satisfiability testing is both a canonical NP-complete problem [10, 24] and one of the most
successful general approaches to solving real-world constraint satisfaction problems. Optimized
cnf-sat heuristics are used to address a variety of combinatorial search problems successfully
in practice, such as circuit and protocol design verification. Algorithms for the satisfiability
problem are also central to complexity theory, as demonstrated by Williams [39], who showed
that any improvement (by even a superpolynomial factor compared to exhaustive search) for
the satisfiability problem for general circuits implies circuit lower bounds. Furthermore he has
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successfully used the connection to prove superpolynomial size bounds for ACC0 circuits using
a novel satisfiability algorithm for ACC0 circuits, solving a long standing open problem [40].

This raises the questions: For which circuit models do improved (over exhaustive search
by at least a superpolynomial factor) satisfiability algorithms exist? How does the amount of
improvement over exhaustive search relate to the expressive power of the model (and hence to
lower bounds)? Can satisfiability heuristics for stronger models than cnf be useful for real-world
instances?

A considerable amount of research has gone into devising improved algorithms for checking
the satisfiability of various circuit models up to depth o(log n/ log logn) (see, for example, [26,
35, 30, 29, 36, 5, 21, 27, 18, 40, 19, 6, 20, 9, 25]), although the question of improved algorithms
for checking the satisfiability of linear size bounded depth threshold circuits is still unresolved.
The improvements range from superpolynomial factors to exponential factors depending on the
circuit model, size and depth. For unrestricted depth circuits, the progress is minimal. Improved
algorithms have only been known for formulas over Boolean and the complete basis [32, 37, 8].

Our general goal is to move beyond formulas to obtain improved algorithms for unrestricted
depth circuits. It is a tantalizing question whether linear size circuits of unrestricted depth
(even of logarithmic depth) admit satisfiability algorithms with a superpolynomial speedup
over exhaustive search, the possibility of which has consequences for superlinear circuit lower
bounds. All the known improved algorithms for satisfiability are such that the ‘improvement’
decreases exponentially in depth so that we get no speedup over exhaustive search when the
depth is at least c log n for all sufficiently large c. In this paper, we consider unrestricted depth
circuits with restricted treewidth as natural generalizations of formulas (circuits with treewidth
1) and obtain improved satisfiability algorithms for such circuits.

Treewidth is also a natural parameter to measure the structural complexity of a circuit. It
should be noted that Alekhnovich and Razborov [1] and Allender et al. [2] have previously
investigated the time and space complexity of cnf-sat from the perspective of the treewidth
of the underlying graph. For a cnf φ with n input variables and m clauses, they define the
treewidth ω′ of φ as the treewidth of the clause-variable graph of φ. Alekhnovich and Razborov
[1] showed that the satisfiability of such cnf can be solved in time 2O(ω′)|φ|O(1) and space
2O(ω′)|φ|O(1). Allender et al. improved the space bound to |φ|O(1) with a corresponding time
bound of 2O(ω′) log |φ||φ|O(1). These results also apply to circuits, as a circuit with m gates and
n inputs of treewidth ω′ can be converted to a CNF with m input gates and treewidth O(ω′)
with a 1-1 correspondence between the satisfying assignments. This shows that satisfiability
for such circuits can be checked in time O(poly(m)2O(ω′)) where the definition of the treewidth
includes input gates. While these results shed light on the connection between the the structural
properties of the cnf and the complexity of their satisfiability, treewidth ω′ as defined can be
as large as n for cnf and thus these results do not offer any improvements even for cnf-sat.

In this paper, we define treewidth ω of a circuit as the treewidth of the circuit after the input
gates are removed. According to our relaxed definition of treewidth, the treewidth of cnfs and
formulas is at most 1. We make modest progress towards the general goal by showing improved
algorithms for the satisfiability of such circuits whereas previously such improvements all only
known for formulas. In particular, we prove the following results in this paper.

• Our first main result (Theorem 1) is an algorithm for counting the number of satisfying
assignments of circuits with n input gates, treewidth ω, and at most s·n gates. The running

time of our algorithm is 2
n(1− 1

O(s·ω·4ω)
)
, which for formulae instantiates to 2n(1−1/O(s)). This

is the first algorithm to achieve exponential speed-up over brute force for the satisfiability
of linear size circuits with treewidth bounded by a constant greater than 1. For treewidth
1, i.e., boolean formulae, our algorithm significantly outperforms the previously fastest
2n(1−1/O(s2)) time satisfiability algorithm by Santhanam [32]1.

1The 1/O(s2) bound on the savings in the algorithm of Santhanam was derived by Chen et al. [8]
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• Our second main result (Theorem 2) is an algorithm for True Quantified Boolean Circuit
Satisfiability for circuits of treewidth ω, in which every input gate has fan-out at most

s. The running time of our algorithm is 2
n(1− 1

O(s·ω·4ω)
)
. Our algorithm is the first to

achieve exponential speed-up over brute force for such circuits. Indeed, even for quantified
boolean formulae where every variable appears at most s times, the previously best known
algorithm by Santhanam [32] has running time 2n(1−1/O(f(s)·logn)).

• Utilizing the structural properties of low treewidth circuits which helped us obtain im-
proved exponential-time algorithms for satisfiability, we also show that the number of
wires of any constant treewidth circuit that computes the majority function must be
super-linear (Theorem 3).

Remarks. The algorithm for satisfiability of circuits with s · n gates is given in Theorem 1.
Note that the statement of Theorem 1 never explicitly mentions that the number of gates in
the circuit should be at most s · n. Instead the requirement is that the number of gates that
have at least one wire directly from the input gates is at most s · n. Clearly this is a weaker
requirement.

For formulas we have that ω = 1. Thus, for formulas, and more generally for circuits where
the treewidth ω of C − I(C) is constant, Theorem 1 yields a factor 2n/O(s) improvement over
exhaustive search. This is an exponential improvement over O(2n) for circuits of linear wire-size,
and sub-exponential improvement over O(2n) for s = O(nδ) for δ < 1, i.e circuits of sub-quadratic
gate-size. The sub-exponential improvement over O(2n) for circuits of sub-quadratic wire-size
holds all the way up to ω = o(log n), i.e. sub-logarithmic treewidth.

Our algorithms all use exponential space, which limits their practical applicability. However,
while the time usage of our algorithms is close to 2n, the space usage of our algorithms is
approximately 2n/2. Thus, the space used is about the square root of the time, which means
that time is just as likely to become a bottleneck as space is.

As stated, the algorithms of Theorems 1 and 2, and the lower bound of Theorem 3 applies
to un-bounded fan-in circuits over the De Morgan basis. However, any circuit C of fan-in d,
treewidth ω, and gate-size s · n over the arbitrary Boolean basis can be converted into a circuit
C ′ of treewidth ω ·d, and gate-size 2d ·s ·n computing the same function. Hence the conclusions
of Theorems 1, 2 and 3 also hold for constant fan-in circuits over the arbitrary Boolean basis
(at the cost of a constant factor reduction in the savings for Theorems 1 and 2).

It would be interesting to see how close our savings of 1/O(s) in the exponent for formula
satisfiability are optimal. For formulas in CNF with gate-size s · n, there are algorithms that
achieve savings 1/O(log s) in the exponent [12]. Hence perhaps one could hope for savings of
this form even for formula satisfiability. Nevertheless, even an algorithm with savings 1/O(sδ)
for δ < 1 would definitely be of interest.

Methods. In 1966, Nec̆iporuk [28] proved a Ω(n2/ log n) size lower bound for formulas com-
puting the element distinctness function over the complete binary basis. The main ingredient
of this proof is an upper bound on the number of sub-functions of a function computable by a
size-bounded formula. More concretely, let f : {0, 1}n → {0, 1} be a function. For X + Y = n
we can split the input into two parts and think of f as a function from {0, 1}X × {0, 1}Y to
{0, 1}. Then each y ∈ {0, 1}Y naturally defines a subfunction f∣∣y : {0, 1}X → {0, 1} where

f∣∣y(x) = f(x, y). For general functions f each y ∈ {0, 1}Y could result in a different subfunc-

tion f∣∣y : {0, 1}X → {0, 1}. However, if the function f is structured one could hope that many

different choices for y ∈ {0, 1}Y will result in the function f∣∣y being the same. This is precisely

what Nec̆iporuk proved, provided that f is computed by a formula, and that the input gates
corresponding to y do not have a large fan-out.
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Specifically, if f is computed by a formula C (that is, a circuit C that becomes a tree after
removing the input gates I(C)), and the total fan-out of the input gates corresponding to X
is at most p, then the number of different subfunctions f∣∣y that can be obtained by selecting

different y ∈ {0, 1}Y is at most 2O(p). In a recent paper, de Oliveira Oliveira [13] generalized
Nec̆iporuk’s bound to circuits of bounded treewidth. In particular, de Oliveira Oliveira proved
that if C−I(C) has treewidth ω instead of being a tree, then the number of different subfunctions

f∣∣y that can be obtained by selecting different y ∈ {0, 1}Y is at most 22
O(ω)p.

The bounds of Nec̆iporuk and de Oliveira Oliveira suggest the following approach to counting
the number of satisfying assignments of a circuit, provided that the input circuit C has treewidth
ω after the input gates have been removed. First, find a partitioning of the input gates of C into
X and Y such that |X| = ε ·n for a constant ε < 1/4, but the total number p of wires leading out

of X is small enough that 22
O(ω)p ≤ 2n/2. Such a partitioning can be found provided the circuit

C is small enough. We count the number of pairs x and y such that C(x, y) = 1. We do this in
two stages - go over every possible y, and for every y we count the number of choices for x such
that C∣∣y(x) = 1. From the upper bound of de Oliveira Oliveira we know that the number of

different subfunctions C∣∣y that the algorithm will encounter is upper bounded by 2n/2. When

we encounter a subfunction C∣∣y we have not seen before, we try all possibilities for x and return

the number of choices for x that resulted in C(x, y) = 1. When we encounter a subfunction C∣∣y
that we have seen before, we do not need to try all possibilities for x, we can just return the
same number of satisfying assignments as we did the last time we saw this subfunction. There
are 2n(1−ε) choices for y. For at most 2n/2 of these choices the subfunction C∣∣y has not been

previously encountered. For each of these choices we spend 2εn time going over all choices of x.
Thus the total running time is upper bounded by 2n(1−ε) + 2n/2 · 2ε·n = O(2n(1−ε)).

The above argument has a serious gap - how do we check efficiently whether we have seen
a subfunction C∣∣y before, without evaluating it on all inputs x? Indeed, if C is unsatisfiable

then all subfunctions would evaluate to 0 for every input, but determining this amounts to
solving the satisfiability problem for each choice of y! We overcome this problem by noticing
that the bounds of Nec̆iporuk and de Oliveira Oliveira can be made constructive in the following
sense. We construct an efficiently computable “hash function” that given C and y outputs a
“hash value” between 1 and 22

O(ω)p. If y and y′ produce the same hash value, then C∣∣y′ = C∣∣y.
Armed with such a hash function the algorithm can easily be made to work by replacing the
question “has this subfunction been encountered before?” with “has a subfunction with the same
hash value been encountered before?”. This is precisely the approach taken in our algorithm
for counting then number of satisfying assignments of a linear size bounded treewidth circuit,
encapsulated in Theorem 1.

The algorithm for quantified circuit satisfiability (Theorem 2) follows the same approach.
The only important difference is that now we have to pick a partition of the input gates into X
and Y such that all of Y is quantified before all of X. For this reason our algorithm only works
for the more restricted setting where all input gates have bounded fan-out, as opposed to the
average fan-out being bounded.

Our algorithms are based on memoization, which has previously been used extensively for
the design of exact exponential time algorithms (see e.g. Fomin and Kratsch [15], Robson [31]
or Williams [38]). Indeed, the algorithm of Santhanam [33] for QBF satisfiability and of Chen
et al. [8] for counting satisfying assignments of a formula are both based on memoization.
Therefore our main contribution is to show that, when based on the lower bounds of Nec̆iporuk
and de Oliveira Oliveira, memoization can be made to work surprisingly well for (quantified)
satisfiability of bounded treewidth circuits. Interestingly, Santhanam hints in his survey [34]
that his algorithm for formula satisfiability [33] is inspired by the lower bound of Nec̆iporuk.
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The connection between the lower bound and the algorithm in the work of Santhanam [33] is
more subtle, whereas in our case it is very direct.

Both of our algorithms are based on decompositions of the input circuit into ε · n parts,
controlling the interaction between each of the parts and the input gates. Our circuit size lower
bound for the Majorityn function (Theorem 3) is based on the observation that, for circuits of
linear wire-size and constant treewidth (of C − I(C)), the decomposition can be “scaled up” to
a decomposition where the number of parts is constant, the number of wires between different
parts is (essentially) constant, and each part depends only on n/2 of the input gates.

If C computes a symmetric function f this decomposition leads to a constant-cost multi-
party communication protocol for f in the Number on the Forehead (NOF) model. Here each
part of the decomposition corresponds to a player in the communication protocol. For Majorityn,
such a protocol is known not to exist [7]. Together these two facts yield Theorem 3, that linear
wire-size circuits C with tw(C − I(C)) = O(1) can not compute the Majorityn function.

2 Preliminaries

Graph notation. In this paper we deal with graphs that are simple, finite, and either directed
or undirected. Given a graph G we will refer by E(G) to the edge set E of G and by V (G)
to the vertex set V of G. For vertices u, v in V (G) we will use notation uv for the ordered
pair (u, v). Thus, if G is an undirected graph with an edge between u and v then this edge
is denoted both by uv and by vu. If G is a directed graph then uv denotes an edge with its
head in v and tail in u. For any non-empty subset W ⊆ V , the subgraph of G induced by W is
denoted by G[W ] and for ease of notation G−W is used for the induced subgraph G[V \W ].
For a directed graph G the underlying undirected graph is a graph with vertex set V (G) and an
(undirected) edge uv between vertices u and v whenever at least one of uv and vu is an edge in
the original graph G.

For an undirected graph G, the neighborhood of a vertex v is NG(v) = {u ∈ V : uv ∈ E(G)}
and the closed neighborhood of v is NG[v] = N(v) ∪ {v}. For a vertex set W ⊆ V (G) we
similarly define NG[W ] =

⋃
v∈W NG[v] and NG(W ) = NG[W ] \W . For a directed graph, the

in-neighborhood of a vertex v in a graph G is N−G (v) = {u ∈ V : uv ∈ E(G)} and the out-
neighborhood of v in a graph G is N+

G (v) = {u ∈ V : vu ∈ E(G)}. For vertex sets W we
define N−G (W ) =

(⋃
v∈W N−G (v)

)
\W and N+

G (W ) =
(⋃

v∈W N+
G (v)

)
\W . The in-degree and

out-degree of a vertex v in a directed graph G is |N−G (v)| and |N+
G (v)| respectively. The degree

of a vertex v in an undirected graph G is |NG(v)| an the degree of v in a directed graph is its
degree in the underlying undirected graph. In a directed graph a sink is a vertex of out-degree
0, and a source is a vertex of in-degree 0.

A walk in a graph G is a sequence v1, v2, . . . , vt of vertices in G such that for every i ≤ t− 1,
vivi+1 ∈ E(G). Notice that this definition works both in directed and in undirected graphs,
but in directed graphs the edges are required to point in the direction of the walk. A path in a
graph G is a walk in which every vertex appears at most once, and a cycle in G is a walk where
every vertex appears at most once, except for the first and last vertex, which are the same. A
graph is acyclic if it does not contain any cycle. Directed acyclic graphs are commonly referred
to as DAGs. An undirected graph is connected if there is a path between every pair of vertices.
A tree is an undirected graph that is both connected and acyclic.

Every DAG G admits a topological ordering [14], which is an ordering of the vertices σ :
V (G) → {1, . . . , |V (G)|} such that for every edge uv ∈ E(G), σ(u) < σ(v). Hence, every
DAG has at least one source and at least one sink (the vertices u and v with σ(u) = 1 and
σ(v) = |V (G)| respectively).

Treewidth. A tree decomposition of an undirected graph G is a pair (T, χ) consisting of a tree
T and a function χ : V (T ) → 2V (G) satisfying the following properties. For every uv ∈ E(G),
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{u, v} ⊆ χ(v) for some v ∈ V (T ); and for every vertex v ∈ V (G) the set {u ∈ V (T ) : v ∈ χ(u)}
is non-empty and induces a connected subtree of T . The elements of the range {χ(v) : v ∈
V (T )} of χ are called bags of T . In a rooted tree-decomposition (T, χ) the tree T is rooted,
and the root vertex of T is denoted by r(T ). The width of a tree decomposition (T, χ) of G is
denoted by tw(T, χ,G) and is defined to be the maximum over vertices u ∈ V (T ) of |χ(u)| − 1.
In other words, the width of a tree decomposition is the maximum size of a bag, minus one. The
treewidth of G is denoted by tw(G) and is defined to be the minimum over all tree decompositions
(T, χ) of G of tw(T, χ,G). We extend the function χ to vertex sets in the following way: for
a subset S of V (T ), χ(S) =

⋃
v∈S χ(v). For a directed graph G, a tree decomposition of G is

a tree decomposition of the underlying undirected graph. Similarly, the treewidth of G is the
treewidth of the underlying undirected graph.

Circuits. A boolean circuit (or just circuit) is a directed acyclic graph C, in which every
vertex other than the sources are labeled with the symbols ∧, ∨, or ¬. Every gate labeled ¬
has in-degree exactly equal to 1, and out-degree at most 1. The vertices of C are called gates,
with the sources of C called input gates, and the sinks of C called output gates. Gates that are
neither input nor output gates are called normal gates. The set of input gates, output gates
and normal gates of a circuit C are referred to as I(C), O(C) and N(C) respectively.2

A gate labeled ∧, ∨, or ¬ is called an and-gate, or-gate or not-gate, respectively. We say that
a gate u feeds into a gate v if uv ∈ E(C). The fan-in of a gate is its in-degree, and the fan-out
is its out-degree. The fan-in and fan-out of a circuit C is the maximum fan-in and fan-out of
its gates. In the description of circuits we will often use the following short-hand: when we say
that a gate u feeds negatively into a gate v, we mean that there is a not gate w such that u
feeds into w and w feeds into v.

We will identify 0 with the meaning “false” and 1 with the meaning “true”. An evaluation
of a circuit C is an assignment to each gate of C a value in {0,1} such that: for every and-gate
assigned 1 every gate feeding into it is assigned 1, for every and-gate assigned 0 at least one gate
feeding into it is assigned 0, for every or-gate assigned 1 at least one feeding into it is assigned 1,
for every or-gate assigned 0 every gate feeding into it is assigned 0, for every not-gate assigned
1 the unique gate feeding into it is assigned 0, and for every not-gate assigned 0 the unique
gate feeding into it is assigned 1. For every assignment of values to the input gates of C there
is exactly one evaluation of C that assigns precisely these values to the input gates.

Given a circuit C we can define a function f : 2I(C) → 2O(C) as follows. Given a subset X
of I(C) consider the unique evaluation of C that assigns 1 to the input gates in X and 0 to the
other input gates, and let O be the subset of O(C) gates assigned 1 by this evaluation. We will
abuse notation and denote by C : 2I(C) → 2O(C) the function f computed by the circuit C. If
the elements of I(C) and O(C) are ordered as {i1, i2, . . . , in} and {o1, o2, . . . , om} respectively
then the function C can also be thought of as a function from {0, 1}n to {0, 1}m. For a circuit
C with n input gates and 1 output gate, a satisfying assignment is an assignment x ∈ {0, 1}n
such that C(x) = 1.

For a function f : I(C) → O(C), subset X of I(C) and subset R of X we define the
restriction of f by R to be a function f∣∣R : 2I(C)\X → 2O(C) defined as follows. For every

Z ⊆ I(C) \X we have f∣∣R(Z) = f(Z ∪R). The set R is sometimes provided as an assignment

r : X → {0, 1} where r(x) = 1 if x ∈ R and f(x) = 0 otherwise, and we will use f∣∣r as shorthand

for f∣∣R. Most commonly this notation will be used in the context of a function C computed by

a circuit.

2Note that (perhaps unfortunately) the functional notation N() refers to two different functions depending on
whether the argument is a circuit or a vertex set. For vertex sets S, N(S) returns the neighbors of S, whereas for
circuits N(C) returns the set of normal gates of C. Which one is being used should always be clear from context.
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We may assume that in addition to the input gates, there are two input gates where one is
set to 1 and the other is set to 0. Every evaluation of the circuit assigns 1 to the gate 1 and 0
to the gate 0. We will refer to these as constant gates. Throughout the algorithm, by forcing a
gate g to 0 (or to 1) we mean removing all wires feeding into g and adding a new wire from 0 (or
1) into g. Note that if g is an input gate then after g is forced to 0 or 1, g is no longer an input
gate. For a circuit C, gate g and value v ∈ 0, 1 we will refer by Cg←v to the circuit obtained
from C by forcing g to v. This notation can be extended to forcing a set of gates according to
an assignment to all of them. If X is a subset of the gates of C and r : X → {0, 1} then CX←r

refers to the circuit obtained from C by forcing each gate g in X to r(g). Note that if X is a
set of input gates then the circuit CX←r computes the function C∣∣r.

The gate-size of a circuit is the total number of gates, excluding the not-gates. The wire-size
of a circuit is the total number of wires, that is |E(C)|. A circuit C has linear gate-size (or
wire-size) if the gate-size (wire-size) is upper bounded by O(n) where n = |I(C)|. Similarly,
quadratic gate-size (or wire-size) means that gate-size (wire-size) is upper bounded by O(n2).
In this paper, when we refer to the treewidth of a circuit C, we will always mean the treewidth
of the underlying graph of C − I(C), unless explicitly specified otherwise.

Our paper differs slightly from existing literature in how circuits are defined and how their
size is measured. However the differences are purely notational. More concretely we demand
that every not-gate has fan-out 1, while this is typically not required. On the other hand we do
not count the not-gates towards the size of the circuit, while these gates are usually counted.
Notice that a not-gate with fan-out x can easily be replaced by x not-gates of fan-out 1. This
will at most double the total number of wires and gates (if you count not-gates) and not change
the number of gates other than not-gates. Further, this operation can not increase the treewidth
of the circuit, because on the underlying graph undirected it is a contraction operation, followed
by a series of edge subdivisions (see [11, 14] for a definition of these graph operations).

3 Satisfiability Algorithms

In this section we will prove our main algorithmic results. We will assume that we have been
given as input a circuit C with n input gates and a single output gate o, together with a tree
decomposition of C − I(C) of width at most ω. We will assume without loss of generality that
the output gate o is an and-gate. If it is not, we may add a new and-gate and make o feed into
the new gate, making the new gate the new output gate.

Splitting gates. The first ingredient both of our algorithms and of our lower bounds is a
simple “splitting” operation on gates. Given the circuit C and a normal gate h of C, splitting
h results in a circuit C ′ which is identical to C, with the following differences. The gate h
is replaced by 4 gates hin, hout, hL, and hR. The gate hin is an input gate, hout is a gate of
the same type as h, and hL, and hR are both or-gates. Further, hin feeds into hL and feeds
negatively into hR. On the other hand hout feeds negatively into hL and feeds into hR. Both
hL and hR feed directly into the output gate. Finally, every wire uh ∈ E(C) is replaced by the
wire uhout in C ′. Every wire hu ∈ E(C) is replaced by the wire hinu in C ′. This concludes the
construction of C ′.

Notice that hin feeds into all the out-neighbors of h, while hout is being fed into by all the
in-neighbors of h. Thus the naming convention seems counter-intuitive, and it is tempting to
swap the names of hin and hout. However this would result in hout being an input gate, which
also would not be ideal.

Let e : V (C) → {0, 1} be an evaluation of C, and define a function e′ : V (C ′) → {0, 1} by
setting e′(g) = e(g) for every gate g ∈ V (C ′) \ {hin, hout, hL, hR}, e′(hin) = e′(hout) = e(h) and
e′(hL) = e′(hR) = 1. It is easy to verify that e′ is an evaluation of C ′. Similarly, let e′ be an
evaluation of C ′ that assigns 1 to the output gate. It follows that both hL, hR are assigned
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1, which in turn means that hin and hout must both be assigned 0 or both be assigned 1. Let
e : V (C)→ {0, 1} be the function such that for every gate g ∈ V (C) \ {h} we have e(g) = e′(g)
and e(h) = e′(hout). It is easy to verify that e is an evaluation of C.

The circuit C ′ has one additional input gate hin in addition to the inputs I(C). Hence C ′

computes a function from {0, 1}n+1 to {0, 1}, where we associate the last coordinate of the input
to the value assigned to hin. This leads to the following observation.

Observation 1. For every x ∈ {0, 1}n such that C(x) = 1 there exists exactly one y ∈ {0, 1}
such that C ′(x, y) = 1. For every x ∈ {0, 1}n and y ∈ {0, 1}, if C ′(x, y) = 1 then C(x) = 1.

We will often need to split all the gates h ∈ H for a set H of normal gates in C. From
the definition of splitting it follows that the order in which we split the gates in H does not
matter - the resulting circuit C ′ is the same. The circuit C ′ has m = |H| additional input
gates hin1 , . . . , h

in
m in addition to the inputs I(C). Hence C ′ computes a function from {0, 1}n+m

to {0, 1}, where we associate the m last coordinates of the input to the values assigned to
hin1 , . . . , h

in
m . Together with Observation 1 this leads to the following lemma.

Lemma 1. Let C ′ be the circuit obtained from C by splitting a set H of m normal gates. For
every x ∈ {0, 1}n such that C(x) = 1 there exists exactly one y ∈ {0, 1}m such that C ′(x, y) = 1.
For every x ∈ {0, 1}n and y ∈ {0, 1}m, if C ′(x, y) = 1 then C(x) = 1.

Propeller Decompositions. The second ingredient of our algorithms and lower bounds is
a decomposition lemma for graphs of bounded treewidth. A propeller decomposition of an
undirected graph G is a partition of V (G) into disjoint vertex sets H, B1, B2, . . . , Bt such
that for every i ≤ t, N(Bi) ⊆ H. The set H is called the hub of the decomposition, and the
sets B1, B2, . . . , Bt are called blades. The width of the propeller decomposition is defined as
maxi |N(Bi)|. A propeller decomposition of a directed graph is simply a propeller decomposition
of the underlying undirected graph. The following lemma is a variation of Fomin et al. [17,
Lemma 5], (see an extended version [16] for the proof) with essentially the same proof, which
we include for completeness.

Lemma 2. There exists a linear time algorithm that given a graph G, a tree decomposition
(T, χ) of G of width ω, and a vertex set Z ⊆ V (G) computes a propeller decomposition H, B1,
B2, . . . , Bt of width at most 2(ω + 1), such that t ≤ 2|Z|, Z ⊆ H, and |H| ≤ 2|Z|(ω + 1).

Towards the proof of Lemma 2 we need the notion of least common ancestor-closure in trees.
For a rooted tree T and vertex set M in V (T ) the least common ancestor-closure (LCA-closure)
LCA-closure(M) is obtained by the following process. Initially, set M ′ = M . Then, as long
as there are vertices x and y in M ′ whose least common ancestor w is not in M ′, add w to M ′.
When the process terminates, output M ′ as the LCA-closure of M . The following (folklore)
lemma summarizes two basic properties of LCA closures (see [16] for a proof).

Lemma 3 ([16]). Let T be a tree, M ⊆ V (T ) and M ′ = LCA-closure(M). Then |M ′| ≤ 2|M |
and for every connected component C of T \M ′, |N(C)| ≤ 2.

With Lemma 3 in hand we are ready to prove Lemma 2.

Proof of Lemma 2. For every v ∈ Z add a node u in V (T ) such that v ∈ χ(u) to a set M ′. We
have that M ′ ≤ |Z|. Let M ′ be the set of marked nodes and set M = LCA-closure(M ′). By
Lemma 3, M ≤ 2|M ′| ≤ 2|Z|. Let Q1, Q2, . . . , Q` be the connected components of T \M . By
Lemma 3 we have that for every i ≤ t, |NT (Qi)| ≤ 2.

Without loss of generality all components Q1, Q2, . . . , Qt have exactly 2 neighbors in T
while all components Qt+1, Qt+2, . . . , Q` have one neighbor. Contracting each component Qi to
a single vertex leaves a tree where the vertices corresponding to the components Q1, Q2, . . . , Q`
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have degree 1 or 2. Hence t ≤ |M | − 1, and for each component Qi with 1 neighbor in M there
is a component Qj with 2 neighbors in M such that NT (Qi) ⊆ NT (Qj). Build Q′1, Q

′
2, . . . , Q

′
t

as follows. Initially, for every i ≤ t, set Q′i = Qi. Then, for every j from t + 1 to ` add Qj to
the lowest indexed Q′i such that NT (Qj) ⊆ NT (Qi). It follows that M,Q′1, . . . , Q

′
t is a partition

of V (T ), and that each Q′i has |NT (Q′i)| ≤ 2.
Define H =

⋃
u∈M χ(u) and for each 1 ≤ i ≤ t set Bi =

⋃
u∈Q′i

χ(u) \H. Since every vertex

of G appears in a bag of the tree-decomposition, H,B1, . . . , Bt forms a partition of V (G). By
construction we have that for every i, N(Bi) ⊆ H. Furthermore, since |NT (Q′i)| ≤ 2 we have
|N(Bi)| ≤ 2(ω + 1). Finally, the choice of M implies Z ⊆ H and, since |M | ≤ 2|Z|, we have
that |H| ≤ 2|Z|(ω+1). It is easy to implement a procedure that computes H,B1, . . . , Bt in this
way in linear time.

3.1 Algorithmic Version of the Nec̆iporuk-Oliveira Subfunction Bound

We are now ready to prove our main technical result - a constructive bound on the number of
subfunctions of a function computable by a circuit of bounded treewidth.

Lemma 4. There exists an algorithm A that takes as input a C circuit with n input gates
and gate-size m, a tree decomposition (T, χ) of C − I(C) of width ω, a partition of I(C) into
X ∪ R and an assignment r : R → {0, 1}, runs in time O(4ω · m), and outputs a string
A(C, (T, χ), X, r) ∈ {0, 1}`, where ` ≤ 6(|N+

C (X)|+ 1) · (ω + 1) · 22(ω+1). Furthermore, for any
two assignments r and r′ to R such that A(C, (T, χ), X, r) = A(C, (T, χ), X, r′), the functions
C∣∣r and C∣∣r′ are equal.

Proof. We first describe the algorithm A. The algorithm first applies Lemma 2 to the underlying
undirected graph of C − I(C) and with the vertex set Z = N+

C (X)∪ {o}, where o is the output
gate of C. Lemma 2 yields a propeller decomposition H,B1, B2, . . . , Bt of C − I(C) of width at
most 2(ω+ 1) such that the hub H has size at most 2(|N+

C (X)|+ 1)(ω+ 1), N+
C (X)∪{o} ⊆ H,

and the number t of blades is at most 2(|N+
C (X)|+ 1). Next the algorithm splits all the gates

in H \ {o} and obtains a new circuit C ′ with m = |H| − 1 input gates in addition to I(C).
By Lemma 1 we have that for every x ∈ {0, 1}n such that C(x) = 1 there exists exactly one
y ∈ {0, 1}m such that C ′(x, y) = 1. Furthermore, for every x ∈ {0, 1}n and y ∈ {0, 1}m, if
C ′(x, y) = 1 then C(x) = 1.

We now summarize the structural properties of the circuit C ′. Each gate h ∈ H \ {o} in the
circuit C corresponds to 4 gates hin, hout, hL and hRin C ′. We define H in = {hin : h ∈ H},
Hout = {hout : h ∈ H}, HL = {hL : h ∈ H} and HR = {hR : h ∈ H}. In the circuit C ′ we have
that N+

C′(X) ⊆ Hout ∪ {o}, and that |Hout| ≤ 2(|N+
C (X)| + 1) · (ω + 1). For each blade Bi we

have that N+
C′(Bi) ⊆ Hout ∪ {o} and that |N+

C′(Bi)| ≤ 2(ω + 1). Further, N−C′(Bi) ⊆ H in ∪ R
and |N−C′(Bi) ∩H

in| ≤ 2(ω + 1).
For every i ≤ t define Ci to be the sub-circuit of C ′ induced by Bi ∪ N+

C′(Bi) ∪ N
−
C′(Bi).

The input gates of Ci are precisely N−C′(Bi) which consists of (a subset of) R plus a set Ii =
N−C′(Bi) \ R of at most 2(ω + 1) gates from H in. The circuit Ci has at most 2(ω + 1) output

gates, namely Oi = N+
C′(Bi). Hence the sub-circuit Ci computes a function Ci : 2R∪I

i → 2Oi .

It follows that Ci∣∣r is a function from 2I
i

to 2O
i
.

The algorithm A constructs the circuits Ci for every i ≤ t. For every i ≤ t it then uses the
circuit Ci to evaluate Ci∣∣r(P ) for every P ⊆ Ii and records the output Ci∣∣r(P ) as a string 0’s

and 1’s of length 2(ω + 1). In the last phase of the algorithm, for each gate g in Hout ∪ {o} it
records a 1 or a 0 as follows. If g is an and-gate the algorithm records a 0 for g if at least one
gate in R feeding into g is assigned 0 by r, or if at least one gate in R feeding negatively into
g is assigned 1 by r. Otherwise the algorithm records 1 for g. If g is an or-gate the algorithm
records a 1 for g if at least one gate in R feeding into g is assigned 1 by r, or if at least one gate
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in R feeding negatively into g is assigned 0 by r. Otherwise the algorithm records 0 for g. This
concludes the description of the algorithm A

In total the algorithm records at most 2(ω + 1) · 22(ω+1) bits for each blade of the propeller
decomposition, plus |Hout|+ 1 = |H| ≤ 2(|N+

C (X)|+ 1)(ω+ 1) bits at the end of the procedure.
The number of blades in the propeller decomposition is at most 2(|N+

C (X)| + 1). Hence the
total number of bits recorded by the algorithm is at most 6(|N+

C (X)|+ 1) · (ω + 1) · 22(ω+1).
It remains to prove that for any two assignments r and r′ to R such that A(C, (T, χ), X, r) =

A(C, (T, χ), X, r′), the functions C∣∣r and C∣∣r′ are equal. Towards this it suffices to show that

for every X ′ ⊆ X such that C∣∣r(X ′) = 1 we have C∣∣r′(X ′) = 1. Suppose now that C∣∣r(X ′) = 1.

By Lemma 1 there exists an evaluation f of C ′ that assigns 1 to every element in X ′, 0 to every
element in X \X ′, agrees with r on R, and assigns 1 to o. Consider now the evaluation f ′ of
C ′ that assigns 1 to every element in X ′, 0 to every element in X \ X ′, agrees with r′ on R,
and agrees with f on H in. We first prove that f and f ′ agree an all gates in Hout. Let g be an
arbitrarily chosen or-gate in Hout. We will prove that if f assigns 1 to g, then f ′ also assigns 1
to g and if f ′ assigns 1 to g, then f also assigns 1 to g.

If f assigns 1 to g then there exists a gate g′ such that either f assigns 1 to g′ and g′ feeds
positively into g or f assigns 0 to g′ and g′ feeds negatively into g. The gate g′ can either be
in X, in R, in H in, or in Bi for some i ≤ t. If g′ is in X or H in then f and f ′ agree on g′

(by choice of f ′) and hence f ′ also assigns 1 to g. If g′ is in R then the algorithm A when ran
on (C, (T, χ), X, r) recorded 1 for g in the last phase. Hence A when ran on (C, (T, χ), X, r′)
also recorded 1 for g in the last phase. Hence there exists a gate g′′ such that r′ assigns 1 to g′′

and g′′ feeds positively into g or r′ assigns 0 to g′′ and g′′ feeds negatively into g. We conclude
that also in this case f ′ assigns 1 to g. Finally, if g′ is in Bi, then set P to be the subset of
N−C′(Bi) \ R that f assigns 1. We have that g ∈ Ci∣∣r(P ), in other words Ci∣∣r(P ) outputs 1 for

g. Since the recordings of the algorithm for Ci∣∣r(P ) and Ci∣∣r′(P ) are the same, it follows that

Ci∣∣r′(P ) also outputs 1 for g. But this means that there is some gate g′′ ∈ Bi that such that

f ′ assigns 1 to g′′ and g′′ feeds positively into g or f ′ assigns 0 to g′′ and g′′ feeds negatively
into g. Hence f ′ assigns 1 to g. The proof that if f ′ assigns 1 to g then f also assigns 1 to g is
identical.

Consider now an arbitrarily chosen and-gate g in Hout. An identical argument to the one
above shows that if f assigns 0 to g, then f ′ also assigns 0 to g and if f ′ assigns 0 to g, then f
also assigns 0 to g. Hence f and f ′ agree on all gates in Hout.

Since f assigns 1 to o it follows that f assigns 1 to all gates in HL ∪HR. Thus, for every
h ∈ H we have that f assigns the same value to hin and hout. Since f and f ′ agree both on hin

and hout it follows that f ′ also assigns 1 to all gates in HL ∪HR. Finally we need to argue that
f ′ assigns 1 to o. Since all gates in HL ∪HR are 1 this follows from an argument identical to
the one for and-gates in Hout. This concludes the proof.

3.2 Counting Satisfying Assignments

Lemma 5. There is an algorithm that takes as input a circuit C with n input gates and gate-
size m, such that at most s · n wires are incident to I(C), and ω = tw(C − I(C)) = o(log n),
runs in time 2n(1−ε)mO(1), where

ε = (48 · s · (ω + 1) · 4ω)−1 ,

and outputs the number of satisfying assignments to C.

Proof. First, using Bodlaender’s algorithm [3], the algorithm computes a tree decomposition
(T, χ) of C − I(C) of width at most ω, in time 2O(ω3)m = 2o(n)m. Then, the algorithm picks a
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subset X of I(C) of size ε ·n such that |N+
C (X)| ≤ ε ·s ·n. Such a set exists by a simple averaging

argument. For example, X can be chosen to be the set of the first εn gates of I(C) when the
gates are ordered by their fan-out in increasing order. Then, the algorithm sets R = I(C) \X,
and proceeds to iterate over every assignment r : R→ {0, 1}. For each r the algorithm computes
the number cr of satisfying assignments to C∣∣r as follows. The algorithm first applies Lemma 4

to r, and computes a string q ∈ {0, 1}`, where ` ≤ 6(|N+
C (X)| + 1) · (ω + 1) · 22(ω+1). It then

looks up whether the string q has been output in a previous iteration for some other assignment
r′ to R. If this is the case, then by Lemma 4 we have that cr = cr′ , so the algorithm records
this and proceeds to the next iteration. If the string q has not been previously encountered, the
algorithm computes cr by trying all possible assignments to X and stores the pair (q, cr). After
iterating over all choices of r the algorithm outputs

∑
r cr as the total number of satisfying

assignments to C. Since each satisfying assignment to C corresponds to exactly one satisfying
assignment to exactly one circuit C∣∣r, the correctness of the algorithm follows.

We now turn to the running time analysis. For each of the 2n(1−ε) choices of r the algorithm
applies Lemma 4 once, which takes nO(1) time since ω = o(log n). Furthermore, in at most
2` of the iterations (once for each distinct q), the algorithm spends 2εn time to compute cr.
In all other iterations, computation of cr takes time O(n) as it requires a single lookup in an
exponentially large table (or binary search tree) that stored the pairs (q, cr). Thus the total
time is upper bounded by 2(1−ε)nnO(1) + 2`2εnnO(1). Since ` ≤ 6(s · ε · n + 1) · (ω + 1) · 4ω+1

we have that 2`2εn ≤ 2(n/2)+o(n). Hence the running time is upper bounded by 2(1−ε)nnO(1), as
claimed.

Observe that the requirement in Lemma 5 that at most s · n wires are incident to I(C) is
weaker than demanding that the wire-size of C is at most s · n. Next we strengthen Lemma 5
to circuits of bounded gate-size, rather than wire-size. In a circuit C where the treewidth of
C − I(C) is bounded by ω, the number of wires in C − I(C) is within a factor ω of the number
gates. However the number of wires from I(C) to N+

C (I(C)) can be as large as quadratic in
|N+

C (I(C))|. We obtain the strengthening of Lemma 5 to bounded gate-size by a standard
fan-out reducing procedure for the input gates.

Theorem 1. There is an algorithm that takes as input a circuit C with n input gates and
gate-size m, such that |N+

C (I(C))| ≤ s · n, and ω = tw(C − I(C)) = o(log n), runs in time

2n(1−
ε
10

)mO(1), where
ε = (48 · s · (ω + 1) · 4ω)−1 ,

and outputs the number of satisfying assignments to C.

Proof. First, using Bodlaender’s algorithm [3], the algorithm computes a tree decomposition
(T, χ) of C − I(C) of width at most ω, in time 2O(ω3)m = 2o(n)m. From now on, we assume
that the decomposition (T, χ) is given as input.

The algorithm is recursive, and proceeds as follows. If no input gate (not counting the
constant gates) has fan-out more than 6 ·s the algorithm applies Lemma 5 to solve the instance.
Otherwise the algorithm picks an input gate g with fan-out at least 6 · s. It then calls itself
recursively to count the number of satisfying assignments where g is set to 1, and the number
of satisfying assignments when g is set to 0.

Before making the recursive call the algorithm performs the following simplification proce-
dure. When g is set to 1 then, for every or-gate g′ that g feeds positively into we force g′ to 1.
For every and-gate g′ that g feeds negatively into we force g′ to 0. When g is set to 0 then, for
every or-gate g′ that g feeds negatively into we force g′ to 1. For every and-gate g′ that g feeds
positively into we force g′ to 0. After the simplification procedure the algorithm removes the
gate g and all wires leading out of g.
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It is easy to see that the simplification procedure produces circuits where the number of
satisfying assignments to the simplified circuit is equal to the number of satisfying assignments
to C where the input gate g is set to 1 or 0 respectively. The correctness of the algorithm follows
from this fact, together with the correctness of the algorithm of Lemma 5. We now proceed
with the running time analysis.

Consider a node in the recursion tree from which the algorithm make two recursive calls,
one with the input gate g set to 1 and one with g set to 0. For any gate g′ that g feeds into,
g′ will be forced in at exactly one of the two recursive calls. Indeed, if g′ is an and-gate and
g feeds positively into g′ then g′ is forced when g is set to 0. If g′ is an and-gate and g feeds
negatively into g′ then g′ is forced when g is set to 1. If g′ is an or-gate and g feeds positively
into g′ then g′ is forced when g is set to 1. Finally, if g′ is an or-gate and g feeds negatively into
g′ then g′ is forced when g is set to 0.

Hence, in at least one of the two recursive calls, at least 3 · s gates in N+
C (I(C)) are forced.

For each internal node of the recursion tree, pick exactly one edge corresponding to a recursive
call where at least 3 · s gates in N+

C (I(C)) are forced, and call this edge a heavy edge. Since
every internal node in the recursion tree has exactly one heavy and one light (not heavy) edge
coming out of it, each leaf of the recursion tree is uniquely identified by the length ` of the root
to leaf path, and the positions in the path of the heavy edges. In a leaf node for which the
root to leaf path has length ` the number of input gates is n− ` and the total number of wires
leading out from the input gates is at most (n − `) · 4 · s. Further, if the root to leaf path has
at least h heavy edges, then at most s · n − 3 · s · h normal gates in C are being fed into from
the non-constant input gates. It follows that h ≤ n/3. It follows that the running time of the
algorithm is bounded by ∑

`≤n

∑
h≤min(`,n/3)

(
`

h

)
· 2(n−`)(1−ε) ·mO(1).

For ` ≥ 9n/10 the terms of the sum are upper bounded by
(9n/10
n/3

)
· 2n/10nO(1) ≤ 1.95n ·mO(1).

For ` ≤ 9n/10 the sum is upper bounded by 2` · 2(n−`)(1−ε) ·mO(1) ≤ 2n(1−
ε
10

)mO(1). Hence the
total running time is upper bounded by 2n(1−

ε
10

)mO(1), as claimed.

3.3 Quantified Boolean Circuit SAT

Informally, a quantified circuit is simply a quantified boolean formula in prenex normal form
where the formula that is used to evaluate the predicate once the variables have been instantiated
is replaced by a circuit. Formally, a quantified circuit is a circuit C with n input gates equipped
with a bijection σ : {1, . . . , n} → I(C) and a quantifier sequence q1, q2, . . . , qn where each qi is
a symbol in {∀,∃}.

We now give an inductive definition for what it means for a quantified circuit to evaluate
to 1 or evaluate to 0. A quantified circuit with a single input gate g and quantifier q1 = ∃
evaluates to 1 if C({g}) = 1 or C(∅) = 1. A quantified circuit with a single input gate g and
quantifier q1 = ∀ evaluates to 1 if C({g}) = C(∅) = 1. Otherwise the quantified circuit evaluates
to 0. A quantified circuit with n ≥ 2 gates with q1 = ∃ evaluates to 1 if at least one of the
two quantified circuits Cσ(1)←1 or Cσ(1)←0 with quantifier sequence q2, . . . , qn evaluate to 1. A
quantified circuit with n ≥ 2 gates with q1 = ∀ evaluates to 1 if both quantified circuits Cσ(1)←1

or Cσ(1)←0 with quantifier sequence q2, . . . , qn evaluate to 1. Otherwise the quantified circuit
evaluates to 0. We will sometimes say that the quantified circuit is “true” or “false” instead of
saying it evaluates to 1 or 0 respectively.

In the Quantified Boolean Circuit SAT problem the input is a quantified circuit
(C, σ, q1, . . . , qn). The task is to determine whether the quantified circuit is true or false. The
recursive definition of evaluating the circuit naturally gives rise to a 2n ·nO(1) time algorithm for
the problem. Here we give an algorithm that is significantly faster provided that C − I(C) has
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bounded treewidth, and that every gate in I(C) has bounded fan-out. The proof of Theorem 2
closely follows the proof of Lemma 5, the key difference is that the subset X of input gates
that are used to generate the propeller decomposition is no longer chosen greedily, but set to
{σ(bn(1− ε)c), σ(bn(1− ε)c+ 1, . . . , σ(n))} instead.

Theorem 2. There is an algorithm that takes as input a Quantified Circuit (C, σ, q1, . . . , qn)
with n input gates and gate-size m, such that each input gate has fan-out at most s, and
ω = tw(C − I(C)) = o(log n), runs in time 2n(1−ε)mO(1), where

ε = (48 · s · (ω + 1) · 4ω)−1 ,

and outputs whether (C, σ, q1, . . . , qn) is true.

Proof. First, using Bodlaender’s algorithm [3], the algorithm computes a tree decomposition
(T, χ) of C − I(C) of width at most ω, in time 2O(ω3)m = 2o(n)m. Then, the algorithm sets
X ⊆ I(C) to be {σ(bn(1 − ε)c), σ(bn(1 − ε)c + 1, . . . , σ(n)}. Observe that |N+

C (X)| ≤ ε · s · n.
Then, the algorithm sets R = I(C) \ X, and commences with the algorithm for evaluating
quantified circuits that follows directly from the definition. However, every time the algorithm
arrives at a recursive call when the set of remaining input gates is exactly X it proceeds as
follows.

Let r be the assignment that is forced to R in this recursive call. The algorithm needs to
return cr, which is defined to be 0 or 1 according to whether the quantified circuit

(CR←r, σ, qbn(1−ε)c, qbn(1−ε)c+1, . . . , qn)

evaluates to 0 or to 1.
The algorithm first applies Lemma 4 to r, and computes a string s ∈ {0, 1}`, where ` ≤

6(|N+
C (X)| + 1) · (ω + 1) · 22(ω+1). It then looks up whether the string s has been output in a

previous recursive call for some other assignment r′ to R. If it has, then by Lemma 4 we have
that cr = cr′ since C∣∣r = C∣∣r′ and whether or not the considered quantified circuit evaluates to

0 or 1 depends only on the function computed by the circuit CR←r and not on the (structure
of the) circuit itself. In this case, the algorithm returns cr = cr′ .

If the string s has not been previously encountered, the algorithm computes cr using the
algorithm implicit in the definition of evaluating quantified circuits. It then stores that s has
been previously encountered, and that when s was encountered the algorithm returned cr. Then
the algorithm returns cr. The correctness of the algorithm follows directly from the definition
of evaluation of quantified circuits together with Lemma 4.

We now turn to the running time analysis. For each of the 2n(1−ε) choices of r the algorithm
applies Lemma 4 once, which takes mO(1) time since ω = o(log n). Furthermore, in at most 2` of
the recursive calls (the ones where s has not been previously encountered) the algorithm spends
2εn time to compute cr. In all other recursive calls this is done in time O(n) by a single lookup
in an exponentially large table (or binary search tree) storing all previously encountered strings.
Thus the total time is upper bounded by 2(1−ε)nmO(1)+2`. Since ` ≤ 6(s ·ε ·n+1) ·(ω+1) ·4ω+1

we have that 2` ≤ 2(n/2)+o(n). Hence the running time is upper bounded by 2(1−ε)nmO(1), as
claimed.

Notice that the only place where we used that the fan-out of all input gates is at most s, is
to bound N+

C (X). Hence Theorem 2 also applies to all circuits where the total fan-out of the
ε · n gates that are quantified last is at most ε · s · n.

4 Lower Bounds

In this section we will prove that constant treewidth circuits with a linear number of wires
can not compute the Majorityn function. The proof hinges on the classic result by Chandra,
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Furst and Lipton [7] that in the Number On The Forehead (NOF) model of communication
complexity, Majorityn does not admit a constant cost communication protocol with a constant
number of players. We will prove that every symmetric function computable by a constant
treewidth circuit with a linear number of wires does admit such a protocol. Together the two
results yield the desired lower bound for Majorityn.

Theorem 3. For every constant s and ω there is no circuit C that computes Majorityn, such
that at most s · n wires lead out of I(C) and that the treewidth C − I(C) is at most ω.

The Number on the Forehead Model We now introduce the notions from communication
complexity that we will use. For in-depth treatment, see [23]. In the Number On The Forehead
(NOF) model there are k players that together have to compute a function f : {0, 1}n → {0, 1}.
The players know n and the function f to be computed prior to deciding on the protocol. Once
they have decide on a protocol an input x ∈ {0, 1}n is given as input, and the players together
have to output f(x).

Each player sees all bits of x except a subset of n/k “anti-private” bits that are seen by
everyone else except her. In particular, for every player i there is a set Qi ⊆ {1, . . . , n} of
size bn/kc or dn/ke such that player i has access to the input bits {1, . . . , n} \ Qi. The sets
Q1, . . . , Qk form a partition of {1, . . . , n}, and the players know this partition.

Communication between the players happens by broadcast, i.e when a player transmits a
message all the other players receive the message. The cost of sending the message is the length
of the message. Any one of the players may output the function value. There are two variants
of the Number On The Forehead model - the best-partition and the worst-partition version. In
the best-partition model it is sufficient that there exists a partition Q1, . . . , Qk, such that for
every input x ∈ {0, 1}n the protocol successfully computes f(x). In the worst-partition model
the protocol has to successfully compute f(x) for every input x and partition Q1, . . . , Qk.

A function f : {0, 1}n → {0, 1} is symmetric if f(x) only depends on the number of input
bits set to 1. The function Majorityn : {0, 1}n → {0, 1} function outputs 1 if at least n/2 bits are
set to 1. Hence Majorityn is symmetric. For symmetric functions there is no difference between
the best-partition and the worst-partition models. Our lower bounds for Majorityn rely on the
following result.

Proposition 1 ([7]). For every constant c and k, Majorityn does not admit a best-partition
NOF protocol with cost c and k players.

One-Way Communication Protocols In a one-way communication protocol with k players
the i’th player has access to a subset Si ⊆ {1, . . . n} of the input bits. The access size of the
protocol is maxi |Si|. Each bit is seen by at least one player, and the players know the family
S1, . . . , Sk.

Each player gets to sends a single message to a center. The center receives the messages
from all the players, but has no access to the input. The center then has to determine and
output the function value. None of the players other than the center can see the messages of
any of the other players. The cost of the communication protocol is the total number of bits
sent from the players to the center.

We will only consider best-partition one-way communication protocols where there has to
exist a collection S1, . . . , Sk of sets (each Si of cardinality at most the access size) such that
for every x the protocol successfully computes f(x) given that each player i has access to the
bits in Si. Note that S1, . . . , Sk does not have to be a partition of {1, . . . , n}, nevertheless we
refer to this model as the best-partition model for a nomenclature consistent with the one for
the NOF model. We start by relating One-Way communication protocols for Majorityn and
communication protocols in the NOF model.
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Lemma 6. For every constant k and c, if Majorityn admits a best-partition one-way communi-
cation protocol with k players, access size n/2, and cost c, then Majorityn admits a best-partition
NOF protocol with k players and cost c.

Proof. Suppose that Majorityn admits a best-partition one-way communication protocol with k
players, access size n/2, and cost c. We then give a best-partition NOF protocol with cost c
and k players.

Let S1, . . . , Sk ⊆ {1, . . . , 5n} be the access sets the players for computing Majority5n in
the one-way protocol. Each Si has size at most 5n/2. Select Q1, . . . Qk ⊆ {1, . . . , 5n} such
that for every i, |Qi| ∈ {bn/kc, dn/ke}, Qi is disjoint from Si,

∑
i |Qi| = n and the sets Qi

are disjoint. Such a collection Q1, . . . Qk exists because it can be picked greedily: first select
bn/kc elements disjoint from S1 and put them into Q1. Then select dn/ke elements from
{1, . . . , 5n} \ S2 ∪Q1 and put them into Q2. In general, in step i pick bn/kc or dn/ke elements
disjoint from Si∪Q1∪. . .∪Qi−1 and insert them into Qi. Since |Si∪Q1∪. . .∪Qi−1| ≤ 5n/2+n ≤
7n/2 this will always be possible. Because Majority5n is a symmetric function, without loss of
generality Q1, . . . Qk forms a partition of {1, . . . , n}. We give a NOF protocol for Majorityn with
partition Q1, . . . Qk.

On input x ∈ {0, 1}n For every i ≤ k, player i simulates the behavior of player i in the
one-way protocol for Majority5n on input (x, y) where y is a string of 2n 1’s followed by 2n 0’s.
Note that Majorityn(x) = Majority5n(x, y). Further, player i of the NOF protocol can simulate
the behavior of player i in the one-way protocol because Qi and Si are disjoint. In the NOF
model, communication happens by broadcast, so player 1 can act as the center of the one-way
protocol for Majority5n, and output the value of Majority5n(x, y) = Majorityn(x). The cost of
the NOF protocol for Majorityn is the same as the cost of the one-way protocol for Majority5n,
which is a constant c independent of n. This concludes the proof.

One-Way Communication Protocols from Bounded Treewidth Circuits. We now
prove the main technical ingredient of our lower bound – that every function computable by a
linear wire-size bounded treewidth circuit admits a one-way protocol with a constant number
of players, constant cost, and access size n/2.

Lemma 7. Let C be a circuit with n input gates, such that at most s·n wires are incident to I(C)
and tw(C− I(C)) ≤ ω for a positive integer ω. Then, for every d, the function C : 2I(C) → 2{o}

admits a one-way multi-party communication protocol with at most 8 · s · d players, each seeing
at most n/d bits of the input, and each sending at most 12 · (ω + 1) · 4ω bits to the center.

Towards the proof of Lemma 7 we will first give a propeller decomposition lemma similar to
Lemma 2, but decomposing the graph into ”equally sized” blades rather than trying to exclude
some fixed set from the blades. Similar arguments commonly appear in graph algorithms, see
e.g [4, 22]. In the following, when given a weight function w : V (G) → N on the vertices of a
graph G, we will write w(S) for subset S of V (G), meaning w(S) =

∑
v∈S w(v).

Lemma 8. There exists a linear time algorithm that given a graph G, a weight function w :
V (G)→ Z+, a tree decomposition (T, χ) of G of width ω and an integer r, computes a propeller
decomposition H, B1, B2, . . . Bt of width at most 2(ω + 1), such that t ≤ 5r, |H| ≤ 2r(ω + 1),
and for every i ≤ t, w(Bi) ≤ w(V (G))/r.

Proof. We will consider the tree decomposition as rooted with root r. It is well known (see
e.g. [11]) that given a tree decomposition (T, χ) of a graph G one can in polynomial time
construct a rooted tree decomposition (T ′, χ′) of G of the same width, such that every node u
in T has at most two children (neighbors that are further away from the root). We will therefore
assume that in T every node has at most two children. For every vertex u ∈ V (T ) we define Tu
to be the subtree of T rooted at u. We perform the following marking procedure.
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Initially M ′ = ∅ and w′ : V (G) → N is equal to w. Then, if such a vertex exists, pick
a lowermost vertex u ∈ V (T ) such that w′(χ(V (Tu))) ≥ w(V (G))/r. Add u to M ′ and, for
every v ∈ χ(V (Tu)), set w′(v) to 0. When no vertex u with w′(χ(V (Tu))) ≥ w(V (G))/r exists
terminate the marking procedure. Note that every time a vertex u is added to M ′, w′(V (G))
is decreased by at least w(V (G))/r. Thus the marking procedure terminates after at most r
rounds, with |M ′| ≤ r. Set M = LCA-closure(M ′). By Lemma 3, |M ′| ≤ 2|M | ≤ 2r.

Let Q1, Q2 . . . Qt be the connected components of T \M . By Lemma 3 we have that for every
i ≤ t, |NT (Qi)| ≤ 2. Further, since T has maximum degree 3 it follows that t ≤ 2|M |+ 1 ≤ 5r.

Define H = χ(M) and for each 1 ≤ i ≤ t set Bi = χ(Qi)\H. Since every vertex of G appears
in a bag of the tree-decomposition, H,B1, . . . Bt forms a partition of V (G). By construction we
have that for every i, N(Bi) ⊆ H. Furthermore, since |NT (Qi)| ≤ 2 we have |N(Bi)| ≤ 2(ω+1).
Finally, the marking procedure implies that for every i ≤ t, w(Bi) ≤ w(V (G))/r. This concludes
the proof.

Proof of Lemma 7. We will assume without loss of generality that every gate of C has at most
one wire feeding into it from I(C). To justify this assumption, suppose C does not have this
property. For every wire uv with u in I(C) we will make a new or-gate g and replace the wire
uv with the wires ug and gv. Call the resulting circuit C∗. Clearly C and C∗ compute the
same function. Furthermore, since adding leaves to a graph does not increase treewidth (except
possibly from 0 to 1), the treewidth of C∗ − I(C∗) is also at most ω. Additionally, the number
of wires feeding out of I(C∗) is also at most s · n. Hence we may prove Lemma 7 for C∗, and
the same conclusion will hold for C. Thus, from now on we assume that every gate of C has at
most one wire feeding into it from I(C).

Next, define a weight function w on the gates of C − I(C) where the weight of every gate g
is |N−C (g)∩ I(C)|. In other words, the weight of a gate is the number of wires feeding in to the
gate from the input gates. From the assumption on the number of wires feeding out of I(C) it
follows that the total weight of all gates is at most s · n. We then apply Lemma 8 on C − I(C)
with this weight function, and r = d · s. This results in a propeller decomposition H, B1, . . . Bt
of width at most 2(ω + 1), such that t ≤ 5 · d · s, |H| ≤ 2 · d · s(ω + 1), and for every i ≤ t,
w(Bi) ≤ n/d. If the output gate o is not in H, but rather in some Bi then remove o from Bi
and add o to H. This will increase the size H to at most 2 · d · s(ω + 1) + 1 and the width of
the decomposition to at most 2(ω + 1) + 1. The circuit C ′ is obtained from C by splitting all
the gates in H \ {o}. We abuse notation and will refer by I(C) both to the input gates of C
and to the input gates of C ′ that are copies of gates of C.

We now summarize the structural properties of the circuit C ′. Each gate h ∈ H \ {o} in the
circuit C corresponds to 4 gates hin, hout, hL and hRin C ′. We define H in = {hin : h ∈ H \{o}},
Hout = {hout : h ∈ H \ {o}}, HL = {hL : h ∈ H \ {o}} and HR = {hR : h ∈ H \ {o}}. In the
circuit C ′ we have that |Hout| = |H in| ≤ 2(|N+

C (X)| + 1) · (ω + 1). For each blade Bi we have
that N+

C′(Bi) ⊆ Hout ∪ {o} and that |N+
C′(Bi)| ≤ 2(ω + 1). Further, N−C′(Bi) ⊆ H in ∪ I(C),

|N−C′(Bi)∩I(C)| ≤ n/d (by the properties of the propeller decomposition), and |N−C′(Bi)∩H
in| ≤

2(ω + 1). From the properties of splitting (Lemma 1) it follows that for every X ⊆ I(C), if
C(X) = 1 there exists exactly one Y ⊆ H in such that C ′(X∪Y ) = 1. Further, if C ′(X∪Y ) = 1
then C(X) = 1.

We define a one-way communication protocol for the function computed by C with at
most t + 3 · d · s players. Players 1, . . . , t correspond to the blades B1, . . . Bt of the propeller
decomposition, while the remaining players and the center correspond to the hub. For every
i ≤ t player i has access to the bits in I(C) ∩N−C′(Bi). By construction, each of these players
has access to at most n/d bits. There are at most |H| ≤ 2 · d · s(ω + 1) + 1 ≤ 3 · d · s · (ω + 1)
gates in I(C) with wires to Hout ∪ {o}. The remaining 3 · d · s players distribute these gates
among themselves arbitrarily, each of them having access to (ω + 1) bits each.

On input X ⊆ I(C) the players proceed as follows. For every i ≤ t, player i will consider
the sub-circuit of C ′ induced by Pi = Bi ∪ N−C′(Bi) ∪ N

+
C′(Bi). The sub-circuit C ′[Pi] of C ′
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induced by Pi has at most 2(ω + 1) + 1 output gates. Player i has access to X ∩ N−C′(Bi).
Further, |N−C′(Bi)∩H

in| ≤ 2(ω+ 1). For each Q ⊆ N−C′(Bi)∩H
in she evaluates C ′[Pi] on input

(X ∩N−C′(Bi)) ∪ Q and sends the result to the center. Since there are at most 22(ω+1) choices
for Q, and for each choice of Q the result can be encoded in at most 2(ω+ 1) + 1 bits, the total
number of bits player i transmits to the center is at most 12 · (ω+1) ·4ω. The remaining players
transmit to the center the value of the gates that they have access to. Each of these players
transmits at most ω + 1 bits.

The center receives the messages from all of the players, and then, for every Y ⊆ Hout can
evaluate the circuit C ′(X ∪Y ) without without the knowledge of X because the messages of the
players describe precisely the output of all of the sub-circuits Pi and the value of all gates in
I(C) feeding directly into Hout ∪ {o}. If there exists a Y such that the center concludes that
C ′(X ∪ Y ) evaluates to 1, it outputs that C(X) = 1. Otherwise it outputs that C(X) = 0.

Lower bound for Majorityn. We are now in position to put everything together and prove
Theorem 3.

Proof of Theorem 3. Suppose Majorityn had a circuit C such that at most s ·n wires lead out of
I(C) and that the treewidth C − I(C) is at most ω. By Lemma 7 with d = 2, Majorityn has a
one-way protocol with constant cost, a constant number of players, and access size n/2. From
Lemma 6 it then follows that Majorityn has a NOF-protocol with a constant number of players
and constant cost. This contradicts Proposition 1 that such a protocol does not exist.
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[14] R. Diestel, Graph Theory, Springer, Berlin, second ed., electronic ed., February 2000.

[15] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms, Texts in Theoretical Com-
puter Science. An EATCS Series, Springer, 2010.

[16] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh, Planar f-deletion: Ap-
proximation and optimal FPT algorithms, CoRR, abs/1204.4230 (2012).

[17] , Planar f-deletion: Approximation, kernelization and optimal FPT algorithms, in
53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, 2012, pp. 470–479.

[18] T. Hertli, 3-sat faster and simpler - unique-sat bounds for ppsz hold in general, in Pro-
ceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, oct.
2011, pp. 277 –284.

[19] R. Impagliazzo, W. Matthews, and R. Paturi, A Satisfiability Algorithm for AC0,
in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, 2012.

[20] R. Impagliazzo, R. Paturi, and S. Schneider, A satisfiability algorithm for sparse
depth two threshold circuits, in Proceedings of the 54rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2013.

[21] K. Iwama, K. Seto, T. Takai, and S. Tamaki, Improved randomized algorithms for 3-
sat, in Algorithms and Computation, O. Cheong, K.-Y. Chwa, and K. Park, eds., vol. 6506
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010, pp. 73–84.

[22] E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sik-
dar, Linear kernels and single-exponential algorithms via protrusion decompositions, ACM
Trans. Algorithms, 12 (2016), pp. 21:1–21:41.

[23] E. Kushilevitz and N. Nisan, Communication complexity, Cambridge University Press,
1997.

[24] L. Levin, Universal sorting problems, Problems of Information Transmission, 9 (1973),
pp. 265–266.

[25] D. Lokshtanov, R. Paturi, S. Tamaki, R. Williams, and H. Yu, Beating brute
force for systems of polynomial equations over finite fields, in Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, Philadelphia,
PA, USA, 2017, Society for Industrial and Applied Mathematics, pp. 2190–2202.

18



[26] B. Monien and E. Speckenmeyer, Solving satisfiability in less than 2n steps, Discrete
Appl. Math., 10 (1985), pp. 287–295.

[27] R. Moser and D. Scheder, A Full Derandomization of Schöning’s k-SAT Algorithm, in
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