ERROR ESTIMATES FOR NONLINEAR CONVECTIVE PROBLEMS IN THE FINITE ELEMENT METHOD

Václav Kučera

Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 18675 Praha 8, Czech Republic vaclav.kucera@email.cz

Abstract

We describe the basic ideas needed to obtain apriori error estimates for a nonlinear convection diffusion equation discretized by higher order conforming finite elements. For simplicity of presentation, we derive the key estimates under simplified assumptions, e.g. Dirichlet-only boundary conditions. The resulting error estimate is obtained using continuous mathematical induction for the space semi-discrete scheme.

1. Continuous problem

Let $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$, be a bounded open polyhedral domain. We treat the following nonlinear convective problem. Find $u: \Omega \times (0,T) \to \mathbb{R}$ such that

a)
$$\frac{\partial u}{\partial t} + \operatorname{div} \mathbf{f}(u) = g \quad \text{in } \Omega \times (0, T),$$
 (1)

b)
$$u|_{\partial\Omega\times(0,T)} = 0,$$
 (2)

d)
$$u(x,0) = u^0(x), \quad x \in \Omega.$$
 (3)

Here $g: \Omega \times (0,T) \to \mathbb{R}$ and $u^0: \Omega \to \mathbb{R}$ are given functions. We assume that the convective fluxes $\mathbf{f} = (f_1, \dots, f_d) \in (C_b^2(\mathbb{R}))^d = (C^2(\mathbb{R}) \cap W^{2,\infty}(\mathbb{R}))^d$, hence \mathbf{f} and $\mathbf{f}' = (f'_1, \dots, f'_d)$ are globally Lipschitz continuous.

By (\cdot,\cdot) we denote the standard $L^2(\Omega)$ —scalar product and by $\|\cdot\|$ the $L^2(\Omega)$ -norm. By $\|\cdot\|_{\infty}$, we denote the $L^{\infty}(\Omega)$ -norm. For simplicity of notation, we shall drop the argument Ω in Sobolev norms, e.g. $\|\cdot\|_{H^{p+1}}$ denotes the $H^{p+1}(\Omega)$ -norm. We shall also denote the Bochner norms over the whole interval [0,T] in concise form, e.g. $\|u\|_{L^{\infty}(H^{p+1})}$ denotes the $L^{\infty}(0,T;H^{p+1}(\Omega))$ -norm.

2. Discretization

Let \mathcal{T}_h be a triangulation of $\overline{\Omega}$, i.e. a partition into a finite number of closed simplexes with mutually disjoint interiors. We assume standard conforming properties: two neighboring elements from \mathcal{T}_h share an entire face, edge or vertex. We set $h = \max_{K \in \mathcal{T}_h} \operatorname{diam}(K)$.

We consider a system $\{\mathcal{T}_h\}_{h\in(0,h_0)}$, $h_0>0$, of triangulations of the domain Ω which are shape regular and satisfy the inverse assumption, cf. [2]. Let $p\geq 1$ be an integer. The approximate solution will be sought in the space of globally continuous piecewise polynomial functions $S_h=\{v\in C(\overline{\Omega}); v|_{\Gamma_D}=0, v|_K\in P^p(K)\forall K\in\mathcal{T}_h\}$, where $P^p(K)$ denotes the space of polynomials on K of degree $\leq p$.

We discretize the continuous problem in a standard way. Multiply (1) by a test function $\varphi_h \in S_h$, integrate over Ω and apply Green's theorem.

Definition 1. We say that $u_h \in C^1([0,T]; S_h)$ is the space-semidiscretized finite element solution of problem (1)–(3), if $u_h(0) = u_h^0 \approx u^0$ and

$$\frac{d}{dt}(u_h(t),\varphi_h) + b(u_h(t),\varphi_h) = l(\varphi_h)(t), \quad \forall \varphi_h \in S_h, \ t \in (0,T).$$
(4)

Here, we have introduced an approximation $u_h^0 \in S_h$ of the initial condition u^0 and the *convective* and *right-hand side forms* defined for $v, \varphi \in H^1(\Omega)$:

$$b(v,\varphi) = -\int_{\Omega} \mathbf{f}(v) \cdot \nabla \varphi \, dx, \qquad l(\varphi)(t) = \int_{\Omega} g(t) \varphi \, dx.$$

We note that a sufficiently regular exact solution u of problem (1) satisfies

$$\frac{d}{dt}(u(t),\varphi_h) + b(u(t),\varphi_h) = l(\varphi_h)(t), \quad \forall \varphi_h \in S_h, \ \forall t \in (0,T),$$
 (5)

which implies the Galerkin orthogonality property of the error.

3. Key estimates of the convective terms

As usual in apriori error analysis, we assume that the weak solution u is sufficiently regular, namely

$$u, u_t \in L^2(0, T; H^{p+1}(\Omega)), \quad u \in L^{\infty}(0, T; W^{1,\infty}(\Omega)),$$
 (6)

where $u_t := \frac{\partial u}{\partial t}$. For $v \in L^2(\Omega)$ we denote by $\Pi_h v$ the $L^2(\Omega)$ -projection of v on S_h :

$$\Pi_h v \in S_h, \quad (\Pi_h v - v, \varphi_h) = 0, \qquad \forall \varphi_h \in S_h.$$

Let $\eta_h(t) = u(t) - \Pi_h u(t) \in H^{p+1}(\Omega)$ and $\xi_h(t) = \Pi_h u(t) - u_h(t) \in S_h$ for $t \in (0, T)$. Then we can write the error e_h as $e_h(t) := u(t) - u_h(t) = \eta_h(t) + \xi_h(t)$. By C we denote a generic constant independent of h, which may have different values in different parts of the text. Also, for simplicity of notation, we shall usually omit the argument (t) and subscript h in $\xi_h(t)$ and $\eta_h(t)$. In our analysis, we shall need the following standard inverse inequalities and approximation properties of η , (cf. [2]):

Lemma 1. There exists a constant $C_I > 0$ independent of h s.t. for all $v_h \in S_h$

$$|v_h|_{H^1} \le C_I h^{-1} ||v_h||,$$

 $||v_h||_{\infty} \le C_I h^{-d/2} ||v_h||.$

Lemma 2. There exists a constant C > 0 independent of h s.t. for all $h \in (0, h_0)$

$$\|\eta_h(t)\| \le Ch^{p+1}|u(t)|_{H^{p+1}},$$

$$\|\frac{\partial \eta_h(t)}{\partial t}\| \le Ch^{p+1}|\frac{\partial u(t)}{\partial t}|_{H^{p+1}},$$

$$\|\eta_h(t)\|_{\infty} \le Ch|u(t)|_{W^{1,\infty}}.$$

Lemma 3. There exists a constant $C \geq 0$ independent of h, t, such that

$$b(u_h(t),\xi(t)) - b(u(t),\xi(t)) \le C\left(1 + \frac{\|e_h(t)\|_{\infty}}{h}\right) \left(h^{2p+2}|u(t)|_{H^{p+1}}^2 + \|\xi(t)\|^2\right). \tag{7}$$

Proof. The proof follows the arguments of [5], where similar estimates are derived for periodic boundary conditions or compactly supported solutions in 1D. The proof for mixed Dirichlet-Neumann boundary conditions is contained in [4]. We write

$$b(u_h, \xi) - b(u, \xi) = \int_{\Omega} (\mathbf{f}(u) - \mathbf{f}(u_h)) \cdot \nabla \xi \, \mathrm{d}x.$$
 (8)

By the Taylor expansion of \mathbf{f} with respect to u, we have

$$\mathbf{f}(u) - \mathbf{f}(u_h) = \mathbf{f}'(u)\xi + \mathbf{f}'(u)\eta - \frac{1}{2}\mathbf{f}''_{u,u_h}e_h^2, \tag{9}$$

where \mathbf{f}''_{u,u_h} is the Lagrange form of the remainder of the Taylor expansion, i.e. $\mathbf{f}''_{u,u_h}(x,t)$ has components $f''_s(\vartheta_s(x,t)u(x,t)+(1-\vartheta_s(x,t))u_h(x,t))$ for some $\vartheta_s(x,t) \in [0,1]$ and $s=1,\cdots,d$. Substituting (9) into (8), we obtain

$$b(u_h, \xi) - b(u, \xi) = \underbrace{\int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla \xi \, \mathrm{d}x}_{Y_1} + \underbrace{\int_{\Omega} \mathbf{f}'(u)\eta \cdot \nabla \xi \, \mathrm{d}x}_{Y_2} - \frac{1}{2} \underbrace{\int_{\Omega} \mathbf{f}''_{u,u_h} e_h^2 \cdot \nabla \xi \, \mathrm{d}x}_{Y_3}. \quad (10)$$

We shall estimate these terms individually.

(A) Term Y_1 : Due to Green's theorem and the boundedness of f'' and the regularity of u, we have

$$\int_{\Omega} \mathbf{f}'(u)\xi \cdot \nabla \xi \, \mathrm{d}x = -\frac{1}{2} \int_{\Omega} \mathrm{div} \big(\mathbf{f}'(u) \big) \xi^2 \, \mathrm{d}x \le C \|\xi\|^2.$$

(B) Term $\mathbf{Y_2}$: We define $\Pi_h^1: (L^2(\Omega))^d \to (S_h^1)^d = \{\mathbf{v} \in (C(\overline{\Omega}))^d; \mathbf{v}|_{\Gamma_D} = 0, \mathbf{v}|_K \in (P^1(K))^d, \forall K \in \mathcal{T}_h\}$, the $(L^2(\Omega))^d$ -projection onto the space of continuous piecewise linear vector functions. From standard approximation results (similar to those of Lemma 2, cf. [2]), we obtain

$$\|\mathbf{f}'(u) - \Pi_h^1(\mathbf{f}'(u))\|_{\infty} \le Ch|\mathbf{f}'(u)|_{W^{1,\infty}} \le Ch\|\mathbf{f}''\|_{L^{\infty}(\mathbb{R})}|u|_{L^{\infty}(W^{1,\infty})} = \tilde{C}h.$$

Furthermore, due to the definition of η , we have $\int_{\Omega} \Pi_h^1(\mathbf{f}'(u)) \cdot \nabla \xi \, \eta \, dx = 0$, since $\Pi_h^1(\mathbf{f}'(u)) \cdot \nabla \xi \in S_h$. Therefore, by Lemmas 1, 2 and Young's inequality

$$|Y_2| = \left| \int_{\Omega} \left(\mathbf{f}'(u) - \Pi_h^1(\mathbf{f}'(u)) \right) \cdot \nabla \xi \, \eta \, \mathrm{d}x \right| \le \|\mathbf{f}'(u) - \Pi_h^1(\mathbf{f}'(u))\|_{\infty} C_I h^{-1} \|\xi\| \|\eta\|$$

$$\le \tilde{C} h C_I h^{-1} \|\xi\| \|\eta\| \le \|\xi\|^2 + C h^{2p+2} |u(t)|_{H^{p+1}}^2.$$

(C) Term Y_3 : We apply Lemmas 1, 2 and Young's inequality:

$$|Y_3| \le C \|e_h\|_{\infty} \|e_h\| C_I h^{-1} \|\xi\| \le C h^{-1} \|e_h\|_{\infty} (C h^{2p+2} |u(t)|_{H^{p+1}}^2 + \|\xi\|^2).$$

4. Error analysis of the semidiscrete scheme

We proceed similarly as for a parabolic equation. By Galerkin orthogonality, we subtract (5) and (4) and set $\varphi_h := \xi_h(t) \in S_h$. Since $\left(\frac{\partial \xi_h}{\partial t}, \xi_h\right) = \frac{1}{2} \frac{d}{dt} \|\xi_h\|^2$, we get

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\xi_h(t)\|^2 = b\big(u_h(t),\xi_h(t)\big) - b\big(u(t),\xi_h(t)\big) - \Big(\frac{\partial\eta_h(t)}{\partial t},\,\xi_h(t)\Big).$$

For the last right-hand side term, we use the Cauchy and Young's inequalities and Lemma 2 and Lemma 3 for the convective terms. We integrate from 0 to $t \in [0, T]$,

$$\|\xi_h(t)\|^2 \le C \int_0^t \left(1 + \frac{\|e_h(\vartheta)\|_{\infty}}{h}\right) \left(h^{2p+1}|u(\vartheta)|_{H^{p+1}}^2 + h^{2p+2}|u_t(\vartheta)|_{H^{p+1}}^2 + \|\xi_h(\vartheta)\|^2\right) d\vartheta, \quad (11)$$

where $C \ge 0$ is independent of h, t. For simplicity, we have assumed that $\xi_h(0) = 0$, i.e. $u_h^0 = \Pi_h u^0$. Otherwise we must assume e.g. $\|\xi_h(0)\|^2 \le C h^{2p+1} \|u^0\|_{H^{p+1}}^2$ and include this term in the estimate.

We notice that if we knew apriori that $||e_h||_{\infty} = O(h)$ then the unpleasant term $h^{-1}||e_h||_{\infty}$ in (11) would be O(1). Thus we could simply apply the standard Gronwall lemma to obtain the desired error estimates. We state this formally:

Lemma 4. Let $t \in [0,T]$ and $p \ge d/2$. If $||e_h(\vartheta)|| \le h^{1+d/2}$ for all $\vartheta \in [0,t]$, then there exists a constant C_T independent of h, t such that

$$\max_{\vartheta \in [0,t]} \|e_h(\vartheta)\|^2 \le C_T^2 h^{2p+1}. \tag{12}$$

Proof. The assumptions imply, by the inverse inequality and estimates of η , that

$$||e_h(\vartheta)||_{\infty} \le ||\eta_h(\vartheta)||_{\infty} + ||\xi_h(\vartheta)||_{\infty} \le Ch|u(t)|_{W^{1,\infty}} + C_I h^{-d/2} ||\xi_h(\vartheta)||$$

$$\le Ch + C_I h^{-d/2} ||e_h(\vartheta)|| + C_I h^{-d/2} ||\eta_h(\vartheta)|| \le Ch + Ch^{p+1-d/2} |u(\vartheta)|_{H^{p+1}(\Omega)} \le Ch,$$
(13)

where the constant C is independent of h, ϑ, t . Using this estimate in (11) gives us

$$\|\xi_h(t)\|^2 \le \tilde{C}h^{2p+1} + C \int_0^t \|\xi_h(\vartheta)\|^2 d\vartheta,$$
 (14)

where the constants \widetilde{C} , C are independent of h, t. Gronwall's inequality applied to (14) states that there exists a constant \widetilde{C}_T , independent of h, t, such that

$$\max_{\vartheta \in [0,t]} \|\xi_h(\vartheta)\|^2 + \frac{1}{2} \int_0^t |\xi_h(\vartheta)|_{\Gamma_N}^2 d\vartheta \le \widetilde{C}_T h^{2p+1},$$

which allong with similar estimates for η gives us (12).

Now it remains to get rid of the apriori assumption $||e_h||_{\infty} = O(h)$. In [5] this is done for an explicit scheme using mathematical induction. Starting from $||e_h^0|| = O(h^{p+1/2})$, the following induction step is proved:

$$||e_h^n|| = O(h^{p+1/2}) \implies ||e_h^{n+1}||_{\infty} = O(h) \implies ||e_h^{n+1}|| = O(h^{p+1/2}).$$
 (15)

For the method of lines we have continuous time and hence cannot use mathematical induction straightforwardly. However, we can divide [0,T] into a finite number of sufficiently small intervals $[t_n, t_{n+1}]$ on which " e_h does not change too much" and use induction with respect to n. This is essentially a continuous mathematical induction argument, a concept introduced in [1], which has many generalizations, cf. [3].

Lemma 5 (Continuous mathematical induction). Let $\varphi(t)$ be a propositional function depending on $t \in [0,T]$ such that

- (i) $\varphi(0)$ is true,
- (ii) $\exists \delta_0 > 0 : \varphi(t) \text{ implies } \varphi(t+\delta), \ \forall t \in [0,T] \ \forall \delta \in [0,\delta_0] : t+\delta \in [0,T].$

Then $\varphi(t)$ holds for all $t \in [0, T]$.

Remark 1 Due to the regularity assumptions, the functions $u(\cdot)$, $u_h(\cdot)$ are continuous mappings from [0,T] to $L^2(\Omega)$. Since [0,T] is a compact set, $e_h(\cdot)$ is a uniformly continuous function from [0,T] to $L^2(\Omega)$. By definition,

$$\forall \epsilon > 0 \ \exists \delta > 0: \ s, \bar{s} \in [0, T], |s - \bar{s}| \le \delta \implies \|e_h(s) - e_h(\bar{s})\| \le \epsilon.$$

Theorem 6 (Semidiscrete error estimate). Let p > (1+d)/2. Let $h_1 > 0$ be such that $C_T h_1^{p+1/2} = \frac{1}{2} h_1^{1+d/2}$, where C_T is the constant from Lemma 4. Then for all $h \in (0, h_1]$ we have the estimate

$$\max_{\vartheta \in [0,T]} \|e_h(\vartheta)\|^2 \le C_T^2 h^{2p+1}. \tag{16}$$

Proof. Since p > (1+d)/2, h_1 is uniquely determined and $C_T h^{p+1/2} \leq \frac{1}{2} h^{1+d/2}$ for all $h \in (0, h_1]$. We define the propositional function φ by

$$\varphi(t) \equiv \Big\{ \max_{\vartheta \in [0,t]} \|e_h(\vartheta)\|^2 \le C_T^2 h^{2p+1} \Big\}.$$

We shall use Lemma 5 to show that φ holds on [0, T], hence $\varphi(T)$ holds, which is equivalent to (16).

- (i) $\varphi(0)$ holds, since this is the error of the initial condition.
- (ii) Induction step: We fix an arbitrary $h \in (0, h_1]$. By Remark 1, there exists $\delta_0 > 0$, such that if $t \in [0, T)$, $\delta \in [0, \delta_0]$, then $||e_h(t + \delta) e_h(t)|| \le \frac{1}{2}h^{1+d/2}$. Now let $t \in [0, T)$ and assume $\varphi(t)$ holds. Then $\varphi(t)$ implies $||e_h(t)|| \le C_T h^{p+1/2} \le \frac{1}{2}h^{1+d/2}$. Let $\delta \in [0, \delta_0]$, then by uniform continuity

$$||e_h(t+\delta)|| \le ||e_h(t)|| + ||e_h(t+\delta) - e_h(t)|| \le \frac{1}{2}h^{1+d/2} + \frac{1}{2}h^{1+d/2} = h^{1+d/2}.$$

This and $\varphi(t)$ implies that $||e_h(s)|| \leq h^{1+d/2}$ for $s \in [0,t] \cup [t,t+\delta] = [0,t+\delta]$. By Lemma 4, φ holds on $[0,t+\delta]$. As a special case, we obtain the "induction step" $\varphi(t) \Longrightarrow \varphi(t+\delta)$ for all $\delta \in [0,\delta_0]$.

5. Conclusion

We have presented the basic ideas behind the apriori analysis of nonlinear convective problems. To keep things as simple as possible, we have presented the analysis only for a space-semidiscrete scheme, with Dirichlet boundary conditions only. The extension to mixed boundary conditions, the extension to implicit schemes via continuation, derivation of improved estimates under the assumption $\mathbf{f} \in (C_b^3(\mathbb{R}))^d$ and the generalization to locally Lipschitz $\mathbf{f} \in (C^2(\mathbb{R}))^d$ can be found in [4].

Acknowledgements

The work was supported by the project P201/11/P414 of the Czech Science Foundation.

References

- [1] Chao, Y. R.: A note on "Continuous mathematical induction". Bull. Amer. Math. Soc. **26** (1) (1919), 17–18.
- [2] Ciarlet, P.G: The finite element method for elliptic problems. North-Holland, Amsterdam, 1979.
- [3] Clark, P.L.: Real induction, available online http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.187.3514.
- [4] Kučera, V.: Finite element error estimates for nonlinear convective problems. The Preprint Series of the School of Mathematics, preprint No. MATH-knm-2012/1, http://www.karlin.mff.cuni.cz/ms-preprints/prep.php. Submitted to Numer. Math, 2012.
- [5] Zhang, Q. and Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2) (2004), 641–666.