The transformation of the Sylvester
matrix and the calculation of the GCD of
two Iinexact polynomials

Joab R. Winkler®™ = Jan Zitko®

(1) The University of Sheffield, Department of Computer Science,
Regent Court, 211 Portobello Street, Sheffield S1 4DP,

United Kingdom

(2) charles University, Faculty of Mathematics and Physics,

Department of Numerical Mathematics, Prague

Dolni Maxov 1. - 6. €¢ervna 2008



Overview :

2

. Introduction to problem

. Transformation of the Sylvester matrix

. A low rank approximation of the Sylvester matrix

. T he optimal value of the scale factor



1. Introduction

The determination of GCD of two polynomials arises in

several applications.

An example of application: A common problem in linear sys-
tems theory is approximate pole-zero cancellation which reduces to
the computation of an approximate GCD of two inexact polynomi-
als. In particular, if a rational transfer function is given by

_ f(=@)
) = g(x)

where f(x) and g(x) are polynomials, then it may be necessary to

cancel out approximately equal factors of f(x) and g(x).



- the determination of almost common factors [ Za-

rowski, Ma, Fairman]

[Euclid’'s algorithm is used for exact computation]

the connection
Euclid’'s algorithm “~— —— — the Sylvester matrix

The polynomials f = f(x) and g = g(x)

f(x) = apz™ + a1z ' + - + am_17 + am,
g(z) = boz™ + bz ' + -+ + by_17 + bn,



It is assumed m > n.
The Sylvester matrix S(f,g) € c(m+n)x(m+n)

" ag by )
a1 ag b1 bg
a - - by
a’O ° ° ° bO
S -
(f.9) Qm - - a1 bn - - by
am bn °
i Am by _
n COTGmnS m Cc;lrumns

The kth Sylvester submatrix S;, € C(m+n—k+1)X(m+n—2k+2)

[will be used later] is formed by deleting the last (kK — 1) rows,



and the last (k — 1) columns of the coefficients of f(x)
and g(x), of S(f,g).

We need the following notation:
The vector e; denotes the 1th column of the identity matrix I, and

the matrix

Ei,j(d) = I — 0'61'6?

where o € C, is an elementary triangular matrix. It is lower and

upper triangular for 2 > 3 and @ < 3, respectively.

2. Transformation of the Sylvester matrix
Let fo=f and f1 =g,
fi(x) = qj(x) fir1(x) + fira(x), i=0,1,2,...




e deg fi12 < deg fii1.

o If f =0, then f,_; = GCD (f,g).

The GCD(f,g) can be obtained by rearrangement of the
Sylvester matrix S(f,g).

The special case m = 5 and n = 2 is considered.

To transformation S(f,g) into the triangular form;

_ao by _
a1 ag by by
a2 ay b by by

(1) S(fsg9) = | a3 a2 ba b1 bg
a, asg bo b1 by
as ayg bo by

as bo



The first step ... the matrix (1) is postmultiplied succes-
sively by the matrices E31(ao/bg) and E4 2(ao/bg). This
yields the matrix

0 bo

alV 0 by by
(1) oD b b1 b

2 SW(f,g) = ?) % ba b1 bg
?1) ?1) by by b
1) (1) by by

‘(‘1) b,



-the corresponding polynomial operation has the form

ha(x) : = agl)wél + a(l)w?» 4 a(l)wz 4 a(l)w I a(1)
= f(z) — g(x)(ao/bo)z".

The next step: the first nonzero element in the sequence
agl), agl) , aé) is found - say az) # 0, and the next
step is the subtraction of the fifth and sixth columns,
multiplied by a; )/bO from the first and second columns
respectively. We have a(l) = 0 and

h4(x) = hz(x) := ag ) 3 -+ a(l) 2 a(l)m -+ a,(l).

In this case the matrix (2) is postmultiplied successively



by the matrices E5,1(a;1)/b0) and Eﬁ’z(agl)/b()). This

vields the matrix

0 bo
0 0 b1 by
0 0O b2 by bg
e
2 _ 0 bo b1 b
g‘z) ) by by
?‘2) b,

- the corresponding polynomial operation has the form

ho(x) := alP22 + 0Pz + a!?) = ha(z) — g(z)(al" /bo)z.



This process can be continued : the coefficient a:())z) IS

reduced to zero. We have

ORI
5(3)(f9 g) — S(z)(fa g)EG’l(biO)EKZ(bLO)

hi(z) = aPz+al® = hy(z)—g(z)(al® /by) The matrix

SG3)(f,g) has the form
- 0 b _
0 0 b1 bg
0 0 by by bg
sOGg=| O 0 thn
a 0 b b1 bg

(3 (3) by by




We finaly have

g,oa:5 — a1m4 -+ a2w3 — a3:c2 + aqx + as =

fo()=F (@)
((ao/bo)w?’ + (a3 /bo)z + (az(),z)/bo)> (bowz + bix + bz)
qo(x) fi(z)=g()

+ (aflg)w + aég)) .
) fa()

Now we summarize all previous transformations. Let us
put

7

Ao Ao ag_l) ag_l) agz) agz) a:(g?)) a:(g?))
Ty = E3 () Es2(—)Es1 () Es 2(——) Es 1 () Es 2(——) Eg,1 (—) E72(——) P
1 3.1 bO 4,2 bO 4.1 bO 5,2 bO bO bO bO bO

where P € R7X7 is the permutation matrix

P = (639 €4,€5,€6, €7, €17, 62).



It is easy to see that

SW(f,g) := S(f,9)T1 =

b1 by
ba b1 bg
ba b1 bg

bo by
bo

(4)

bg a
b1 a§4) a%{l)
b2 a54) |

and the transformation Iy corresponds the above poly-

nomial operation which is equivalent to one step of the

recursion corresponding to 1 = 0.

fi(z) = q;(z) fit1(xz) + fira(x),

i=0,1,2,...




Moreover, the marked 3 X 3 submatrix is a Sylvester ma-
trix S(f1, f2).

The transformation of S(fi1, f2) to triangular form is
carried out in the same way as above, if fo £ 0.
In the opposite case f1 =GCD(fo, f1)-

Let us mention once more the Euclide’'s algorithm.
fi(x) = qj(@) fir1(x) + fira(x), 1=0,1,2,...

e deg fi12 < deg f; 1.

In general case there exist T7 and s such that if we denote

ny=m—is, fa@) = a;)a™ + a7 2"t 4 far)



then the matrix StV (f, g) = S(f,g)T1 has the form

- by _
b1 by
b1
. bo
b1 bo
b, bi by
b,, . b; b
. b; by
_|_ — — — — — —
bn . b, | by . al®
b, . | by . by al), a,§;)
b, - | bp . al’),
b, . | a®) . . ags)
bn I b a’g}sz) ‘ a’fﬁj}—l
_ | b, . aq(qi) i
m — nz‘cr:olumns o columns n columns

The marked (n + n3) X (n 4+ ng) matrix is the Sylvester matrix

S(f1, f2) for polynomials fi(x), fa(x) supposing that az(:) # 0.



In this case the inequality

(4)  rank(S(fo, f1)) = m — deg(f2) + rank(S(f1, f2))

holds.
If fo = 0 then f; divides fo and rank(S(fo, f1)) = m.
If we transform S(fi1, f2), afterwards S(f2, f3), ...then

the repetition of (4) leads to the following result:

Theorem 2.1 Let f and g be the polynomials of degrees
m and n respectively. Then the following statements are

equivalent:



1. rank (S(f,g9)) = m+n — k & deg (GCD(f,g)) = k;

2. rank (S(f,9)) <m+n—k & deg (GCD(f,g)) > k;

The analogous considerations with S, yields the following

theorem.

Theorem 2.2 Let f and g be the polynomials of de-
grees m and n respectively, 1 < k < min(m,n) and let
S be the kth Sylvester submatrix. Then the following

statements are equivalent:



1. rank (S) =m+n—2k+1 < deg (GCD(f,g)) = k;

2. rank (S) <m+n—2k+ 1< deg (GCD(f,g9)) > k.
[]



3. A low rank approximation of
the Sylvester matrix

A low rank approximation of the Sylvester matrix This

section considers the use of the method of

structured total least norm (STLN)

(Ben Rosen, Kaltofen, Yang, Zhi, Winkler)
for the construction of a structured low rank approxi-
mation of the Sylvester matrix for approximate GCD

computations.



Let an integer k, 1 < k < min (m,n) be given.
Required: Perturbations df(x) and dg(x) of f(x) and

g(x) respectively,

dagx’™ + Saix™ 1 +... .+ day—1x + dam,

df(x)
dg(x)

Sbox™ + dbix™ 1 + ... + 8b,,_1x + Oby,

deg (GCD(f+df,g+3dg)) >k and |6f12+ |dgl|3

IS mMinimised.



The kth Sylvester submatrix has the form

Cl Ap
Ar -\ N
a( bo ]
aj ag b1 bo
a’]_ ° ° b]_ °
° aO ° ° bO
am y al bn ° ° b]_
am bn
aAm bn |

St

m—(h—1) m—(b—1)

— [Ck;v Ak;] :

—m+n—(k—1)



e € Rm—l—n—k—l—l and Ak c R(m—l—n—k—l—l)x(m—l—n—2k—|—1)_

Acording to this notation we can formulate the following
lemma.

Lemma 3.1 Let f and g be polynomials of degrees m
and n respectively, 1 < k < min(m,n) and let S}, be the
kth Sylvester submatrix. Then the following statements

are equivalent:

a) deg(GCD(fo, f1)) = k < rank(Ag) = m+n —2k+ 1
and the dimension of the null space of S is equal to

one.



b) deg(GCD(fo, f1)) > k < rank(Agp) < m+n —2k +1

and the dimension of the null space of S, is at least two.

(Kaltofen, Yang, Zhi, Wikler).

Theorem 4.1 Let f and g be the polynomials of degrees
m and n respectively, 1 < k < min(m,n) and S the
kth Sylvester submatrix. Let S}, = [cg, A| where ¢, is
the first column of the matrix Sy, Then the following

statements are equivalent:



a) deg(GCD(f,g)) = k < the equation Apy = cj, possesses

exactly one nontrivial solution.

b) deg(GCD(f,g)) > k < the equation Ay = ¢, possesses

at least two linearly independent solutions.

Now we describe the STLN method The polynomials
f(x) and g(x) can be inexact. For a given integer k €
[1, min(m,n)] we want to compute the minimal pertu-

rbation of the coefficients of f(x) and g(x) such that



the degree of greatest commmon divisors of the perturbed
polynomials equals k.

...to compute a perturbation matrix |[hy, Ei] with the

same block structure as [cg, Ag] such that the equation

(Ak + Ek)y = CL T hk: Yy — [yla Y2400y ym—I—n—Zk—l—l]T

possesses exactly one nontrivial solution. Hence we solve

the constrained minimisation problem,

min ||  hy Ej | HF such that (Agp + Er)y = ¢ + hg.



... z; Is the perturbation of a; for : = 0,...,m,

... Zm+4i+1 IS the perturbation of b; for 2+ = 0,...,n.

The structured error matrix [hy, Ej] € R(m+n—k+1)x(m+n—2k+2)

20 = | Zmia
Z1 | 21 | Zmyo Zm+1
: | : <0 | : Zm+2 e Zm4l
Zm—1 | E e 21 | Zm+n E Zm+2 Zm+1
Zm | Zm—-1 - | Zm+n+1  “Fm+n e Zm—+2
| Zm . E | Zm+4n+1l - Zm+4n .
| Zm—1 | zm—l—n—l—l zm—l—n
i | Zm | Zm—l—n—l—l i
~~ ~~ ~~
1 n—k m—k+1



Define the (m +n — k+ 1) X (m +n + 2) matrix Y, =

0 | Yn—k+1
Y1 | Yn—kt2 Yn—k+1
Y1 | Yn—k+2
|
Yn—k - e U | . . e e Yn—k+1
Yn—k - . U1 | Ym+n—2k+1 - T e Yn—k+2
e . | Ym+n—2k+1 ) )
Yr—k - |
Yn—k |
L | Ymtn—2k+1 |
m+n—2k+1) 2k + 1

and the matrix P, € R(m+n—k+1)x(m+n+2)

I 0
P,@:[O’”’“r1 0].

hp = Pz, and Yi(y)z = FEi(z)y.



T he residual vector

r=1(z,y) = cp + hp — (A + Ep)y.

The STLN method.

We seek a vector z = [zg, 215 - - » Zmint1]t € RMITNH2
such that the system

(Ag + Eg(2))y = cx + hy(2)

has just one nontrivial solution and

|z||]2 is minimal.

(||Dz|l2) is minimal.



Let z and y be initial aproximations.
We express r(z + dz,y + dy) as the lowest order Taylor

series and we try to calculate shifts dz,dy such that

T(z—l—éz,y—l—dy) ~ 0
R r(z,y) — (Yg — Pg)oz — (A, + Ep)dy

This leads to the iterative process for 0y and 0z where in



the each stage the LSE problem is solved (See Winkler):

min

subject to
0z

oy
I(D(z+62)|

(=P (Ae+ B0 ] | 57 | = (=),

\ .

(D 0] [5Z] — (—Dz)

A J

r(z—l—éz,;;—i—éy)zﬂ

where

D = diag(Dq1,D2), D;=(n—k+1)I5,+1, D2=(m—k+1)I,4;.



Denoting

C = (Vi — P) (A + E) ] c R(m+n—k+1)x(2m+2n—2k+3)
— D 0] c R(Mm+n+2) X (2m+2n—2k+3)

= r(z,y) € R

— —DZ E Rm—l—n—l—2

[ gz ] c R2MH+2n—2k+3
Yy

S =8 o T
|

We can see that the computation of an approximate
GCD reduces to the LSE problem

min ||[Ew — pl||, subject to Cw =g,
w



where the dimensions of the matrices and vectors are:
C c lext’ E c Rmzxt’ w € Rt, q € le’ p € R12

where

m1 = m+n—k+1, mo = m+4+n+2 and t=2m+2n—2k+3.



Consider the exact polynomials
f(z) = (z—0.25)3(2—0.5)?(z—0.75) 1% (z—1) L (z—1.25)1?

and
= (x+0.25)%@@ — 0.25)°(x — 0.5)°

which have 11 common roots and hence rank(S(f,g) =
54. The coefficients of these polynomials were perturbed
by noise corresponding to the different values of u (the
signal-to-noise ratio). The given inexact polynomials f

and g are constructed by perturbing f and g respectively.



Let ¢y and ¢4 be vectors € R*T1 of random variables
uniformly distributed in the interval [—1,...,+1]. Let e =

1/u, the inexact polynomials

- 171 _ HfH
f=1f e C g=4g e
T llegll legll”
perturbation sf perturba’uon g

The legitimate solution fulfill the inequalities

s a p

where z, € R*T1 stores the structured perturbation of

the polynomial ag. For each value « the values |/zf|,



|zgl and
rnorm = 7(2,y)/||lck + hy|| are stored.

e The values of « for the values || f|| and ||g|| that satisfy
(1) and

H"“norm“ < 10_12

are retained.

e FOr each acceptable value a compute singular values
o; of S(f,g), where f and g are computed and nor-

malized polynomials.



e [ he singular values are arranged in non-increasing
order and the value « is found for which the ratio
Om4n—k/Om+n—k+1 attains a maximum. The poly-
nomials that corresponds to this value of «a are the

solution.

The following graphs are for = 108. The y-axis in the

following plots are logarithmic.
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log 109

(@) The maximum allowable value of ||z¢|| which is

equal to [|f]|/u,
(b) The computed value of |z



_10_
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_15_

-20 '
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log 109

(a) The maximum allowable value of ||z¢||/a which is

equal to ||g||/u,
(b) The computed value of ||z¢||/a;
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The normalized residual norm ||rnorm
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the singular value ratio og4/055
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The normalized singular values of the SylvestAer matrix for
O ... the theoretically exact data S(f,§);
[]... the given inexact data S(f,g);

X ... the computed data S(fo, go);
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the same for a = 1014



The End

Thank you for your attention!
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