On a traffic problem

Vladimír Janovský

PANM 13, 2006

Outline:

- Follow-the-Leader model
- **Bifurcation analysis** Gasser, Sirito, Werner: Physica D 197 (2004)
- How to overtake? in the Follow-the-Leader model
- On pattern formation long-time behaviour

follow-the-leader model:

Problem 1

$$x'_i = y_i,$$

 $y'_i = V(x_{i+1} - x_i) - y_i, \quad x_{N+1} = x_1 + L$
 $i = 1, ..., N$

L ... parameter (length of the roundabout) N ... # of cars

$$r \mapsto V(r) \dots optimal velocity function e.g.$$

$$V(r) = V^{max} \frac{\tanh(a(r-1)) + \tanh(a)}{1 + \tanh(a)}$$

Definition 1 $h_i \equiv x_{i+1} - x_i$, i = 1, ..., N... the *i*-th headway

optimal velocity function example:

 $V^{max} = 7, a = 2$

Model interpretation

Problem $1 \equiv a$ system ODE's

Solving initial value problem yields

 $x_i(t), \quad y_i(t)$

 \dots the position/velocity of the *i*-th car at time t

State space: $\mathbb{R}^N \times \mathbb{R}^N$, $x \in \mathbb{R}^N$, $y \in \mathbb{R}^N$

Initial condition: $x^0 \in \mathbb{R}^N$, $y^0 \in \mathbb{R}^N$ $s \in \mathbb{R}$... an arbitrary phase shift,

$$s \le x_1^0 \le x_2^0 \le \dots \le x_{N-1}^0 \le x_N^0 \le L + s$$

Visualization: Transforming $x(t) = (x_1(t), \dots, x_N(t))$ to polar coordinates:

$$x_i(t) \longrightarrow rac{L}{2\pi} e^{rac{2\pi}{L} x_i(t)}, \quad i=1,\ldots,N$$

Model interpretation: Example

• parameter setting: L = 4.9383, N = 3, $V^{max} = 7$, a = 2

• the initial condition: $x^0 = [0.2243; 2.8069; 4.0269]$

 $x^{0}\longmapsto x(t)$, $t\geq 0$

Model interpretation ... continued

Snapshots in polar coordinates

at time t = 0, 0.1960, 0.5346, 0.9360

Model interpretation ... continued

• $y^0 = [4.9341; 6.1946; 3.5676]$ $y^0 \longmapsto y(t), t \ge 0$

Quasi steady state

• parameter setting: $L = 4.9383, N = 3, V^{max} = 7, a = 2$

• initial condition: $x^0 \equiv [s; s + L/N; s + 2L/N] = [0.9877; 2.6338; 4.2799]$ $s \dots$ an arbitrary phase shift, e.g. s = 0.9877 $y^0 \equiv [c; c; c] = [6.5; 6.5; 6.5]$, where $c \equiv V(L/N)$

Evolution of the particular initial condition:

$$x^{0} \longmapsto x(t) \equiv [s + ct; s + L/N + ct; s + 2L/N + ct]$$
$$y^{0} \longmapsto y(t) \equiv [c; c; c]$$
as $t \ge 0$

Quasi steady state ... continued

up to a phase shift s

Periodic solutions: cycles Example: L = 4.9383, N = 3, $V^{max} = 7$, a = 2

initial condition: $[x^0, y^0] \in \mathbb{R}^6$ $[x^0, y^0] \longmapsto [x(t), y(t)], t \ge 0$... *T*-periodic, *T* = 2.9504 $y^0 = [5.5810; 6.2594; 3.7049]$

Formulation in headway and velocity components Problem 2

$$h'_{i} = y_{i+1} - y_{i},$$

$$y'_{i} = V(h_{i}) - y_{i},$$

$$y'_{N} = V(L - \sum_{k=1}^{N-1} h_{k}) - y_{N}$$

 $i = 1, \ldots, N-1$

 $L \dots$ parameter (length of the roundabout) $N \dots \#$ of cars Cycles ... continued

identical copy in $[h_2, y_2]$ and $[h_3, y_3]$ plane

[2.5421, 5.5810] and [1.2329, 6.2594] and [1.1633, 1.1634] ... initial points

Bifurcation analysis:

Gasser, Sirito, Werner: Physica D 197 (2004)

branches: red/blue $L \mapsto [L/N, L/N, L/N, V(L/N), V(L/N), V(L/N)]$ $\in \mathbb{R}^{2N}$... steady states $L \mapsto C^1(S_L, \mathbb{R}^{2N})$... cycles

Non physical cycle: Example

• parameter setting: L = 4.5628, N = 3, $V^{max} = 7$, a = 2

 $[x^0, y^0] \longmapsto [x(t), y(t)], t \ge 0$ $y^0 = [5.0389; 5.6683; 1.9686]$

Cycle:

 $[h^0, y^0] \longmapsto [h(t), y(t)], t \ge 0$ $h^0 = [3.2227; 0.6466; 0.6935]$ $y^0 = [5.0389; 5.6683; 1.9686]$

+ identical copies in $[h_2, y_2]$ and $[h_3, y_3]$ plane

Consequences:

 $[x^0, y^0] \longmapsto [x(t), y(t)], t \ge 0$ $x^0 = [0.2373; 3.4600; 4.1065]$

Overtaking Model

via a piecewise smooth dynamical system

A sketch of three trajectories of the flow

Overtaking Model ... continued

The trajectories after imposing the swap of the initial condition at $t = t_E$.

Overtaking Model ... continued

Trajectory of the k-th car. The headway is discontinuous at t_E .

Overtaking Model ... continued

Trajectory of the k + 1-th car. The headway is discontinuous at t_E .

Numerical tests

• parameter setting: L = 15, N = 14, $V^{max} = 37$, a = 2• initial condition: $[x^0, y^0] \in \mathbb{R}^{14} \times \mathbb{R}^{14}$ close to the **unstable** steady state

Computing the model evolution $[x^0, y^0] \longmapsto [x(t), y(t)], t \in [0, 3]$

Numerical tests ... continued

Events:

car No 8 overtakes car No 9 at time 1.9136 car No 7 overtakes car No 9 at time 2.0426 car No 6 overtakes car No 9 at time 2.2294 car No 11 overtakes car No 12 at time 2.4605 car No 14 overtakes car No 1 at time 2.2546 ... etc. # Events = 18.

Numerical tests ... continued

Velocity of a selected car: car No 8 $[x^0, y^0] \mapsto y_8(t), t \in [0, 3]$ blue ... via **Overtaking Model** red ... via the original "smooth" model (1)

Car No 8 overtakes car No 9, No 12

Numerical tests ... continued

Headway of a selected car: car No 8 $[x^0, y^0] \mapsto h_8(t), t \in [0, 3]$ blue ... via **Overtaking Model** red ... via the original "smooth" model (1)

Asymptotic properties

of the Overtaking Model:

$$[x^0, y^0] \longmapsto [x(t), y(t)]$$
 as $t \to \infty$

 \dots \exists invariant objects

... experimental evidence (only)

formally,

$$[x(t), y(t)] = \Pi(t, [x^0, y^0]), \quad t \ge 0$$

? (semi) flow on $\mathbb{R}^N \times \mathbb{R}^N$

 $\dots \omega$ -limit sets

... dynamical simulation

Example:

 $L = 3.6998, N = 3, V^{max} = 7, a = 2$ $[x^0, y^0] \mapsto [x(t), y(t)] \text{ as } t \to \infty$ via the Overtaking Model $x^0 = [0.0314; 3.3573; 3.6628],$ $y^0 = [4.6465; 5.1303; 1.4956]$

```
Transition time: 3.5714 * 50,
3.5714 \dots the period of the "smooth" cycle
due to model (1)
```

Velocity $y_1(t)$ of the car No 1 vs time t

... the waveform with period T = 4.8525

Velocity $y_2(t)$ of the car No 2 vs time t

... the same T-periodic waveform, $T/{\rm 2}$ out of phase.

Velocity $y_3(t)$ of the car No 3 vs time t

... the waveform with period T/2 ! No 3 orbits without any interference with No 1 and No 2.

Dynamical simulation over one period:

Snapshots at the time t = 1.2951, t + T/6, t + 2T/6t + 3T/6, t + 4T/6, t + 5T/6.

At time t, car No 1 overtakes car No 2, At time t + T/2, car No 2 overtakes car No 1

Observation: Oscillatory Patterns

attributes:

- periodicity ... in time
- symmetry ... in space

ad: Follow-the-Leader model:

... rotating wave

i.e., three **identical** wave forms, 2T/3 out of phase

ad: Overtaking Model:

... 5 different oscillatory patterns

Investigation of animal gait from *group theoretic* point if view

walk, trot, pace(rack), canter, transverse gallop, rotary gallop, bound, pronk, ...

analogy: Hopf bifurcation in a ring of coupled oscillators with a $\mathbf{D}_{\mathbf{N}}\text{-symmetry}$

a three-legged dog ? ... prediction:

- discrete rotating wave
- reflectionally symmetric oscillations
- phase-shifted reflectionally symmetric oscillations

"The three-legged dog":

Phase-shifted reflectionally symmetric oscillations

Rotating wave

Phase-shifted reflectionally symmetric oscillations conjugate

How to recognize a pattern? *symbolic dynamical notions*

event map ... ad: rotating wave example

 $G_E = \{ [1 \rightarrow 2], [3 \rightarrow 2], [3 \rightarrow 1], [2 \rightarrow 1], [2 \rightarrow 3], [1 \rightarrow 3], \text{etc.} \}$.

 \implies overtaking pattern

event matrix

$$M_E = \begin{bmatrix} 2 & \emptyset & \frac{3}{3} & \frac{2}{2} & \emptyset & \overline{3} & \overline{2} & \emptyset & \frac{3}{3} & \frac{2}{2} & \emptyset & \overline{3} & \dots \\ \frac{1}{9} & \frac{3}{2} & \frac{1}{9} & \frac{1}{1} & \frac{3}{3} & \emptyset & \frac{1}{1} & \frac{3}{2} & \frac{1}{9} & \frac{3}{2} & \frac{1}{1} & \emptyset & 2 & 1 & \dots \end{bmatrix}$$
$$M_E = \begin{bmatrix} 2 & 0 & -3 & -2 & 0 & 3 & 2 & 0 & -3 & -2 & 0 & 3 & \dots \\ -1 & -3 & 0 & 1 & 3 & 0 & -1 & -3 & 0 & 1 & 3 & 0 & \dots \\ 0 & 2 & 1 & 0 & -2 & -1 & 0 & 2 & 1 & 0 & -2 & -1 & \dots \end{bmatrix}$$

state space: the set of all event maps

 $D_3 = \{ Id, Flip, Rot, Rot \circ Rot, Flip \circ Rot, Flip \circ Rot \circ Rot \}$

... a group of symmetries of an equilateral triangle

examples of actions:

 $G_E = \{ [1 \to 2], [3 \to 2], [3 \to 1], [2 \to 1], [2 \to 3], [1 \to 3], \text{etc.} \}$ $\mathbf{Rot}(G_E) = \{ [2 \to 3], [1 \to 3], [1 \to 2], [3 \to 2], [3 \to 1], [2 \to 1], \text{etc.} \}$ $\mathbf{Flip}(G_E) = \{ [2 \to 1], [3 \to 1], [3 \to 2], [1 \to 2], [1 \to 3], [2 \to 3], \text{etc.} \}$

event period of G_E : $p_E = 6$

temporal symmetries: ... event shift

 $\begin{array}{rcl} G_E &=& \{ \left[1 \rightarrow 2 \right], \left[3 \rightarrow 2 \right], \left[3 \rightarrow 1 \right], \left[2 \rightarrow 1 \right], \left[2 \rightarrow 3 \right], \left[1 \rightarrow 3 \right], \, \text{etc.} \} \\ \mathbf{S}(G_E, 1) &=& \{ \left[3 \rightarrow 2 \right], \left[3 \rightarrow 1 \right], \left[2 \rightarrow 1 \right], \left[2 \rightarrow 3 \right], \left[1 \rightarrow 3 \right], \left[1 \rightarrow 2 \right], \, \text{etc.} \} \\ \mathbf{S}(G_E, 2p_E/3) &=& \{ \left[2 \rightarrow 3 \right], \left[1 \rightarrow 3 \right], \left[1 \rightarrow 2 \right], \left[3 \rightarrow 2 \right], \left[3 \rightarrow 1 \right], \left[2 \rightarrow 1 \right], \, \text{etc.} \} \end{array}$

The Spatial-Temporal Symmetries

of a periodic solution

Idea: the spatial action of $\gamma \in D_3$ on the state space may be exactly compensated by a proper event shift

Let p_E be divisible by 3:

$\mathbf{Rot}(G_E)$	=	$\mathbf{S}(G_E, 2p_E/3)$
$\mathbf{Rot}(G_E)$	=	$\mathbf{S}(G_E,p_E/3)$

... rotating wave

Let p_E be divisible by 2:

 $\begin{aligned} \mathbf{Flip}(G_E) &= \mathbf{S}(G_E, p_E/2) \\ \mathbf{Flip} \circ \mathbf{Rot}(G_E) &= \mathbf{S}(G_E, p_E/2) \\ \mathbf{Flip} \circ \mathbf{Rot} \circ \mathbf{Rot}(G_E) &= \mathbf{S}(G_E, p_E/2) \end{aligned}$

... phase-shifted reflectionally symmetric oscillations

Conclusions

- Considered: Follow-the-Leader model of a circular road.
 ⇒ overtaking prohibited
- We learned how to **simulate overtaking** in Follow-the-Leader model. Mathematically: *Filipov system* i.e., discontinuous righthand sides.
- Long-time behaviour? Case study N = 3:
 - Spatial-temporal symmetries of periodic solutions.
 - Patterns detected: rotating waves,
 phase-shifted reflectionally symmetric oscillations.
 - Idea: check for "landmarks" rather then for trajectories.

N = 4, pattern:

 $\begin{array}{ccc} A & B \\ A + \frac{1}{3} & A + \frac{2}{3} \end{array}$

N = 4, pattern:

 $\begin{array}{cc} A & A + \frac{1}{2} \\ B & B + \frac{1}{2} \end{array}$

pprox asymmetric bound