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Abstract

The model of coupled heat transport and Darcian water flow in unsaturated soils

and in conditions of freezing and thawing is analyzed. In this contribution, we present

results concerning the existence of the numerical solution. Numerical scheme is based

on semi-implicit discretization in time. This work illustrates its performance for

a problem of freezing processes in vertical soil columns.

1. Introduction

Let T > 0 and ℓ > 0 be the fixed values, Ω = (0, ℓ), I = (0, T ), ΩT = Ω× I. We
consider a mixed initial-boundary value problem for a general model of the coupled
heat and mass flow in freezing soils. The mathematical model consists of the following
system (cf. [1]):

∂θM (z, ϑ, u)

∂t
=

∂

∂z

(

k(z, ϑ, u)
∂u

∂z

)

in ΩT , (1)

Ca(z, ϑ, u)
∂ϑ

∂t
=

∂

∂z

(

λ(z, ϑ, u)
∂ϑ

∂z

)

+ Cwk(z, ϑ, u)
∂ϑ

∂z

∂u

∂z
in ΩT , (2)

u(0, t) = uD(t) and ϑ(0, t) = ϑD(t) in I, (3)

−k(z, ϑ, u)
∂u

∂z
= βc(u− u∞) and − λ(z, ϑ, u)

∂ϑ

∂z
= αc(ϑ− ϑ∞) in I, z = ℓ, (4)

u(z, 0) = u0(z) and ϑ(z, 0) = ϑ0(z) in Ω. (5)

This system describes the one-dimensional coupled water flow and heat transport
involving freezing-thawing processes in a vertical soil column. Equations (1) and (2)
represent conservation laws for mass and energy, (3) and (4) are prescribed boundary
conditions of Dirichlet and Neumann type, respectively, and (5) represents appropri-
ate initial conditions. In (1)–(5) u = u(z, t) [m] and ϑ = ϑ(z, t) [K] (single-valued
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functions of the time t and the spatial position z ∈ Ω positive upward) are the
primary unknowns for the total pressure head and temperature, θM [-] is the total
water content, k [m s−1] represents the hydraulic conductivity, Ca [Jm−3K−1] is the
so called apparent heat capacity and λ [Wm−1K−1] is the thermal conductivity of
the soil. Material constant parameters in (1)–(5) are the volumetric heat capacity of
water Cw (4.181×106 Jm−3K−1), convective heat and mass transfer coefficients αc
[Wm−2K−1] and βc [s

−1].

2. Freezing and thawing

Define ψ [m] as the matric potential corresponding to the liquid water con-
tent θw [-] and the matric potential h [m] corresponding to the total water con-
tent θV [-] (liquid and ice). The amount of water present at a certain matric po-
tential of the porous medium is characterized by the water retention curve θ(·). In
particular, θV = θ(h), while θw = θ(ψ). Here we use the relation proposed by van
Genuchten [4] θ(h) = θr+(θs− θr)[1+ |αh|n]−m, where θs is the soil saturated water
content [-], θs is the soil residual water content [-], α [m−1], m and n are parameters.

Water in soil pores does not freeze at 273.15 K, but is subject to a freezing-
point depression caused by interaction between water, soil particles and solutes. The
generalized Clapeyron equation is used to describe the condition for the co-existence
of water and ice. The local freezing point of pore fluid can be obtained from the
generalized Clapeyron equation [1, 2]

dp =
ρwLf

ϑ
dϑ, (6)

where p [Pa] is the water pressure, p = ρwgh, h = u − z, g is the acceleration
due to gravity (9.81 m s−2), h [m] the pressure head (matric potential), ρw the
density of liquid water (approximately 1000.0 kg m−3) and Lf is the latent heat
of fusion (3.34 × 105 J kg−1). Let ϑ0 = 273.15 be the freezing temperature at zero
pressure head. If the soil is unsaturated, the surface tension at the water/air interface
decreases the water freezing temperature to ϑf < 273.15 K. To obtain the value ϑf
at the given pressure P integrate (6) in temperature from 273.15 to ϑf and from 0
to P in pressure to obtain

∫ P

0

dp =

∫ ϑf

273.15

ρwLf

ϑ
dϑ, which yields ϑf = 273.15ehg/Lf = 273.15e(u−z)g/Lf . (7)

Similarly, integrating (6) in temperature from ϑf to ϑ and from P (= hρwg) to
Pψ(= ψρwg) in pressure yields (recall u = h+ z)

ψ(z, ϑ, u) = ψ(ϑ, u− z) ≡ ψ(ϑ, h) = h+
Lf

g
ln

ϑ

ϑf
= u− z +

Lf

g
ln

ϑ

ϑf
. (8)

The above equation is valid for ϑ < ϑf . If ϑ > ϑf all water is unfrozen and h = ψ

and θw = θV . Consequently, whenever ϑ < ϑf , the ice fraction θi [-] can be expressed
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as θi = θV −θw [-]. In addition, the total water content θM (present in (1)) as derived
by the fraction of total mass of liquid water and ice (see [1, Appendix A]) reads

θM(z, ϑ, u) = θw(ψ(z, ϑ, u)) +
ρi

ρw
θi(z, ϑ, u) =

ρi

ρw
θV (z, u) +

(

1−
ρi

ρw

)

θw(ψ(z, ϑ, u)),

where ρi is the density of ice (918 kg m−3).

2.1. Structural conditions and assumptions on physical parameters

Let us present some properties and additional assumptions on physical parameters
introduced in the model.

A1 The parameters ρw, ρi, θs, θr, Cw, Lf , αc and βc are real positive constants
and ρi < ρw.

A2 The thermal conductivity λ, apparent thermal capacity Ca and hydraulic con-
ductivity k are assumed to be positive continuous functions of their arguments
(see [2] for specific examples). In addition,

0 < Ca(z, ξ, ζ) 6 C♯
a < +∞ ∀ξ, ζ ∈ R (C♯

a = const > 0). (9)

A3 Functions θw = θw(z, ·) and θV = θV (z, ·) (for z ∈ Ω) are positive, nondecreas-
ing, continuous and bounded functions such that

θr 6 θw(z, ξ) 6 θs, θw(z, ξ) 6 θV (z, ξ) 6 θs ∀ξ ∈ R. (10)

Consequently, θM is a positive continuous function such that

0 < θM(z, ξ, ζ) =
ρi

ρw
θV (z, ξ) +

(

1−
ρi

ρw

)

θw(z, ζ) 6 θs for all ξ, ζ ∈ R.

A4 Functions uD, ϑD, u∞, ϑ∞ are continuous on [0, T ], u0, ϑ0 ∈ W 1,2(Ω)2 and the
compatibility conditions u0(0) = uD(0) and ϑ0(0) = ϑD(0) hold.

3. The approximate solution

Albeit the coupled problem (1)–(5) is essentially non-stationary in their nature,
we shall formulate and analyze a weak form of the stationary problem. It has a signif-
icant mathematical interest because the time discretization of the evolution problem
leads, in each time step, to a coupled system of stationary equations.

Let 0 = t0 < t1 < · · · < tN = T be an equidistant partitioning of time interval
[0;T ] with step ∆t. Set a fixed integer n such that 0 6 n 6 N − 1. In what follows
we abbreviate φ(z, tn) by φn (≡ φ(z)n) for any function φ. The time discretization
of the continuous model is accomplished through a semi-implicit difference scheme.
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Consequently, we have to solve, successively for n = 0, . . . , N − 1, the following
semilinear system with primary unknowns [ϑn+1, un+1]

θM (z, ϑn+1, un+1)− θM(z, ϑn, un)

∆t
=

∂

∂z

(

kn
∂un+1

∂z

)

, (11)

(Ca)n+1
ϑn+1 − ϑn

∆t
=

∂

∂z

(

λn
∂ϑn+1

∂z

)

+ Cwkn
∂un

∂z

∂ϑn

∂z
, (12)

u(0)n+1 = (uD)n+1 and ϑ(0)n+1 = (ϑD)n+1,(13)

−kn
∂un+1

∂z

∣

∣

∣

z=ℓ
= βc(u(ℓ)n+1 − u∞(ℓ)n+1), (14)

−λn
∂ϑn+1

∂z

∣

∣

∣

z=ℓ
= αc(ϑ(ℓ)n+1 − ϑ∞(ℓ)n+1). (15)

Here, we assume that the functions un and ϑn are known and (for the sake of sim-
plicity) we put kn = k(z, ϑn, un), λn = λ(z, ϑn, un), (Ca)n+1 = Ca(z, ϑn+1, un+1). In
what follows we study the problem of the existence of the solution un+1 and ϑn+1.

Let V be a closure of the space
{

v ∈ C∞(Ω)2; v(0) = 0
}

in the norm ofW 1,2(Ω)2.
By 〈·, ·〉 we denote the duality between V and V∗, where V∗ represents the dual space
corresponding to V. Define an operator A :W 1,2(Ω)2 → V∗ given by the equation

〈A([ϑn+1, un+1]),ϕ〉 :=

∫

Ω

kn
∂un+1

∂z

∂ϕ1

∂z
+ λn

∂ϑn+1

∂z

∂ϕ2

∂z
dz

+
1

∆t

∫

Ω

θM(z, ϑn+1, un+1)ϕ1 + (Ca)n+1(ϑn+1 − ϑn)ϕ2 dz

+ βcu(ℓ)n+1 ϕ1(ℓ) + αcϑ(ℓ)n+1ϕ2(ℓ) (16)

for every ϕ = [ϕ1, ϕ2] ∈ V and the functional f ∈ V∗ by the equation

〈f ,ϕ〉 :=
1

∆t

∫

Ω

θM (z, ϑn, un)ϕ1dz +

∫

Ω

Cwkn
∂un

∂z

∂ϑn

∂z
ϕ2 dz

+ βcu∞(ℓ)n+1ϕ1(ℓ) + αcϑ∞(ℓ)n+1ϕ2(ℓ) (17)

for all ϕ = [ϕ1, ϕ2] ∈ V. It can be shown that the operator A and the functional
f are well defined. Let [ϑn, un] ∈ [(ϑD)n, (uD)n] + V. We say that the couple
[ϑn+1, un+1] ∈ [(ϑD)n+1, (uD)n+1] + V is the weak solution of the problem (11)–(15)
whenever 〈A([ϑn+1, un+1]),ϕ〉 = 〈f ,ϕ〉 for all ϕ = [ϕ1, ϕ2] ∈ V.

Theorem 1. For a given couple [ϑn, un] ∈ [(ϑD)n, (uD)n] + V there exists a weak

solution [ϑn+1, un+1] ∈ [(ϑD)n+1, (uD)n+1] + V of the problem (11)–(15).

Sketch of the proof. Note that the couple [ϑn+1, un+1] ∈ [(ϑD)n+1, (uD)n+1]+V is the
weak solution of the problem (11)–(15) iff it is a solution of the operator equation

A([ϑn+1, un+1]) = f .
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Let us define A : V → V∗ by A([ϑ̄n+1, ūn+1]) := A([ϑ̄n+1, ūn+1]+ [(ϑD)n+1, (uD)n+1]).
The abstract equation A([ϑ̄n+1, ūn+1]) = f has a solution [ϑ̄n+1, ūn+1] ∈ V if and
only if [ϑn+1, un+1] = [ϑ̄n+1, ūn+1] + [(ϑD)n+1, (uD)n+1] ∈ W 1,2(Ω)2 is the solution of
the equation A([ϑn+1, un+1]) = f . Note that the equation A([ϑ̄n+1, ūn+1]) = f rep-
resents a variational formulation corresponding to the system of coupled semilinear
equations. It can be shown that the operator A : V → V∗ is pseudomonotone and
coercive. Now [3, Theorem 3.3.42] yields the existence of the solution [ϑ̄n+1, ūn+1] ∈ V

to the equation A([ϑ̄n+1, ūn+1]) = f .

4. Numerical solution and results

By means of the model described above, we briefly present numerical results for
coupled water flow and heat transport involving freezing-thawing cycle in a vertical
soil column. The soil thickness in the numerical simulation for the one-dimensional
vertical transport is 1 m, see Fig. 1. The spatial discretization of the system (11)–(15)
is carried out by means of the FE-method with piecewise linear elements with spa-
tial discretization as indicated in Fig. 1. This resulting system is solved using the
well-known Newton method at each time step with ∆t = 30 s. Physical properties of
soil are taken from [1, 2, 4]. The initial and boundary conditions are set as follows:
ϑ0 = ϑD = 277.15 K, u0 = −0.1241 + z m, u∞ decreases from the value u0 + 1 m to
−100 m during the first two days and then taken constant, the distribution of ϑ∞
is shown in Fig. 2. The progress of freezing and thawing in a soil column based
on numerical simulation is clearly visible in Figures 3 and 4 which show the vertical
distributions of the temperature, water content and ice during the 8-days period.

1
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Figure 1: Analyzed soil profile.
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Figure 2: Temperature ϑ∞.
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Figure 3: Spatial and time distribution of temperature (black lines) and freezing
temperature (gray lines), ϑ and ϑf , respectively, for the analyzed soil profile.
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content, θw and θi, respectively, for the analyzed soil profile.
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