SCALABLE ALGORITHMS FOR CONTACT PROBLEMS WITH **GEOMETRICAL AND MATERIAL NONLINEARITIES**

J. Dobiáš, S. Pták

Institute of Thermomechanics, Academy of Sciences of the Czech Republic Dolejškova 5, 182 00 Praha 8, Czech Republic Website: http://it.cas.cz/

Z. Dostál, V. Vondrák

Department of Applied Mathematics, Technical University in Ostrava 17. listopadu 15, 708 00 Ostrava-Poruba, Czech Republic

Supported by the Czech Science Foundation through Grant # 101/05/0423

TU Ostrava, CZ

Non-overlapping partition, primal variables

Dual variables: FETI and Total FETI

FETI domain decomposition method (I)

FETI: Finite Element Tearing and Interconnecting

Solution: minimizer of the energy functional (the 2nd order elliptic bound. v. problem)

$$q(u) = \frac{1}{2}a(u, u) - \ell(u)$$
 subject to $u \in \mathcal{K}$

The numerical approximation by FEM and auxiliary domain decomposition

min
$$\left(\frac{1}{2}\mathbf{u}^{\top}A\mathbf{u} - f^{\top}\mathbf{u}\right)$$
 subject to $B_I\mathbf{u} \leq 0$ and $B_E\mathbf{u} = 0$

Introducing Lagrange multipliers, the discretized form of associated functional

$$L(\mathbf{u}, \lambda) = \frac{1}{2} \mathbf{u}^{\top} A \mathbf{u} - f^{\top} \mathbf{u} + \lambda^{\top} B \mathbf{u}$$
$$\lambda = \begin{bmatrix} \lambda_I \\ \lambda_E \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} B_I \\ B_E \end{bmatrix}$$

——— IT Prague, CZ

TU Ostrava, CZ

FETI domain decomposition method (II)

Primal variable elimination

min
$$\left(\frac{1}{2}\lambda^{\top}BA^{\dagger}B^{\top}\lambda - \lambda^{\top}BA^{\dagger}f\right)$$
,

subject to $\lambda_I \geq 0$ and $R^{\top}(f - B^{\top}\lambda) = 0$

 A^{\dagger} ... generalized inverse of A satisfying one of the Penrose axioms

 $AA^{\dagger}A = A$

 $R \dots$ full rank matrix with columns spanning the kernel of A

(rigid body modes of floating sub-domains)

... quadratic programming problem with bound and equality constraints

FETI domain decomposition method (III)

Introduction of new matrices

 ${\widetilde{\lambda}}$

solves

$$F = B A^{\dagger} B^{\top}, \quad \tilde{G} = R^{\top} B^{\top}, \quad \tilde{e} = R^{\top} f, \quad \tilde{d} = B A^{\dagger} f$$
$$\tilde{G} \tilde{\lambda} = \tilde{e}$$

Looking for solution in the form $\lambda = \mu + \tilde{\lambda}$

$$\frac{1}{2}\lambda^{\top}F\lambda - \lambda^{\top}\tilde{d} = \frac{1}{2}\mu^{\top}F\mu - \mu^{\top}(\tilde{d} - F\tilde{\lambda}) + \frac{1}{2}\tilde{\lambda}^{\top}F\tilde{\lambda} - \tilde{\lambda}^{\top}\tilde{d}$$

Returning to the old notation

$$\begin{array}{ll} \min \ \left(\frac{1}{2} \lambda^\top PFP\lambda - \lambda^\top Pd \right), & \text{subject to} & G\lambda = 0 \quad \text{and} \quad \lambda_I \geq -\tilde{\lambda_I} \\ \text{where} & P = I - Q \quad \text{and} \quad Q = G^\top G \end{array}$$

TU Ostrava, CZ 🧕

IT Prague, CZ

FETI domain decomposition method (IV)

Making use of the (Dual) Penalty Method

$$\min \left(\frac{1}{2}\lambda^{\top} PFP\lambda - \lambda^{\top} Pd + \frac{1}{2}\lambda^{\top} G^{\top} G \ \lambda\rho\right)$$

 $\rho \ldots$ penalty parameter

or

$$\min \left(\frac{1}{2}\lambda^{\top} \left(PFP + \rho Q\right)\lambda - \lambda^{\top}Pd\right) \qquad \text{subject to} \qquad \lambda_I \geq -\tilde{\lambda_I}$$

TU Ostrava, CZ

... solution in terms of the MPRGP algorithm

FETI with contact and other non-linearities

Equilibrium $res = f_{ext} - f_{int} = 0$ External forces $f_{ext} = f - B^{\top} \lambda$, Internal forces $f_{int} = \sum_{nelem V_e} \int B_s^{\top} (\epsilon) \sigma(\epsilon) dV$ **Solution algorithm Initial step:** Assemble stiffness matrix $K = diag\{K_1, ..., K_p\}$ and B_E ; Set i = 0; $u^0 = 0$, $\lambda^0 = 0$, $f_{int}^0 = 0$; **Step 1:** Evaluate contact conditions B_I^i ; **Step 2:** Solve contact problem by MPRGP for $\Delta \lambda \rightarrow \Delta u$; Step 3: $\lambda^i = \lambda^{i-1} + \Delta \lambda$, $u^i = u^{i-1} + \Delta u$; $f_{int}^i = \sum_{nelem V_e} \int B_s^{\top} (\epsilon^i) \sigma(\epsilon^i) dV$ Assemble residual load vector $res^i = f - B^{\top} \lambda^i - f_{int}^i$; Check on convergence criteria $\frac{\|\Delta u\|}{\|u^i\|} < \eta_1$, $\frac{\|res^i\|}{\|f_{i,j}^i\|} < \eta_2$; If fulfilled then STOP, otherwise set $i \leftarrow i + 1$ and go to Step 1

Numerical experiments: Scalability (II)

Η	h	prim.	dual FETI	dual TFETI	CG steps FETI	CG steps TFETI
1/2	1/4	36	11	17	7	4
1/4	1/8	144	63	75	12	5
1/8	1/16	576	287	311	13	7
1/16	1/32	2304	1215	1263	15	11
1/2	1/8	100	19	29	9	9
1/4	1/16	400	111	131	16	12
1/8	1/32	1600	511	551	18	16
1/16	1/64	6400	2175	2255	20	21
1/2	1/16	324	35	53	14	9
1/4	1/32	1296	207	243	22	14
1/8	1/64	5184	959	1031	24	20
1/16	1/128	20736	4095	4239	23	23

Two cylinders: elastic & elastic-plastic problems

Load: $l = 4.0 \times 10^7$ N/m

🔰 ——— IT Prague, CZ 🕇

TU Ostrava, CZ 🧃

Two cylinders: convergence rate

Pin-hole problem: normal stress distribution (I)

 $\frac{R_{pin}}{R_{hole}}$ = 0.9; Geometrically nonlinear problem; External load Q = 133 MN/m

Pin-hole problem: normal stress distribution (II)

 $\frac{R_{pin}}{R_{hole}}$ = 0.99; Geometrically nonlinear problem; External load Q = 133 MN/m

Pin-hole problem: von Mises stress (I)

 $\frac{R_{pin}}{R_{hole}}$ = 0.9; Geometrically nonlinear problem; External load Q = 133 MN/m

Pin-hole problem: von Mises stress (II)

Pin-hole problem: von Mises stress (III)

 $\frac{R_{pin}}{R_{hole}}$ = 0.99; Geometrically nonlinear problem; External load Q = 133 MN/m

Pin-hole problem: von Mises stress (IV)

Pin-hole problem: convergence rate

Pin-hole problem: solution norm

