Approximation Theory in Jacobi-weighted Spaces and Its Application to h-p FEM

Benqi Guo

Department of Mathematics

University of Manitoba

Canada

Approximation Theory in Jacobi-weighted Spaces and Its Application to h-p FEM -p. 1/4

1 Approximation in Jacobi-weighted Spaces over $Q = (-1, 1)^n$

1.1 Jacobi-weighted Besov and Sobolev spaces $H^{k,\beta}(Q), Q = (-1,1)^n$ with integer $k \ge 0$, real $\beta_{\ell} > -1, 1 \le \ell \le n$

$$\|u\|_{H^{k,\beta}(Q)} = \left\{ \sum_{|\alpha|=0}^{k} \int_{Q} |D^{\alpha}u|^{2} W_{\alpha\beta}(x) dx \right\}^{1/2}$$

with Jacobi weight function :

$$W_{\alpha\beta}(x) = \prod_{i=1}^{n} (1 - x_i^2)^{\alpha_i + \beta_i}$$

Jacobi-weighted interpolation spaces

$$\mathcal{B}^{s,\beta}_{2,q}(Q) = \left(H^{\ell,\beta}(Q), H^{k,\beta}(Q)\right)_{\theta,q}$$

with $s = (1 - \theta)\ell + \theta k, k > \ell \ge 0, \theta \in (0, 1)$.

 $\mathcal{B}^{s,\beta}_{2,2}(Q) = H^{s,\beta}(Q)$ is Jacobi-weighted (fraction order) Sobolev space ,

$$||u||_{H^{s,\beta}(Q)}^2 = \int_0^\infty |t^{-\theta} K(t,u)|^2 \frac{dt}{t}$$

where

$$K(t,u) = \inf_{u=v+w} \left(\|v\|_{H^{\ell,\beta}(Q)} + t\|w\|_{H^{k,\beta}(Q)} \right).$$

 $\mathcal{B}^{s,\beta}_{2,\infty}(Q) = B^{s,\beta}(Q)$ is Jacobi-weighted Besov space,

$$||u||_{B^{s,\beta}(Q)} = \sup_{t>0} t^{-\theta} K(t,u)$$

Modified Jacobi-weighted spaces $B^{s,\beta}_{\nu}(Q), \nu > 0$

$$\|u\|_{B^{s,\beta}_{\nu}(Q)} = \sup_{t>0} \frac{K(t,u) t^{-\theta}}{(1+|\log t|)^{\nu}}.$$

Remark $B_{\nu}^{s,\beta}(Q), \nu > 0$ is not an exact interpolation space, and $B^{s,\beta}(Q)$ and $H^{s,\beta}(Q)$ are.

1.2 Approximation in the spaces $H^{k,\beta}(Q), H^{s,\beta}(Q), B^{s,\beta}_{\nu}(Q)$

<u>Jacobi Projection</u> Let $\mathcal{P}_p(Q)$ be set of all polynomials of degree (separate) $\leq p$. For $u \in H^{k,\beta}(Q)$ for $k \geq 0$,

$$u(x) = \sum_{i_1, i_2 \cdots i_n = 0}^{\infty} C_{i_1, i_2 \cdots i_n} P_{i_1}(x_1, \beta_1) P_{i_2}(x_2, \beta_2) \cdots P_{i_n}(x_n, \beta_n).$$

where $P_{i_1}(x_1, \beta_1)$ is Jacobi polynomial, etc. then the Jacobi projection on $\mathcal{P}_p(Q)$ is

$$u_p(x) = \sum_{i_1, i_2 \cdots i_n=0}^p C_{i_1, i_2 \cdots i_n} P_{i_1}(x_1, \beta_1) P_{i_2}(x_2, \beta_2) \cdots P_{i_n}(x_n, \beta_n)$$

Theorem 1.1 Let u_p be the Jacobi projection of u on $\mathcal{P}_p(Q)$. Then

(*i*) For $0 \le l \le k$ and p > 0

$$\|u - u_p\|_{H^{l,\beta}(Q)} \le C p^{-(k-l)} \|u\|_{H^{k,\beta}(Q)},$$
(1.1)

and for $0 \le l < s$ and p > 0

$$\|u - u_p\|_{H^{l,\beta}(Q)} \le C p^{-(s-l)} \|u\|_{H^{s,\beta}(Q)},$$
(1.2)

$$\|u - u_p\|_{H^{l,\beta}(Q)} \le C p^{-(s-l)} (1 + \log p)^{\nu} \|u\|_{B^{s,\beta}_{\nu}(Q)};$$
(1.3)

(ii) If k > n/2 or s > n/2, and $\beta_{\ell} \le -1/2$ for $1 \le \ell \le n, 1 \le n \le 3$, then

$$|(u - u_p)(x)| \le C p^{-(k - n/2)} ||u||_{H^{k,\beta}(Q)},$$
(1.4)

$$|(u - u_p)(x)| \le C p^{-(s - n/2)} ||u||_{H^{s,\beta}(Q)},$$
(1.5)

$$|(u - u_p)(x)| \le C p^{-(s - n/2)} (1 + \log p)^{\nu} ||u||_{B^{s,\beta}_{\nu}(Q)}.$$
 (1.6)

(iii) If $p \ge k - 1$ the estimations hold in terms of semi norms for integers l and k

$$|u - u_p|_{H^{l,\beta}(Q)} \le C p^{-(s-l)} |u|_{H^{k,\beta}(Q)}$$
(1.7)

and if k > n/2, in addition

$$|(u - u_p)(x)| \le C p^{-(k - n/2)} |u|_{H^{k,\beta}(Q)}.$$
(1.8)

The constant C in the above inequalities is independent of p, u, but may depend on k.

Corollary 1.1 The above estimations can be easily generalized to for non-integer l.

1.3 Regularity and Approximability of singular functions in Jacobi-weighted Besov spaces over $Q = (-1, 1)^n, n = 2$

Consider typical singular function on $Q = (-1, 1)^2$:

$$u(x) = r^{\gamma} \, \log^{\nu} r \, \chi(r) \, \Phi(\theta) \tag{1.9}$$

where real $\gamma > 0$, integer $\nu \ge 0$, $\chi(r)$ and $\Phi(r)$ are C^{∞} functions such that for $0 < r_0 < 2$

 $\chi(r) = 1$ for $0 < r < r_0/2$, $\chi(r) = 0$ for $r > r_0$

Theorem 1.2 For $\gamma > 0$ and $\nu \ge 0$, $u \in B^{s,\beta}_{\nu^*}(Q)$ with $2 + 2\gamma + \beta_1 + \beta_2$ and

$$\nu^{*} = \begin{cases} \nu & \text{if } \gamma \text{ is not an integer, or } \nu = 0 \\ \nu - 1 & \text{if } \gamma \text{ is an integer and } \nu \ge 1, \end{cases}$$
(1.10)

Theorem 1.3 Let u(x) be given in (1.9) with $\gamma > 0$ and integer $\nu \ge 0$, let ψ and φ are the Jacobi projection of u on $\mathcal{P}_p(Q), p \ge 1$ associated with $\beta = (0,0)$, and $\beta = (-1/2, -1/2)$, respectively. Then,

$$\|u - \psi\|_{L^2(Q)} \le C \ p^{-2-2\gamma} \log^{\nu^*} (1+p) \|u\|_{B^{2+2\gamma,\beta}_{\nu^*}(Q)}$$
(1.11) with $\beta = (0,0)$, and

$$\|u - \phi\|_{H^1(R_0)} \le C \ p^{-2\gamma} \log^{\nu^*} (1+p) \|u\|_{B^{1+2\gamma,\beta}_{\nu^*}(Q)}$$
(1.12)

with $\beta = (-1/2, -1/2)$, where ν^* is given in and (1.10) and

$$R_0 = R_{r_0, \theta_0} = \left\{ x \in Q \mid r < r_0, \quad \theta_0 < \theta < \pi/2 - \theta_0 \right\}$$
(1.13)

with $\theta_0 \in (0, \pi/4)$

2 Approximation in the Jacobi-weighted spaces on $Q_h = (-h, h)^n$

2.1 Jacobi-weighted Besov and Sobolev spaces over Q_h

Let $w_{h,\alpha,\beta}(x)$ be a weighted function on $Q_h = (-h,h)^n$, $1 \le n \le 3$:

$$w_{h,\alpha,\beta}(x) = \prod_{i=1}^{n} \left(1 - \left(\frac{x_i}{h}\right)^2\right)^{\alpha_i + \beta_i}$$

with $\alpha = (\alpha_1, \dots, \alpha_n)$, $\alpha_i \ge 0$ integer, and $\beta = (\beta_i, 1 \le i \le n), \beta_i > -1$.

The Jacobi-weighted Sobolev space $H^{k,\beta}(Q_h)$, $k \ge 0$, is the closure of C^{∞} functions furnished with the norm

$$||u||_{H^{k,\beta}(Q_h)}^2 = \sum_{0 \le |\alpha| \le k} \int_Q |D^{\alpha}u(x)|^2 w_{h,\alpha,\beta}(x) dx$$

The Jacobi-weighted Sobolev spaces $H^{s,\beta}(Q_h)$ and Besov spaces $B^{s,\beta}(Q_h)$ are defined as usual interpolation spaces by the K-method,

$$H^{s,\beta}(Q_h) = \mathcal{B}^{s,\beta}_{2,2}(Q_h) = \left(H^{\ell,\beta}(Q_h), H^{k,\beta}(Q_h)\right)_{\theta,2}$$

and

$$B^{s,\beta}(Q_h) = \mathcal{B}^{s,\beta}_{2,\infty}(Q_h) = \left(H^{\ell,\beta}(Q_h), H^{k,\beta}(Q_h)\right)_{\theta,\infty}$$

The space $B_{\nu}^{s,\beta}(Q_h)$ is an interpolation defined by the modified K-method,

$$B^{s,\beta}_{\nu}(Q_h) = \left(H^{\ell,\beta}(Q_h), H^{k,\beta}(Q_h)\right)_{\theta,\infty,\nu}.$$

Proposition 2.1 Let u(x) and $U(\xi) = u(h\xi)$ be functions defined on Q_h and Q, respectively.

(i) $u \in H^{k,\beta}(Q_h)$ with integer $k \ge 0$ if $U(\xi) = u(h\xi) \in H^{k,\beta}(Q)$, visa versa. Furthermore, there holds for $\ell \le k$

$$|u|_{H^{\ell,\beta}(Q_h)}^2 = h^{n/2-\ell} |U|_{H^{\ell,\beta}(Q)};$$
(2.1)

(ii) $u \in H^{s,\beta}(Q_h)$ with noninteger s > 0 if $U(\xi) \in H^{s,\beta}(Q)$, visa versa. There holds for $\ell < s$

$$|u|_{H^{\ell,\beta}(Q_h)} = h^{n/2-\ell} |U|_{H^{\ell,\beta}(Q)};$$
(2.2)

(iii) $u \in B^{s,\beta}_{\nu}(Q_h)$ with real s > 0 and interger $\nu \ge 0$ if $U(\xi) \in B^{s,\beta}_{\nu}(Q)$, visa versa.

Theorem 2.1 Let u_p be the Jacobi projection of u on $\mathcal{P}_p(Q_h)$ with $p \ge 1$, Then for $0 \le l \le k$,

$$\|u - u_p\|_{H^{l,\beta}(Q_h)} \le C \frac{h^{\mu-l}}{p^{k-l}} \|u\|_{H^{k,\beta}(Q_h)},$$
(2.3)

for $0 \le l < s$,

$$\|u - u_p\|_{H^{l,\beta}(Q_h)} \le C \frac{h^{\mu-l}}{p^{s-l}} \|u\|_{H^{s,\beta}(Q_h)}.$$
(2.4)

and

$$\|u - u_p\|_{H^{l,\beta}(Q_h)} \le C \frac{h^{\mu-l}}{p^{s-l}} \log^{\nu} (1 + \frac{p}{h}) \|u\|_{B^{s,\beta}_{\nu}(Q_h)}.$$
 (2.5)

where $\mu = \min\{k, p+1\};$

(ii) If k > n/2, or s > n/2 and $\beta_{\ell} \le -1/2, 1 \le \ell \le n$, then for $x \in \bar{Q}_h$

$$|(u - u_p)(x)| \le C \frac{h^{\mu - n/2}}{p^{k - n/2}} ||u||_{H^{k,\beta}(Q_k)},$$
 (2.6)

$$|(u - u_p)(x)| \le C p^{-(s - n/2)} h^{\mu_1 - n/2} ||u||_{H^{s,\beta}(Q_h)},$$
(2.7)

and

$$|(u - u_p)(x)| \le C \frac{h^{\mu - n/2}}{p^{s - n/2}} \log^{\nu} (1 + \frac{p}{h}) ||u||_{B^{s,\beta}_{\nu}(Q_h)} :$$
 (2.8)

(iii) For $p \ge k - 1$ and $k \ge 1$, there hold

$$u - u_p|_{H^{l,\beta}(Q_h)} \le C\left(\frac{h}{p}\right)^{k-l} |u|_{H^{k,\beta}(Q_h)}$$
 (2.9)

and

2.2 Regularity and Approximability of singular functions in Jacobi-weighted Besov spaces over $Q_h = (-h, h)^2$

Consider typical singular function on $Q_h = (-h, h)^2$:

$$u(x) = r^{\gamma} \, \log^{\nu} r \, \chi(r) \, \Phi(\theta) \tag{2.11}$$

Theorem 2.2 For $\gamma > 0$ and $\nu \ge 0$, $u \in B^{s,\beta}_{\nu^*}(Q)$ with $s = 2 + 2\gamma + \beta_1 + \beta_2$ and ν^* given in (1.10).

Theorem 2.3 Let u(x) be given in (2.11). Then there exist polynomials $\psi_{hp}(x)$ and $\varphi_{hp}(x)$ in $\mathcal{P}_p(Q), p \ge 1$ such that

$$\|u - \psi_{hp}\|_{L^{2}(Q_{h})} \leq C \left(\frac{h}{p^{2}}\right)^{1+\gamma} F_{\nu}(p,h) \|u\|_{B^{s,\beta}_{\nu^{*}}(Q_{h})}^{2}$$
(2.12)

with $\beta = (0,0), s = 2(1+\gamma)$, and

$$\|u - \varphi_{hp}\|_{H^1(R_0^h)} \le C \left(\frac{h}{p^2}\right)^{\gamma} F_{\nu}(p,h) \|u\|_{B^{s,\beta}_{\nu^*}(Q_h)}^2$$
(2.13)

with $\beta = (-1/2, -1/2), s = 1 + 2\gamma$, where $F_{\nu}(p, h)$ is a log-polynomial,

$$F_{\nu}(p,h) = \begin{cases} \log^{\nu} \frac{p}{h} & \text{for non-integer } \gamma, \\ \log^{\nu-1} \frac{p}{h} & \text{for integer } \gamma \text{ and } r^{\gamma} \Phi(\theta) \in \mathcal{P}_{p} \\ \max\left\{\log^{\nu-1} \frac{p}{h}, \log^{\nu} \frac{1}{h}\right\} & \text{for integer } \gamma \text{ and } r^{\gamma} \Phi(\theta) \notin \mathcal{P}_{p} \end{cases}$$

$$(2.14)$$

Furthermore, for $x \in \overline{Q}_h$, there holds

$$|u(x) - \varphi_{hp}(x)| \le C \left(\frac{h}{p^2}\right)^{\gamma} F_{\nu}(p,h).$$
(2.15)

The constant C in (2.12) -(2.15) is independent of h and p.

Consider a boundary value problem:

$$\begin{cases} -\Delta u + u = f & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = g & \text{on } \partial \Omega. \end{cases}$$
(3.1)

where Ω be a polygon.

Fig. 3.1 Polygonal domain Ω

Recent progresses

• h-p FEM

Babuska and Suri (1987): for $\gamma = \min_{i} = \frac{\pi}{\omega_{i}}, \ \nu = \max_{i} \nu_{i} \ge 0$ $\|u - u_{h,p}\|_{H^{1}(\Omega)} \le Ch^{\gamma}p^{-2\gamma}\log^{\nu}(\frac{p}{h}).$

Guo and Sun (2005): for $\gamma = \min_{i} \gamma_i = \frac{\pi}{\omega_i}, \ \nu = \max_{i} \nu_i \ge 0$

$$C_2 h^{\gamma} p^{-2\gamma} F_{\nu}(h,p) \le \|u - u_{h,p}\|_{H^1(\Omega)} \le C_1 h^{\gamma} p^{-2\gamma} F_{\nu}(h,p)$$

where

 $F_{\nu}(h,p) = \begin{cases} \log^{\nu}(\frac{p}{h}), & \gamma \text{ is not integer}, \\ \log^{\nu-1}(\frac{p}{h}), & \gamma \text{ is integer, } r^{\gamma} \Phi(\theta) \text{ is not polynomial} \\ \max\{\log^{\nu-1}(\frac{p}{h}), \log^{\nu}(\frac{1}{h})\}, & \text{otherwise} . \end{cases}$

Let $S_D^p(\Omega; \Delta_h; \mathcal{M})$ be the finite element spaces. Here $\mathcal{M} = \{M_j, 1 \leq j \leq J\}$ denotes a mapping vector and M_j is an affine mapping of standard triangle T or square S onto Ω_j . Let $S^p(\Omega; \Delta_h, \mathcal{M}) = \{\phi(x) \in H^1(\Omega) \mid \phi \mid_{\Omega_j} = \tilde{\phi}_j \circ M_j^{-1}, \tilde{\phi}_j \in$ $\mathcal{P}_p(T)$ or $\mathcal{P}_p(S), j = 1, 2, ..., J\}$ and $S_D^p(\Omega; \Delta_h; \mathcal{M}) = S^p(\Omega; \Delta_h; \mathcal{M}) \cap H_D^1(\Omega).$

3.1 The *h*-*p*-version finite element method for problems with smooth solutions

Lemma 3.1 Let $u \in H^{k,\beta}(Q_h), k \ge 0$, and let $U(\xi) = u(h\xi)$. Then

$$|U - U_p||_{H^{k,\beta}(Q)} \le Ch^{\mu - 1} ||u||_{H^{k,\beta}(Q_h)}$$
(3.2)

where $\mu = \min\{k, p+1\}$, and *C* depends on *k*, but is independent of *p*, *h* and *u*.

Lemma 3.2 Let γ_h be an edge of T_h which is a triangle or a quadrilateral, and let ψ be a polynomial of degree p on γ_h vanishing at the ending points of γ_h . Then there exists an extension $\Psi(x) \in \mathcal{P}_p(T_h)$ such that $\Psi(x) |_{\gamma_h} = \psi$ and vanishes at other edges of T_h , and

$$\|\Psi\|_{H^1(T_h)} \le C \|\psi\|_{H^{1/2}_{00}(\gamma_h)}.$$
(3.3)

Lemma 3.3 Let $u \in H^k(\Omega_i), k > 1$, where Ω_i is a curved triangular or quadrilateral element of the mesh Δ_h with size h. Then there exists a polynomial $\phi \in \mathcal{P}_p(\Omega_i)$ such that

$$\|u - \phi\|_{H^1(\Omega_i)} \le C \ \frac{h^{\mu - 1}}{p^{k - 1}} \|u\|_{H^k(\Omega_i)}$$
(3.4)

with $\mu = \min \{p + 1, k\}$, and $u(V_l) = \phi(V_l), 1 \le l \le 3$ or $4, V_l$ are the vertices of Ω_i .

Proof Assume that Ω_i is a curved quadrilateral. Let M_i be a mapping of $Q_{h/2} = (-h/2, h/2)^2$ onto Ω_i . If Ω_i is a curved triangle, the mapping M_i maps $T_{h/2} = \{x = (x_1, x_2) \mid -\frac{h}{2} + \frac{x_2 + h/2}{\sqrt{3}} \le x_1 \le \frac{h}{2} - \frac{x_2 + h/2}{\sqrt{3}}, -\frac{h}{2} \le x_2 \le \frac{\sqrt{3} - 1}{2}h\}$ onto Ω_i .

Fig. 3.2 Mapping of quadrilateral

Fig. 3.3 Mapping of triangle

Then $\tilde{u} = u \circ M_i \in H^K(Q_{h/2})$, and it can be extended to Q_h such that the extended function has a support contained in $Q_{2h/3}$ and preserves the norm. Furthermore, $\tilde{u} \in H^{k,\beta}(Q_h)$ with The Jacobi weight $\beta = (-1/2, -1/2)$, and

$$\|\tilde{u}\|_{H^{k,\beta}(Q_h)} \le C \|\tilde{u}\|_{H^k(Q_h)} \le C \|u\|_{H^k(\Omega_i)}.$$
(3.5)

Then using approximation in $H^{k,\beta}(\Omega_i)$, we get the results.

Theorem 3.4 Let $\Delta_h = \left\{ \Omega_j, \ 1 \le j \le J \right\}$ be a quasi-uniform mesh with element size h over Ω containing triangular and quadrilateral elements, and let $S_D^p(\Omega; \Delta_h; \mathcal{M})$ be the finite element space defined as above. The data functions f and g are assumed such that the solution u of (3.1) is in $H^k(\Omega)$ with k > 1. Then the finite element solution $u_{hp} \in S_D^p(\Omega; \Delta_h; \mathcal{M})$ with $p \ge 1$ satisfies

$$|u - u_{hp}||_{H^1(\Omega)} \le C \frac{h^{\mu - 1}}{p^{k - 1}} ||u||_{H^k(\Omega)}$$
 (3.6)

where $\mu = \min \{p + 1, k\}$ and the constant *C* is independent of *p* and *u*.

3.2 The *h*-*p* version finite element method for problems with singular solutions

We assume that f and g are such that the solution u of (3.1) is in $H^k(\Omega_0), k \ge 1$, and in each neighborhood S_{δ_i} , u have an expansion in terms of singular functions of $r^{\gamma} \log^{\nu} r$ -type

$$u = u_1 + u_0 = \sum_{0 < \gamma_m^{[i]} \le k-1} C_m^{[i]} r_i^{\gamma_m^{[i]}} |\log r_i|^{\nu_m^{[i]}} \Phi_m^{[i]}(\theta_i) \ \chi(r_i) + u_0^{[i]}$$
(3.7)

where (r_i, θ_i) are polar coordinates with the vertex A_i , $u_0^{[i]} \in H^k(S_{\delta_i})$ is the smooth part of u, $\gamma_m^{[i]} > 0$, and $\nu_m^{[i]} \ge 0$ are integers.

Fig. 3.4 A neighborhood of the vertex A_i

We assume that $\nu_m^{[i]} > \nu_{m+1}^{[i]}$ and $\gamma_m^{[i]} \le \gamma_{m+1}^{[i]}$, $\chi(r_i)$ and $\Phi_m^{[i]}(\theta_i)$ are C^{∞} functions, $\chi(r_i) = 1$ for $0 < r_i < \delta_i < \frac{1}{2}$, $\chi(r_i) = 0$ for $r_i > \delta_i$. Let

$$\gamma = \min_{i} \gamma_1^{[i]}, \qquad \nu_{\gamma} = \max_{i, \gamma_1^{[i]} = \gamma} \nu_1^{[i]}.$$
 (3.8)

There exists i_0 such that $\gamma_1^{[i_0]} = \gamma$ and $\nu_{\gamma} = \nu_1^{[i_0]}$.

Theorem 3.5 Let $\Omega_h = \{\Omega_j, 1 \le j \le J\}$ be a quasi-uniform mesh over Ω containing triangular and parallelogram elements, and let $S_D^p(\Omega; \Delta_h; \mathcal{M})$ with $p > \gamma$ be the finite element space defined as above. The data functions f and g are assumed such that the solution u of (3.1) is in $H^k(\Omega_0)$ with $k > 1 + 2\gamma$, and uhas the expansion (3.7) with $u_0^{[i]} \in H^k(S_{\delta_i})$ in each neighborhood S_{δ_i} . Then the finite element solution $u_{hp} \in S_D^p(\Omega; \Delta; \mathcal{M})$ for the problem (3.1) satisfies

$$|u - u_{hp}||_{H^1(\Omega)} \le C_1 \frac{h^{\gamma}}{p^{2\gamma}} F_{\nu_{\gamma}}(p,h).$$
 (3.9)

with the constant C_1 depending on u, γ and ν_{γ} , but not on p and h, where γ and and ν_{γ} are given in (3.8), and $F_{\nu_{\gamma}}(p,h)$ given in (2.14).

proof For elements Ω_i contains no vertices, by Lemma 3.3, there exist a polynomial $\varphi^{[i]} \in \mathcal{P}_p(\Omega_i)$ such that $\varphi^{[i]} = u$ at the vertices of Ω_i , and

$$||u - \varphi^{[i]}||_{H^1(\Omega_i)} \le C \; \frac{h^{\tilde{\mu}-1}}{p^{k-1}} \le C \; \frac{h^{\gamma}}{p^{2\gamma}}$$

with $\tilde{\mu} = \min\{p+1, k\} \ge 1 + \gamma$. Let the element Ω_j contain a vertex A_1 of Ω . Then (3.7) holds with i = 1 in S_{δ_1} . By Lemma 3.3, there exist a polynomial $\psi_0 \in \mathcal{P}_p(\Omega_j)$ such that $\psi_0 = u$ at the vertices of Ω_j , and

$$\|u_0 - \psi_0\|_{H^1(\Omega_j)} \le C \ \frac{h^{\mu-1}}{p^{k-1}}$$

with $\mu = \min\{p+1, k\} \ge 1 + \gamma$. For a sharp approximation to u_1 , we map Ω_j onto $R_{0,h} \subset Q_h$ by an affine mapping F_j such that $A_1 \circ F_j = (-h, -h)$ and that Ω_j is contained in $R_{0,h}$. Due to Theorem 2.3, there exist polynomials $\psi_m \in \mathcal{P}_p(\Omega_j)$ such that $v_m = \psi_m$ at the vertices of Ω_j , and

$$||v_m - \psi_m||_{H^1(\Omega_j)} \le C \frac{h^{\gamma^{[1]}}}{p^{2\gamma_m^{[1]}}} F_{\nu_m^{[1]}}(p,h).$$

where $v_m = r_1^{\gamma_m^{[1]}} |\log r_i|^{\nu_m^{[i]}} \Phi_m^{[i]}(\theta_1) \chi(r_i)$. Let $\psi = \sum_{0 < \gamma_m^{[1]} \le k-1} C_m^{[1]} \psi_m$ and $\varphi^{[j]} = \psi + \psi_0$. Then $u_1 = \psi$ at the vertices of Ω_j , and

$$\|u_1 - \psi\|_{H^1(\Omega_j)} \le C \sum_{0 < \gamma_m^{[i]} \le k-1} \frac{h^{\gamma^{[1]}}}{p^{2\gamma_m^{[1]}}} F_{\nu_m^{[1]}}(p,h) \le C \frac{h^{\gamma}}{p^{2\gamma}} F_{\nu_{\gamma}}(p,h).$$

which implies that $u = \varphi^{[j]}$ at the vertices of Ω_j , and

$$\|u_{-}\varphi^{[j]}\|_{H^{1}(\Omega_{j})} \leq C\left(\frac{h^{\gamma}}{p^{2\gamma}} F_{\nu_{\gamma}}(p,h) + \frac{h^{\mu-1}}{p^{k-1}}\right) \leq C\frac{h^{\gamma}}{p^{2\gamma}} F_{\nu_{\gamma}}(p,h)$$

Adjust $\varphi^{[j]}$ as in the proof of Theorem 3.4 to achieve the continuity across internal edges γ of elements and homogeneous Dirichlet boundary condition on the edges $\gamma \subset \Gamma_D$. Let $\varphi = \varphi^{[i]}$ on each $\Omega_i, 1 \leq i \leq J$, then $\varphi_p \in S_D^p(\Omega; \Delta; \mathcal{M})$ and satisfies (3.9).

Fig. 3.5 Mapping of element with a vertex of $\boldsymbol{\Omega}$

1. Effectiveness of functional spaces for approximation

Table 4.1. The value of k and s in Sobolev, Besov and weighted Besov spaces for functions of r^{γ} -type and $r^{\gamma} \log^{\nu} r$ -type

Space	$H^k(Q)$	$H^{k,eta}(Q)$	$H^s(Q)$	$B^s(Q)$	$B^{s,eta}(Q)$	$B^{s,\beta}_{\nu}(Q)$
r^γ	$1 + [\gamma]$	$1 + [2\gamma]$	$1 + \gamma - \epsilon$	$1 + \gamma$	$1+2\gamma$	$1+2\gamma$
$r^\gamma \log^ u r$	$1 + [\gamma]$	$1 + [2\gamma]$	$1 + \gamma - \epsilon$	$1 + \gamma - \epsilon$	$1 + 2\gamma - \epsilon$	$1+2\gamma$

Table 4.2. Accuracy of approximation of the *h*- and *p*-version to functions of $r^{\gamma} \log^{\nu} r$ -type based on Sobolev, Besov and weighted Besov spaces

	h version		<i>h</i> - <i>p</i> version					
Space	$H^{s}(Q)$	$B^{s}(Q)$	$H^{s}(Q)$	$B^s(Q)$	$B^{s,eta}(Q)$	$B^{s,\beta}_{\nu}(Q)$		
r^{γ}	$h^{\gamma-\epsilon}$	h^γ	$\left(\frac{h}{p}\right)^{\gamma-\epsilon}$	$\left(\frac{h}{p}\right)^{\gamma}$	$\left(\frac{h}{p^2}\right)^\gamma$	$\left(\frac{h}{p^2}\right)^{\gamma}$		
$r^{\gamma} \log^{ u} r$	$h^{\gamma-\epsilon}$	$h^{\gamma-\epsilon}$	$\left(\frac{h}{p}\right)^{\gamma-\epsilon}$	$\left(\frac{h}{p}\right)^{\gamma-\epsilon}$	$\left(\frac{h}{p^{2-\epsilon}}\right)^{\gamma} \log \frac{p}{h} ^{\nu}$	$\left(\frac{h}{p^2}\right)^{\gamma} F_{\nu}(h,p)$		

2. Optimal Convergence :

If u be the solution of the model problem in a polygonal domain, $u_p \in S^{p,1}(\Omega, \Delta)$ be FEM solution. Then

$$|u - u_p||_{H^1(\Omega)} \le C p^{-2\gamma} \left(1 + \log p\right)^{\nu^*}$$

is the optimal rate, i.e. $\exists C_1$, s.t.

$$||u - u_p||_{H^1(\Omega)} \ge C_1 p^{-2\gamma} \left(1 + \log p\right)^{\nu^*}$$

3. Generalization and Application :

Jacobi-weighted Besov spaces can be generalized to all dimensions :

In One Dimensions : $\beta = 0$;

In Two Dimensions : $\beta = (-1/2, -1/2);$

In One Dimension :

eta=(-1/3,-1/3,-1/3), in nbhd of vertex; eta=(-1/2,-1/2,0), in nbhd of vertex-edge; $eta=(-1/2,-1/2,eta_3)$, in nbhd of edge, $eta_3>-1$, arbitrary. Applicable to the p and h-p (with quasiuniform mesh) version of FEM/BEM for problems with singular as well smooth solutions.

Approximation theory in the framework of the Jacobi-weighted spaces provides a theoretical foundation of the modern p and h-p (with quasiuniform mesh) version of FEM/BEM.