
The transformation of the Sylvestermatrix and the alulation of the GCD oftwo inexat polynomialsJoab R. Winkler(1) , Jan Zítko(2)

(1) The University of SheÆeld, Department of Computer Siene,Regent Court, 211 Portobello Street, SheÆeld S1 4DP,United Kingdom(2) Charles University, Faulty of Mathematis and Physis,Department of Numerial Mathematis, PragueDolní Maxov 1. - 6. èervna 2008



Overview :
1. Introdution to problem

2. Transformation of the Sylvester matrix

3. A low rank approximation of the Sylvester matrix

4. The optimal value of the sale fator



1. Introdution

The determination of GCD of two polynomials arises inseveral appliations.

An example of appliation: A ommon problem in linear sys-tems theory is approximate pole-zero anellation whih redues tothe omputation of an approximate GCD of two inexat polynomi-als. In partiular, if a rational transfer funtion is given by

h(x) =
f(x)

g(x)where f(x) and g(x) are polynomials, then it may be neessary toanel out approximately equal fators of f(x) and g(x).



- the determination of almost ommon fators [ Za-rowski, Ma, Fairman℄

[Eulid's algorithm is used for exat omputation℄

Eulid's algorithm the onnetion
︷ ︸︸ ︷
← −−→ the Sylvester matrixThe polynomials f = f(x) and g = g(x)

f(x) = a0x
m + a1x

m−1 + · · ·+ am−1x+ am,

g(x) = b0x
n + b1x

n−1 + · · ·+ bn−1x+ bn,

a0 × am 6= 0, b0 × bn 6= 0.



It is assumed m ≥ n.The Sylvester matrix S(f, g) ∈ C
(m+n)×(m+n)

S(f, g) =














a0 b0
a1 a0 b1 b0
· a1 · · b1 ·
· · · a0 · · · b0

am · · a1 bn · · b1
am · · bn · ·
· · · ·

am bn














.

︸ ︷︷ ︸
n olumns ︸ ︷︷ ︸

m olumnsThe kth Sylvester submatrix Sk ∈ C
(m+n−k+1)×(m+n−2k+2)[will be used later℄ is formed by deleting the last (k− 1) rows,



and the last (k − 1) olumns of the oeÆients of f(x)and g(x), of S(f, g).

We need the following notation:The vetor ei denotes the ith olumn of the identity matrix I, andthe matrix
Ei,j(σ) = I − σeie

T
jwhere σ ∈ C, is an elementary triangular matrix. It is lower andupper triangular for i ≥ j and i ≤ j, respetively.

2. Transformation of the Sylvester matrixLet f0 = f and f1 = g,

fi(x) = qi(x)fi+1(x) + fi+2(x), i = 0, 1, 2, . . .



• deg fi+2 < deg fi+1.

• If fk = 0, then fk−1 = GCD (f, g).The GCD(f ,g) an be obtained by rearrangement of theSylvester matrix S(f, g).The speial ase m = 5 and n = 2 is onsidered.To transformation S(f, g) into the triangular form;

(1) S(f, g) =













a0 b0
a1 a0 b1 b0
a2 a1 b2 b1 b0
a3 a2 b2 b1 b0
a4 a3 b2 b1 b0
a5 a4 b2 b1

a5 b2













.



The �rst step . . . the matrix (1) is postmultiplied sues-sively by the matries E3,1(a0/b0) and E4,2(a0/b0). Thisyields the matrix

(2) S(1)(f, g) =
















0 b0

a
(1)
1 0 b1 b0

a
(1)
2 a

(1)
1 b2 b1 b0

a
(1)
3 a

(1)
2 b2 b1 b0

a
(1)
4 a

(1)
3 b2 b1 b0

a
(1)
5 a

(1)
4 b2 b1

a
(1)
5 b2
















.



-the orresponding polynomial operation has the form

h4(x) : = a
(1)
1 x4 + a

(1)
2 x3 + a

(1)
3 x2 + a

(1)
4 x+ a

(1)
5

= f(x)− g(x)(a0/b0)x
3.

The next step: the �rst nonzero element in the sequene

a
(1)
1 , a

(1)
2 , a

(1)
3 is found - say a

(1)
2 6= 0, and the nextstep is the subtration of the �fth and sixth olumns,multiplied by a

(1)
2 /b0 from the �rst and seond olumnsrespetively. We have a

(1)
1 = 0 and

h4(x) = h3(x) := a
(1)
2 x3 + a

(1)
3 x2 + a

(1)
4 x+ a

(1)
5 .In this ase the matrix (2) is postmultiplied suessively



by the matries E5,1(a
(1)
2 /b0) and E6,2(a

(1)
2 /b0). Thisyields the matrix

(3) S(2)(f, g) =















0 b0
0 0 b1 b0
0 0 b2 b1 b0

a
(2)
3 0 b2 b1 b0

a
(2)
4 a

(2)
3 b2 b1 b0

a
(2)
5 a

(2)
4 b2 b1

a
(2)
5 b2















.

- the orresponding polynomial operation has the form

h2(x) := a
(2)
3 x2+ a

(2)
4 x+ a

(2)
5 = h3(x)− g(x)(a

(1)
2 /b0)x.



This proess an be ontinued : the oeÆient a
(2)
3 isredued to zero. We have

S(3)(f, g) = S(2)(f, g)E6,1(
a
(2)
3

b0
)E7,2(

a
(2)
3

b0
)

h1(x) := a
(3)
4 x+a

(3)
5 = h2(x)−g(x)(a

(3)
2 /b0) The matrix

S(3)(f, g) has the form
S(3)(f, g) =














0 b0
0 0 b1 b0
0 0 b2 b1 b0
0 0 b2 b1 b0

a
(3)
4 0 b2 b1 b0

a
(3)
5 a

(3)
4 b2 b1

a
(3)
5 b2














.



We �naly have
a0x

5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5︸ ︷︷ ︸

f0(x)=f(x)

=

(

(a0/b0)x
3 + (a

(1)
2 /b0)x+ (a

(2)
3 /b0)

)

︸ ︷︷ ︸

q0(x)

(

b0x
2 + b1x+ b2

)

︸ ︷︷ ︸

f1(x)=g(x)

+
(

a
(3)
4 x+ a

(3)
5

)

︸ ︷︷ ︸

f2(x)

.

Now we summarize all previous transformations. Let usput

T1 = E3,1(
a0

b0
)E4,2(

a0

b0
)E4,1(

a
(1)
1

b0
)E5,2(

a
(1)
1

b0
)E5,1(

a
(2)
2

b0
)E6,2(

a
(2)
2

b0
)E6,1(

a
(3)
3

b0
)E7,2(

a
(3)
3

b0
)Pwhere P ∈ R

7×7 is the permutation matrix
P = (e3, e4, e5, e6, e7, e1, e2).



It is easy to see that
S(4)(f, g) := S(f, g)T1 =
















b0
b1 b0
b2 b1 b0

b2 b1 b0

b2 b1 | b0 a
(4)
4

b2 | b1 a
(4)
5 a

(4)
4

| b2 a
(4)
5
















and the transformation T1 orresponds the above poly-nomial operation whih is equivalent to one step of thereursion orresponding to i = 0.
fi(x) = qi(x)fi+1(x) + fi+2(x), i = 0, 1, 2, . . .



Moreover, the marked 3×3 submatrix is a Sylvester ma-trix S(f1, f2).

The transformation of S(f1, f2) to triangular form isarried out in the same way as above, if f2 6= 0.In the opposite ase f1 =GCD(f0, f1).Let us mention one more the Eulide's algorithm.

fi(x) = qi(x)fi+1(x) + fi+2(x), i = 0, 1, 2, . . .

• deg fi+2 < deg fi+1.In general ase there exist T1 and s suh that if we denote
n2 = m− is, f2(x) = a

(s)
is

xn2 + a
(s)
is+1

xn2−1 + · · ·+ a
(s)
m



then the matrix S(s+1)(f, g) = S(f, g)T1 has the form































b0
b1 b0

b1 .
. . b0
. . b1 b0

bn . . . b1 b0
bn . . . b1 b0

. . . . b1 b0
+ − − − − − −

bn . . . b1 | b0 . a
(s)
i

s

bn . . . | b1 . b0 a
(s)
i

s
+1 a

(s)
i

s

bn . . | . . b1 . a
(s)
i

s
+1 .

bn . | . . a(s)m . . a
(s)
i

s

bn | . . a(s)m . a
(s)
i

s
+1

. | bn . . .

. | . bn . a(s)m































.

︸ ︷︷ ︸

m− n2 olumns ︸ ︷︷ ︸

n2 olumns ︸ ︷︷ ︸

n olumnsThe marked (n + n2) × (n + n2) matrix is the Sylvester matrix

S(f1, f2) for polynomials f1(x), f2(x) supposing that a
(s)
is
6= 0.



In this ase the inequality

(4) rank(S(f0, f1)) = m− deg(f2) + rank(S(f1, f2))holds.If f2 = 0 then f1 divides f0 and rank(S(f0, f1)) = m.If we transform S(f1, f2), afterwards S(f2, f3), . . . thenthe repetition of (4) leads to the following result:

Theorem 2.1 Let f and g be the polynomials of degrees

m and n respetively. Then the following statements areequivalent:



1. rank (S(f, g)) = m+ n− k⇔ deg (GCD(f, g)) = k;

2. rank (S(f, g)) < m+ n− k⇔ deg (GCD(f, g)) > k;

The analogous onsiderations with Sk yields the followingtheorem.
Theorem 2.2 Let f and g be the polynomials of de-grees m and n respetively, 1 ≤ k ≤ min(m, n) and let

Sk be the kth Sylvester submatrix. Then the followingstatements are equivalent:



1. rank (Sk) = m+ n− 2k+ 1⇔ deg (GCD(f, g)) = k;

2. rank (Sk) ≤ m+ n− 2k+1⇔ deg (GCD(f, g)) ≥ k.

�



3. A low rank approximation ofthe Sylvester matrix

A low rank approximation of the Sylvester matrix Thissetion onsiders the use of the method of

strutured total least norm (STLN)

(Ben Rosen, Kaltofen, Yang, Zhi, Winkler)for the onstrution of a strutured low rank approxi-mation of the Sylvester matrix for approximate GCDomputations.



Let an integer k, 1 ≤ k ≤ min (m, n) be given.Required: Perturbations δf(x) and δg(x) of f(x) and

g(x) respetively,
δf(x) = δa0x

m + δa1x
m−1 + · · ·+ δam−1x+ δam,

δg(x) = δb0x
n + δb1x

n−1 + · · ·+ δbn−1x+ δbn,

deg (GCD(f + δf, g+ δg)) ≥ k and ‖δf‖22+ ‖δg‖22is minimised.



The kth Sylvester submatrix has the form

ck
︷ ︸︸ ︷

Ak
︷ ︸︸ ︷

Sk =














a0 | b0
a1 | a0 b1 b0
· | a1 · · b1 ·
· | · · a0 · · · b0

am | · · a1 bn · · b1
| am · · bn · ·
| · · · ·
| am bn














.

← m+ n− (k − 1)
︸ ︷︷ ︸

n− (k − 1)
︸ ︷︷ ︸

m− (k − 1)

Sk = [ck, Ak] ,



ck ∈ R
m+n−k+1 and Ak ∈ R

(m+n−k+1)×(m+n−2k+1).Aording to this notation we an formulate the followinglemma.Lemma 3.1 Let f and g be polynomials of degrees mand n respetively, 1 ≤ k ≤ min(m, n) and let Sk be the

kth Sylvester submatrix. Then the following statementsare equivalent:

a) deg(GCD(f0, f1)) = k ⇔ rank(Ak) = m + n − 2k + 1and the dimension of the null spae of Sk is equal toone.



b) deg(GCD(f0, f1)) > k ⇔ rank(Ak) < m + n − 2k + 1and the dimension of the null spae of Sk is at least two.

(Kaltofen, Yang, Zhi, Wikler).

Theorem 4.1 Let f and g be the polynomials of degrees

m and n respetively, 1 ≤ k ≤ min(m, n) and Sk the

kth Sylvester submatrix. Let Sk = [ck, Ak] where ck isthe �rst olumn of the matrix Sk Then the followingstatements are equivalent:



a) deg(GCD(f, g)) = k⇔ the equation Aky = ck possessesexatly one nontrivial solution.

b) deg(GCD(f, g)) > k⇔ the equation Aky = ck possessesat least two linearly independent solutions.

Now we desribe the STLN method The polynomials

f(x) and g(x) an be inexat. For a given integer k ∈

[1,min(m, n)] we want to ompute the minimal pertu-rbation of the oeÆients of f(x) and g(x) suh that



the degree of greatest ommon divisors of the perturbedpolynomials equals k.

. . .to ompute a perturbation matrix [hk, Ek] with thesame blok struture as [ck, Ak] suh that the equation

(Ak + Ek)y = ck + hk y = [y1, y2, . . . , ym+n−2k+1]
Tpossesses exatly one nontrivial solution. Hene we solvethe onstrained minimisation problem,

min
∥
∥
[

hk Ek
]∥
∥
F suh that (Ak + Ek)y = ck + hk.



. . . zi is the perturbation of ai for i = 0, . . . , m,

. . . zm+i+1 is the perturbation of bi for i = 0, . . . , n.

The strutured error matrix [hk, Ek] ∈ R(m+n−k+1)×(m+n−2k+2)















z0 | z0 | zm+1

z1 | z1

. . . | zm+2 zm+1... | ... . . . z0 | ... zm+2

. . . zm+1

zm−1 |

... . . . z1 | zm+n

... zm+2 zm+1

zm | zm−1

. . . ... | zm+n+1 zm+n

. . . ... zm+2

| zm

. . . ... | zm+n+1

. . . zm+n

...

| zm−1 | zm+n+1 zm+n

| zm | zm+n+1















.

︸ ︷︷ ︸

1
︸ ︷︷ ︸

n− k
︸ ︷︷ ︸

m− k + 1



De�ne the (m+ n− k + 1)× (m+ n+ 2) matrix Yk =


















0 | yn−k+1

y1 | yn−k+2 yn−k+1

. y1 | . yn−k+2

. . .

. . . | . . . . . . . .

yn−k . . . . y1 | . . . . . . . . yn−k+1

yn−k

. . . . y1 | ym+n−2k+1 . . . . . . . yn−k+2. . . . . | ym+n−2k+1

. . . . . . .. . . yn−k . | . . . . . . .
yn−k |

. . . .
| ym+n−2k+1



















.

︸ ︷︷ ︸

m+ n− 2k + 1)
︸ ︷︷ ︸

2k + 1and the matrix Pk ∈ R
(m+n−k+1)×(m+n+2),

Pk =

[
Im+1 0
0 0

]

.

hk = Pkz, and Yk(y)z = Ek(z)y.



The residual vetor
r = r(z, y) = ck + hk − (Ak + Ek)y.

The STLN method.

We seek a vetor z = [z0, z1, . . . , zm+n+1]
T ∈ R

m+n+2suh that the system
(Ak + Ek(z))y = ck + hk(z)has just one nontrivial solution and
‖z‖2 is minimal.

(‖Dz‖2) is minimal.



Let z and y be initial aproximations.We express r(z + δz, y + δy) as the lowest order Taylorseries and we try to alulate shifts δz, δy suh that

r(z + δz, y + δy) ≈ 0
︸ ︷︷ ︸

≈ r(z, y)− (Yk − Pk)δz − (Ak + Ek)δy

.

This leads to the iterative proess for δy and δz where in



the eah stage the LSE problem is solved (See Winkler):

min
δz

∥
∥
∥
∥

[
D 0

]
[

δz
δy

]

− (−Dz)

∥
∥
∥
∥

︸ ︷︷ ︸

‖(D(z+δz)‖

subjet to

[
(Yk − Pk) (Ak + Ek)

]
[

δz
δy

]

= r(z, y).
︸ ︷︷ ︸

r(z+δz,y+δy)=0

where

D = diag(D1, D2), D1 = (n−k+1)Im+1, D2 = (m−k+1)In+1.



Denoting
C =

[
(Yk − Pk) (Ak + Ek)

]
∈ R

(m+n−k+1)×(2m+2n−2k+3)

E =
[

D 0
]
∈ R

(m+n+2)×(2m+2n−2k+3)

q = r(z, y) ∈ R
m+n−k+1

p = −Dz ∈ R
m+n+2

w =

[
δz
δy

]

∈ R
2m+2n−2k+3,

We an see that the omputation of an approximateGCD redues to the LSE problem
min

w
‖Ew − p‖2 subjet to Cw = q,



where the dimensions of the matries and vetors are:

C ∈ R
m1×t, E ∈ R

m2×t, w ∈ R
t, q ∈ R

m1, p ∈ R
m2where

m1 = m+n−k+1, m2 = m+n+2 and t = 2m+2n−2k+3.



Consider the exact polynomials

f̂(x) = (x−0.25)8(x−0.5)9(x−0.75)10(x−1)11(x−1.25)12

and

ĝ = (x + 0.25)4(x − 0.25)5(x − 0.5)6

which have 11 common roots and hence rank(S(f̂ , g) =

54. The coefficients of these polynomials were perturbed

by noise corresponding to the different values of µ (the

signal-to-noise ratio). The given inexact polynomials f

and g are constructed by perturbing f̂ and ĝ respectively.



Let cf and cg be vectors ∈ Rn+1 of random variables

uniformly distributed in the interval [−1, ...,+1]. Let ε =

1/µ, the inexact polynomials

f = f̂ +ǫ
‖f̂‖

‖cf‖
cf

︸ ︷︷ ︸

perturbation δf̂

g = ĝ +ǫ
‖f̂‖

‖cg‖
cg

︸ ︷︷ ︸

perturbation δĝ

.

The legitimate solution fulfill the inequalities

‖zf‖ ≤
‖f‖

µ

‖zg‖

α
≤

‖g‖

µ
,(1)

where zg ∈ Rn+1 stores the structured perturbation of

the polynomial αg. For each value α the values ‖zf‖,



‖zg‖ and

rnorm = r(z, y)/‖ck + hk‖ are stored.

• The values of α for the values ‖f‖ and ‖g‖ that satisfy

(1) and

‖rnorm‖ ≤ 10−12

are retained.

• For each acceptable value α compute singular values

σi of S(f̂ , ĝ), where f̂ and ĝ are computed and nor-

malized polynomials.



• The singular values are arranged in non-increasing

order and the value α is found for which the ratio

σm+n−k/σm+n−k+1 attains a maximum. The poly-

nomials that corresponds to this value of α are the

solution.

The following graphs are for µ = 108. The y-axis in the

following plots are logarithmic.
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The normalized singular values of the Sylvester matrix for
♦ ... the theoretically exact data S(f̂ , ĝ);

�... the given inexact data S(f, g);

x ... the computed data S(f0, g0);
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the same for α = 101.4;



The End

Thank you for your attention!
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