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Abstract rewriting systems

Definition

A rewriting system is a pair (X ,→), where → is a binary (typically
irreflexive) relation on X . The elements of X are called states and the
elements of → are called transitions. A sequence of transitions

x = x0 → x1 → · · · → xn−1 = y

is called a path from x to y .

Definition

A rewriting system (X ,→) is locally confluent if for every state z , for
every transitions z → x , z → y there exist a state w and paths
x → · · · → w , y → · · · → w .
The system (X ,→) is confluent if for every state z , for every paths
z → · · · → x , z → · · · → y there exist a state w and paths
x → · · · → w , y → · · · → w .
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Definition

A state v in a rewriting system (X ,→) is normalized if there is no
transition from v to any other state.

A state a is an origin if there is a path from a to any other state.

Proposition

A confluent rewriting system with an origin has at most one normalized
state.

Remark

In general, local confluence does not imply confluence.
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Newman’s Lemma

Definition

A rewriting system (X ,→) is terminating if there is no infinite path

x0 → x1 → · · · .

In other words, the inverse of → is a well-founded relation.

Lemma (Newman 1942)

A locally confluent terminating rewriting system is confluent.

Remark

Huet 1980 provided a proof using induction with respect to ←.

Corollary

A locally confluent terminating rewriting system with an origin has a
unique normalized state.
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Finite homogeneous structures

The setup

Let F be a class of finite structures, closed under isomorphisms.
We say that F has the amalgamation property if for every Z ∈ F , for
every embeddings f : Z → X , g : Z → Y with X ,Y ∈ F , there exist
W ∈ F and embeddings f ′ : X →W , g ′ : Y →W such that
f ′ ◦ f = g ′ ◦ g .
Let us assume F has the origin, namely, a “trivial” structure that embeds
into any other one.

Theorem

Assume F is as above, and there is a natural number N such that
|X | ≤ N for every X ∈ F .
Then there exists a unique, up to isomorphism, structure V ∈ F
satisfying

(1) Every X ∈ F embeds into V .

(2) Every isomorphism between F-substructures of V extends to an
automorphism of V .
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Claim

Confluent terminating rewriting systems and finite homogeneous
structures are two faces of the same theory.
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Abstract evolution systems

Definition

An evolution system is a structure of the form E = ⟨V, T ,Θ⟩, where V is
a category, Θ is a fixed V-object, called the origin, and T is a class of
V-arrows, called transitions.

The only requirements are:

1 All identities are in T .

2 h ◦ t ∈ T , whenever t ∈ T and h is an isomorphism.

We are interested in evolutions, namely, sequences of the form

Θ→ A0 → A1 → · · · → An → · · ·

where each of the arrows above is a transition.

A path is a finite composition of transitions.
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Finite objects

Definition

An object X is finite if there exists a path from the origin Θ to X .
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Confluence

Definition

We say that E is confluent if for every finite object Z , for every paths
f : Z → X , g : Z → Y there exist paths f ′, g ′ such that f ′ ◦ f = g ′ ◦ g .

Definition

We say that E is locally confluent if for every finite object Z , for every
transitions f : Z → X , g : Z → Y there exist paths f ′, g ′ such that
f ′ ◦ f = g ′ ◦ g .
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Amalgamation

Definition

We say that E has the finite amalgamation property if for every finite
object Z , for every transitions f : Z → X , g : Z → Y there exist
transitions f ′, g ′ such that f ′ ◦ f = g ′ ◦ g .

Proposition

Finite amalgamation property implies confluence.
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Termination

Definition

An evolution system E is terminating if there is no evolution consisting of
nontrivial transitions.
A transition is nontrivial if it is not an isomorphism.

Definition

An object N is normalized if it is finite and every path starting from N
consists of trivial transitions.
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Finite Fräıssé theory

Proposition

Assume E is a confluent terminating evolution system. Then there exists
a unique, up to isomorphism normalized object N. Furthermore:

1 Every finite object has a path into N.

2 For every paths f0, f1 : A→ N with A finite, there exists an
automorphism h : N → N such that f1 = h ◦ f0.
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Newman’s Lemma revisited

Definition

An evolution system is regular if t ◦ h ∈ T , whenever t ∈ T and h is an
iso.

Theorem

A locally confluent terminating regular evolution system is confluent.

Given a rewriting system (X ,→), define x ≤ y if there is a path

x = x0 → x1 → · · · → xn = y .

Fix Θ ∈ X . Then X = ⟨(X ,≤),→,Θ⟩ becomes an evolution system.
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Applications in incidence geometry

Theorem (P. Nowakowski & W.K. 2021)

The smallest projective planes Z2P2, Z3P2 are homogeneous. No other
projective plane is homogeneous.
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Fräıssé theory revisited

Theorem

Assume E is an essentially countable evolution system with the finite
amalgamation property. Then:

1 There exists an evolution

u⃗ : Θ = U0 → U1 → · · ·

with the absorption property, namely, for every n, for every
transition f : Un → Y there are m > n and a path g : Y → Um with
g ◦ f = umn , where umn is the path from Un to Um extracted from u⃗.

2 The colimit U∞ = lim u⃗ is defined uniquely (up to isomorphism) by
the absorption property.

3 U∞ is homogeneous with respect to paths between finite objects.
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Classical Fräıssé limits

Example

Let F be a class of finite structures in a fixed language L consisting of
finitely many relations. Assume F is closed under isomorphisms and
substructures.

We can convert F to an evolution system, where the origin is ∅ and
transitions are one-point extensions. The category V consists of all
structures in the language L, where the arrows are all homomorphisms.
Assume F has the amalgamation property. Then the generic evolution
leads to the Fräıssé limit of F , the unique homogeneous countable
structure U∞ whose age is F .
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Further research:

Uncountable evolutions (with Antonio Avilés and Ivan Di Liberti)

Abstract stochastic processes

???

THE END
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