Finite volume WLSQR scheme for transonic flows

Jiří Fürst

Faculty of Mechanical Engineering Czech Technical University in Prague Karlovo nám. 13 12135 Praha 2 Czech Republic

Email: furst@marian.fsik.cvut.cz

Praha, 29. - 31. 5. 2006

Outline

- High order FVM scheme for compressible flows
 - Basic finite volume scheme
 - Finite volume scheme with a reconstruction
- Weighted least square reconstruction
 - Weighted least square reconstruction
 - Analysis of WLSQR reconstruction
 - Numerical experiments
- Applications
 - 2D flows through turbine cascades
 - 3D flows through turbine cascades

Basic finite volume scheme Finite volume scheme with a reconstruction

Basic finite volume scheme

- unstructured meshes, general elements,
- more complicated coding, but
- adaptivity, complex geometry.

Explicit 1. order FVM for $u_t + f(u)_x + g(u)_y = 0$

$$\begin{split} & \mathsf{u}_{i}^{n+1} = \mathsf{u}_{i}^{n} - \Delta t R^{1}(\mathsf{u}^{n})_{i}, \\ & R^{1}(\mathsf{u}^{n})_{i} = \frac{1}{\mu(C_{i})} \left[\sum_{j \in N_{i}} H(\mathsf{u}_{i}^{n},\mathsf{u}_{j}^{n},\vec{S}_{i,j}) + \sum_{b} \sum_{e \in B_{i}^{b}} H^{b}(\mathsf{u}_{i}^{n},\vec{S}_{e}) \right], \\ & H(\mathsf{u}_{i}^{n},\mathsf{u}_{j}^{n},\vec{S}_{ij}) \approx \int_{e_{ij}} (f(u)n_{x} + g(u)n_{y}) \ dS. \end{split}$$

Jiří Fürst

Finite volume scheme with a reconstruction

- cell-wise interpolation polynomial $P_i(\vec{x}; u^n)$,
- interpolation to the cell interfaces,
- evaluation of fluxes using interpolated values.

Explicit high order FVM

$$u_i^{n+1} = u_i^n - \Delta t R^2(u^n)_i,$$

$$R^2(u^n)_i = \frac{1}{\mu(C_i)} \left[\sum_{j \in N_i} H(P_i(\vec{x}_{ij}; u^n), P_j(\vec{x}_{ij}; u^n), \vec{S}_{ij}) + \dots \right].$$

Basic finite volume scheme Finite volume scheme with a reconstruction

Piecewise polynomial reconstruction

Cell-wise interpolation polynomial $P_i(\vec{x}; u^n)$

- conservativity: $\iint_{C_i} P_i \, d\vec{x} = \mu(C_i) u_i^n$,
- accuracy: $\iint_{C_i} P_i d\vec{x} \approx \mu(C_j) u_j^n$ for cells in the vicinity of C_i .

Construction of P

- Least squares \Rightarrow simple but unstable
- LSQR with limiters \Rightarrow stable but the accuracy is limited
- ENO/WENO \Rightarrow uniformly high order but very complicated

Weighted least square reconstruction Analysis of WLSQR reconstruction Numerical experiments

Weighted least square reconstruction

Goals:

- uniformly high order of accuracy,
- simple implementation for 2D/3D,
- good convergence to steady state.

Constrained least square method

$$P_{i} = \arg\min\sum_{j\in\mathcal{N}_{i}^{2}} \left(\mu(C_{j})u_{j}^{n} - \iint_{C_{j}} P_{i} d\vec{x}\right)^{2} \cdot w_{ij}(u^{n})^{2},$$
$$\iint_{C_{i}} P_{i} d\vec{x} = \mu(C_{i})u_{i}^{n} \text{ and } w_{ij}^{2}(u^{n}) = h^{-r} / \left[\left|\frac{u_{i}^{n} - u_{j}^{n}}{h}\right|^{p} + h^{q}\right].$$

Piecewise linear WLSQR reconstruction in 1D

Interpolation polynomial:

$$P_i(x) = u_i + \sigma_i x$$
, for $x \in (x_{i-1/2}, x_{i+1/2})$.

System for σ_i :

$$\begin{aligned} & w_{i+1/2}u_{i+1} &= w_{i+1/2}\left(u_i + h\sigma_i\right), \\ & w_{i-1/2}u_{i-1} &= w_{i-1/2}\left(u_i - h\sigma_i\right). \end{aligned}$$

Least-square solution for σ_i :

$$\sigma_i = \frac{w_{i+1/2}^2(u_{i+1} - u_i) + w_{i-1/2}^2(u_i - u_{i-1})}{h(w_{i+1/2}^2 + w_{i-1/2}^2)}.$$

Analysis for smooth data

Rewrite

$$\sigma_i = \alpha_i \frac{u_{i+1} - u_i}{h} + \beta_i \frac{u_i - u_{i-1}}{h},$$

with $\alpha_i, \beta_i \in [0, 1]$, $\alpha_i + \beta_i = 1$, then:

$$\sigma_i = u_x(x_i) + \mathcal{O}(h),$$

and finally:
$$(TV(u) = \sum |u_i - u_{i-1}|)$$

Lemma (Accuracy and stability for smooth data)

Let $u(x) \in C^2$, then

$$P(x; u) = u(x) + \mathcal{O}(h^2),$$

$$TV(P(x; u)) \le TV(u) + \mathcal{O}(h)$$

Weighted least square reconstruction Analysis of WLSQR reconstruction Numerical experiments

 $x_{-1/2}$

*x*_1

 $x_{1/2}$

Xn

 $x_{3/2}$

 X_1

Analysis for discontinuous data

 $x_{-3/2}$

Lemma (TV stability for simple discontinuity)

Let u is simple discontinuity and $p + q \ge 0$ and p > 1. Then

 $TV(P(x; u)) \leq TV(u) + 6h^{1+q/p}$.

Numerical analysis for scalar problem (p, q, r = 4, -2, 3)

Linear problem: $u_t + u_x + u_y = 0$, $u_0 = \sin(2\pi x)\cos(2\pi y)$.

|--|--|--|--|--|--|

	,		· (· · ·	
	P0 (first o	order)	P1 (second	l order)	P2 (third	order)
1/N	e ₁	order	e 1	order	e 1	order
0.1	0.339084	-	0.141348	-	0.134682	-
0.05	0.253544	0.42	0.035086	2.01	0.021605	2.64
0.025	0.157564	0.68	0.007567	2.21	0.002843	2.93
0.0125	0.088477	0.83	0.001584	2.25	0.000377	2.92

Non-linear problem: $u_t + uu_x + uu_y = 0$, $u_0 = \sin(2\pi x)\cos(2\pi y)$.

	P0 (first order)		P1 (second order)		P2 (third order)	
1/N	e 1	order	e 1	order	e 1	order
	Smooth data $(t = 0.1)$					
0.1	0.054867	-	0.017641	-	0.012703	-
0.05	0.040623	0.43	0.008839	1.00	0.002686	2.24
0.025	0.024009	0.76	0.001963	2.41	0.000648	2.05
0.0125	0.013414	0.84	0.000379	2.37	0.000116	2.48
0.00625	0.007095	0.92	0.000081	2.23	0.000017	2.77
	Non-smooth data ($t = 0.25$)					
0.1	0.112414	-	0.049627	-	0.047704	-
0.05	0.069466	0.69	0.018373	1.43	0.018493	1.36
0.025	0.039077	0.83	0.011098	0.73	0.009987	0.89
0.0125	0.021665	0.85	0.005554	1.00	0.004837	1.05

Weighted least square reconstruction Analysis of WLSQR reconstruction Numerical experiments

Numerical analysis for GAMM channel (p, q, r = 4, -2, 3)

- structured, 75 \times 25, 150 \times 50, 300 \times 100
- unstructured with adaptivity.

Weighted least square reconstruction Analysis of WLSQR reconstruction Numerical experiments

Order of accuracy for GAMM channel problem (subsonic)

Weighted least square reconstruction Analysis of WLSQR reconstruction Numerical experiments

Order of accuracy for GAMM channel problem (transonic)

Order of accuracy for GAMM channel problem

Estimated order of accuracy

• 3 consecutive grids 75 \times 25, 150 \times 50, 300 \times 100 cells,

•
$$EOA = \log_2(||\rho_h - P_{h/2}^h \rho_{h/2}||_1) - \log_2(||\rho_{h/2} - P_{h/4}^{h/2} \rho_{h/4}||_1).$$

	P0 (1st order)	P1 (2nd order)	P2 (3rd order)
Subsonic	0.82	1.41	1.42
Transonic	0.90	1.46	1.30

Problems:

- Piecewise linear approximation of boundary!
- Implementation of boundary conditions?

2D flows through a turbine cascade

- 2D turbine cascade SE 1050 of Škoda Plzeň,
- $M_{2i} = 0.906$, $Re = 1.38 \cdot 10^6$,
- 2D RANS P1 interpolation,
- TNT $k \omega$ model P0 or P1 interpolation.

Distribution of the pressure

Distribution of the friction coeff.

0.006

2D flows through turbine cascades 3D flows through turbine cascades

2D flows through a turbine cascade (cont.)

- P1 for ρ , ρu , ρv , e,
- P1 for ρk , $\rho \omega$.

Pressure (delta=0.02).

- P1 for ρ , ρu , ρv , e,
- P0 for ρk , $\rho \omega$.

2D flows through turbine cascades 3D flows through turbine cascades

3D flows through turbine cascades

View of one inter-blade channel with structured mesh.

- Inviscid flow,
- Subsonic inlet,
- Outlet with given $p_2(r)$,
- Structured single-block mesh with
 - $200 \times 40 \times 40$ cells (fine),
 - $100 \times 20 \times 20$ cells (coarse),

2D flows through turbine cascades 3D flows through turbine cascades

3D flows through turbine cascades

WLSQR method, AUSM flux, coarse mesh.

TVD MC method, fine mesh.

Conclusion

Properties of WLSQR method:

- High order method for transonic flows,
- simple for unstructured meshes even in 3D,
- good convergence to steady state,
- preliminary analytical results.

To do:

- analysis of order of accuracy,
- analysis of stability for high AR cells,
- higher order approximation of boundaries,
- proof of convergence :).

