On a traffic problem

Vladimír Janovskȳ

PANM 13, 2006

Outline:

- Follow-the-Leader model
- Bifurcation analysis

Gasser, Sirito, Werner: Physica D 197 (2004)

- How to overtake?
in the Follow-the-Leader model
- On pattern formation
long-time behaviour
follow-the-leader model:

Problem 1

$$
\begin{aligned}
x_{i}^{\prime} & =y_{i}, \\
y_{i}^{\prime} & =V\left(x_{i+1}-x_{i}\right)-y_{i}, \quad x_{N+1}=x_{1}+L
\end{aligned}
$$

$i=1, \ldots, N$
L... parameter (length of the roundabout)
N ... \# of cars
$r \mapsto V(r)$... optimal velocity function
e.g.

$$
V(r)=V^{\max } \frac{\tanh (a(r-1))+\tanh (a)}{1+\tanh (a)}
$$

Definition $1 h_{i} \equiv x_{i+1}-x_{i}, \quad i=1, \ldots, N$
... the i-th headway

optimal velocity function example:

$V^{\max }=7, a=2$

Model interpretation

Problem $1 \equiv$ a system ODE's

Solving initial value problem yields

$$
x_{i}(t), \quad y_{i}(t)
$$

... the position/velocity of the i-th car at time t
State space: $\mathbb{R}^{N} \times \mathbb{R}^{N}, x \in \mathbb{R}^{N}, y \in \mathbb{R}^{N}$
Initial condition: $x^{0} \in \mathbb{R}^{N}, y^{0} \in \mathbb{R}^{N}$
$s \in \mathbb{R} \ldots$ an arbitrary phase shift,

$$
s \leq x_{1}^{0} \leq x_{2}^{0} \leq \cdots \leq x_{N-1}^{0} \leq x_{N}^{0} \leq L+s
$$

Visualization: Transforming $x(t)=\left(x_{1}(t), \ldots, x_{N}(t)\right)$ to polar coordinates:

$$
x_{i}(t) \longrightarrow \frac{L}{2 \pi} e^{\frac{2 \pi}{L} x_{i}(t)}, \quad i=1, \ldots, N
$$

Model interpretation: Example

- parameter setting:
$L=4.9383, N=3, V^{\max }=7, a=2$
- the initial condition:
$x^{0}=[0.2243 ; 2.8069 ; 4.0269]$
$x^{0} \longmapsto x(t), t \geq 0$

Model interpretation ... continued
Snapshots in polar coordinates

at time $t=0,0.1960,0.5346,0.9360$

Model interpretation ... continued

- $y^{0}=[4.9341 ; 6.1946 ; 3.5676]$
$y^{0} \longmapsto y(t), t \geq 0$

Quasi steady state

- parameter setting:
$L=4.9383, N=3, V^{\max }=7, a=2$
- initial condition:
$x^{0} \equiv[s ; s+L / N ; s+2 L / N]=[0.9877 ; 2.6338 ; 4.2799]$
$s \ldots$ an arbitrary phase shift, e.g. $s=0.9877$
$y^{0} \equiv[c ; c ; c]=[6.5 ; 6.5 ; 6.5]$, where $c \equiv V(L / N)$
Evolution of the particular initial condition:
$x^{0} \longmapsto x(t) \equiv[s+c t ; s+L / N+c t ; s+2 L / N+c t]$
$y^{0} \longmapsto y(t) \equiv[c ; c ; c]$
as $t \geq 0$

Quasi steady state ... continued

$$
\begin{aligned}
& x^{0} \longmapsto x(t) \equiv[s+c t ; s+L / N+c t ; s+2 L / N+c t] \\
& x^{0} \equiv[s ; s+L / N ; s+2 L / N]=[0.9877 ; 2.6338 ; 4.2799]
\end{aligned}
$$

up to a phase shift s

Periodic solutions: cycles

Example: $L=4.9383, N=3, V^{\max }=7, a=2$

initial condition: $\left[x^{0}, y^{0}\right] \in \mathbb{R}^{6}$
$\left[x^{0}, y^{0}\right] \longmapsto[x(t), y(t)], t \geq 0$
... T-periodic, $T=2.9504$
$y^{0}=[5.5810 ; 6.2594 ; 3.7049]$

Formulation in headway and velocity components

Problem 2

$$
\begin{aligned}
h_{i}^{\prime} & =y_{i+1}-y_{i} \\
y_{i}^{\prime} & =V\left(h_{i}\right)-y_{i} \\
y_{N}^{\prime} & =V\left(L-\sum_{k=1}^{N-1} h_{k}\right)-y_{N}
\end{aligned}
$$

$i=1, \ldots, N-1$
L... parameter (length of the roundabout)
N ... \# of cars

Cycles ... continued

identical copy in $\left[h_{2}, y_{2}\right.$] and $\left[h_{3}, y_{3}\right.$] plane
[2.5421, 5.5810] and [1.2329, 6.2594] and [1.1633, 1.1634]
... initial points

Bifurcation analysis:

Gasser, Sirito, Werner: Physica D 197 (2004)

branches: red/blue
$L \mapsto[L / N, L / N, L / N, V(L / N), V(L / N), V(L / N)]$
$\in \mathbb{R}^{2 N} \ldots$ steady states
$L \mapsto C^{1}\left(S_{L}, \mathbb{R}^{2 N}\right) \ldots$ cycles

Non physical cycle: Example

- parameter setting:
$L=4.5628, N=3, V^{\max }=7, a=2$
$\left[x^{0}, y^{0}\right] \longmapsto[x(t), y(t)], t \geq 0$
$y^{0}=$ [5.0389; 5.6683; 1.9686]

$\ldots T$-periodic, $T=3.3491$

Cycle:

$\left[h^{0}, y^{0}\right] \longmapsto[h(t), y(t)], t \geq 0$
$h^{0}=[3.2227 ; 0.6466 ; 0.6935]$
$y^{0}=[5.0389 ; 5.6683 ; 1.9686]$

+ identical copies in $\left[h_{2}, y_{2}\right]$ and $\left[h_{3}, y_{3}\right]$ plane

Consequences:
$\left[x^{0}, y^{0}\right] \longmapsto[x(t), y(t)], t \geq 0$
$x^{0}=$ [0.2373; 3.4600; 4.1065]

Overtaking Model

via a piecewise smooth dynamical system

A sketch of three trajectories of the flow

Overtaking Model ... continued

The trajectories after imposing the swap of the initial condition at $t=t_{E}$.

Overtaking Model ... continued

Trajectory of the k-th car. The headway is discontinuous at t_{E}.

Overtaking Model ... continued

Trajectory of the $k+1$-th car. The headway is discontinuous at t_{E}.

Numerical tests

- parameter setting:
$L=15, N=14, V^{\max }=37, a=2$
- initial condition:
$\left[x^{0}, y^{0}\right] \in \mathbb{R}^{14} \times \mathbb{R}^{14}$
close to the unstable steady state

Computing the model evolution $\left[x^{0}, y^{0}\right] \longmapsto[x(t), y(t)], t \in[0,3]$

Numerical tests ... continued

Events:

car No 8 overtakes car No 9 at time 1.9136
car No 7 overtakes car No 9 at time 2.0426
car No 6 overtakes car No 9 at time 2.2294
car No 11 overtakes car No 12 at time 2.4605
car No 14 overtakes car No 1 at time 2.2546
... etc. \# Events $=18$.

Numerical tests ... continued
Velocity of a selected car: car No 8 $\left[x^{0}, y^{0}\right] \longmapsto y_{8}(t), t \in[0,3]$
blue ... via Overtaking Model red ... via the original "smooth" model (1)

Car No 8 overtakes car No 9, No 12

Numerical tests ... continued

Headway of a selected car: car No 8 $\left[x^{0}, y^{0}\right] \longmapsto h_{8}(t), t \in[0,3]$
blue ... via Overtaking Model red ... via the original "smooth" model (1)

Asymptotic properties

 of the Overtaking Model:$\left[x^{0}, y^{0}\right] \longmapsto[x(t), y(t)]$ as $t \rightarrow \infty$
... \exists invariant objects
... experimental evidence (only)
formally,

$$
[x(t), y(t)]=\Pi\left(t,\left[x^{0}, y^{0}\right]\right), \quad t \geq 0
$$

? (semi) flow on $\mathbb{R}^{N} \times \mathbb{R}^{N}$
... ω-limit sets
... dynamical simulation

Example:

$L=3.6998, N=3, V^{\max }=7, a=2$
$\left[x^{0}, y^{0}\right] \longmapsto[x(t), y(t)]$ as $t \rightarrow \infty$
via the Overtaking Model
$x^{0}=$ [0.0314; 3.3573; 3.6628],
$y^{0}=[4.6465 ; 5.1303 ; 1.4956]$

Transition time: $3.5714 * 50$, $3.5714 \ldots$ the period of the "smooth" cycle due to model (1)

Velocity $y_{1}(t)$ of the car No 1 vs time t

... the waveform with period $T=4.8525$

Velocity $y_{2}(t)$ of the car No 2 vs time t

... the same T-periodic waveform, T/2 out of phase.

Velocity $y_{3}(t)$ of the car No 3 vs time t

... the waveform with period $T / 2$! No 3 orbits without any interference with No 1 and No 2.

Dynamical simulation over one period:

Snapshots at the time
$t=1.2951, t+T / 6, t+2 T / 6$
$t+3 T / 6, t+4 T / 6, t+5 T / 6$.
At time t, car No 1 overtakes car No 2,
At time $t+T / 2$, car No 2 overtakes car No 1

Observation: Oscillatory Patterns

attributes:

- periodicity ... in time
- symmetry ... in space
ad: Follow-the-Leader model:
... rotating wave
i.e., three identical wave forms, $2 T / 3$ out of phase
ad: Overtaking Model:
... 5 different oscillatory patterns

LAN STE VART AND MARTIN GOLUBIISKY

FEARIUL SYMWEThY

Investigation of animal gait

from group theoretic point if view
walk, trot, pace(rack), canter, transverse gallop, rotary gallop, bound, pronk, ...
analogy: Hopf bifurcation in a ring
of coupled oscillators with a \mathbf{D}_{N}-symmetry
a three-legged dog ? ... prediction:

- discrete rotating wave
- reflectionally symmetric oscillations
- phase-shifted reflectionally symmetric oscillations
"The three-legged dog":

Phase-shifted reflectionally symmetric oscillations

Rotating wave

Phase-shifted reflectionally symmetric oscillations conjugate

How to recognize a pattern?
symbolic dynamical notions
event map ... ad: rotating wave example

$$
G_{E}=\{[1 \rightarrow 2],[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1],[2 \rightarrow 3],[1 \rightarrow 3], \text { etc. }\}
$$

\Longrightarrow overtaking pattern
event matrix

$$
\begin{gathered}
M_{E}=\left[\begin{array}{rrrrrrrrrrrrr}
\overline{2} & \emptyset & \frac{3}{2} & \frac{2}{\overline{1}} & \frac{\emptyset}{3} & \overline{3} & \overline{2} & \emptyset & \frac{3}{2} & \frac{2}{\overline{1}} & \frac{\emptyset}{3} & \overline{3} & \ldots \\
\overline{1} & \frac{3}{\overline{2}} & \frac{1}{1} & \emptyset & \underline{2} & \underline{1} & \bar{\emptyset} & \overline{\overline{3}} & \frac{\emptyset}{1} & \emptyset & \underline{2} & \underline{1} & \cdots
\end{array}\right] \\
M_{E}=\left[\begin{array}{rrrrrrrrrrrrr}
2 & 0 & -3 & -2 & 0 & 3 & 2 & 0 & -3 & -2 & 0 & 3 & \cdots \\
-1 & -3 & 0 & 1 & 3 & 0 & -1 & -3 & 0 & 1 & 3 & 0 & \cdots \\
0 & 2 & 1 & 0 & -2 & -1 & 0 & 2 & 1 & 0 & -2 & -1 & \cdots
\end{array}\right]
\end{gathered}
$$

state space: the set of all event maps

$$
\mathbf{D}_{3}=\{\mathbf{I d}, \text { Flip }, \boldsymbol{R o t}, \boldsymbol{\operatorname { R o t }} \circ \operatorname{Rot}, \text { Flip } \circ \operatorname{Rot}, \text { Flip } \circ \operatorname{Rot} \circ \operatorname{Rot}\}
$$

... a group of symmetries of an equilateral triangle examples of actions:

$$
\begin{aligned}
G_{E} & =\{[1 \rightarrow 2],[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1],[2 \rightarrow 3],[1 \rightarrow 3], \text { etc. }\} \\
\operatorname{Rot}\left(G_{E}\right) & =\{[2 \rightarrow 3],[1 \rightarrow 3],[1 \rightarrow 2],[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1], \text { etc. }\} \\
\operatorname{Flip}\left(G_{E}\right) & =\{[2 \rightarrow 1],[3 \rightarrow 1],[3 \rightarrow 2],[1 \rightarrow 2],[1 \rightarrow 3],[2 \rightarrow 3], \text { etc. }\}
\end{aligned}
$$

event period of $G_{E}: p_{E}=6$
temporal symmetries: ... event shift

$$
\begin{aligned}
G_{E} & =\{[1 \rightarrow 2],[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1],[2 \rightarrow 3],[1 \rightarrow 3], \text { etc. }\} \\
\mathrm{S}\left(G_{E}, 1\right) & =\{[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1],[2 \rightarrow 3],[1 \rightarrow 3],[1 \rightarrow 2], \text { etc. }\} \\
\mathbf{S}\left(G_{E}, 2 p_{E} / 3\right) & =\{[2 \rightarrow 3],[1 \rightarrow 3],[1 \rightarrow 2],[3 \rightarrow 2],[3 \rightarrow 1],[2 \rightarrow 1], \text { etc. }\}
\end{aligned}
$$

The Spatial-Temporal Symmetries

of a periodic solution
Idea: the spatial action of $\gamma \in \mathbf{D}_{\mathbf{3}}$ on the state space may be exactly compensated by a proper event shift

Let p_{E} be divisible by 3 :

$$
\begin{aligned}
& \operatorname{Rot}\left(G_{E}\right)=\mathbf{S}\left(G_{E}, 2 p_{E} / 3\right) \\
& \operatorname{Rot}\left(G_{E}\right)=\mathbf{S}\left(G_{E}, p_{E} / 3\right)
\end{aligned}
$$

... rotating wave
Let p_{E} be divisible by 2 :

$$
\begin{aligned}
\operatorname{Flip}\left(G_{E}\right) & =\mathrm{S}\left(G_{E}, p_{E} / 2\right) \\
\text { Flip } \circ \operatorname{Rot}\left(G_{E}\right) & =\mathrm{S}\left(G_{E}, p_{E} / 2\right) \\
\text { Flip } \circ \operatorname{Rot} \circ \operatorname{Rot}\left(G_{E}\right) & =\mathrm{S}\left(G_{E}, p_{E} / 2\right)
\end{aligned}
$$

... phase-shifted reflectionally symmetric oscillations

Conclusions

- Considered: Follow-the-Leader model of a circular road. \Longrightarrow overtaking prohibited
- We learned how to simulate overtaking in Follow-the-Leader model.

Mathematically: Filipov system i.e., discontinuous righthand sides.

- Long-time behaviour? Case study $N=3$:
- Spatial-temporal symmetries of periodic solutions.
- Patterns detected: rotating waves, phase-shifted reflectionally symmetric oscillations.
- Idea: check for "landmarks" rather then for trajectories.
$N=4$, pattern:

$$
\begin{array}{cc}
A & B \\
A+\frac{1}{3} & A+\frac{2}{3}
\end{array}
$$

$N=4$, pattern:

$$
\begin{array}{ll}
A & A+\frac{1}{2} \\
B & B+\frac{1}{2}
\end{array}
$$

