FORCING

WIESLAW KUBIŚ

1. The axioms of ZFC

We recall the list of axioms of ZF and the Axiom of Choice (AC) which we will deal with.
A1: Extensionality.

$$
\left.\forall x_{1}, x_{2}\left(\forall y\left(y \in x_{1} \Longleftrightarrow y \in x_{2}\right)\right) \Longrightarrow x_{1}=x_{2}\right) .
$$

A2: Empty Set.

$$
\exists x \forall y \neg(y \in x) .
$$

The set x satisfying this axiom is unique by A1 and will be denoted by \emptyset.
A3: Pairing.

$$
\forall x, y \exists z \forall t(t \in z \Longleftrightarrow(t=x \vee t=y)) .
$$

A4: Union.

$$
\forall a \exists b \forall t(t \in b \Longleftrightarrow \exists x(t \in x \wedge x \in b)) .
$$

A5: Power Set.

$$
\forall a \exists b \forall t(t \in b \Longleftrightarrow t \subset a),
$$

where $t \subset a$ means $\forall s \in t(s \in a)$.
A6: Infinity.

$$
\exists x(\emptyset \in x \wedge \forall y \in x(y \cup\{y\} \in x)) .
$$

A7: Regularity.

$$
\forall x(x \neq \emptyset \Longrightarrow \exists y \in x \neg(\exists t(t \in y \wedge t \in x))) .
$$

A8: Comprehension Axiom Scheme. If $\varphi\left(x, y_{1}, \ldots, y_{n}\right)$ is a formula with all free variables shown, then the following is an axiom.

$$
\forall a \forall s_{1}, \ldots, s_{n} \exists b \forall x\left(x \in b \Longleftrightarrow x \in a \wedge \varphi\left(x, s_{1}, \ldots, s_{n}\right)\right) .
$$

A9: Replacement Axiom Scheme. If $\varphi\left(x, y, t_{1}, \ldots, t_{n}\right)$ is a formula with all free variables shown, then the following is an axiom.

$$
\begin{aligned}
\forall a \forall s_{1}, \ldots, s_{n} & \left(\forall x \in a \exists!y \varphi\left(x, y, s_{1}, \ldots, s_{n}\right)\right) \Longrightarrow \\
& \left.\Longrightarrow \exists b\left(\forall x \in a \exists y \in b \varphi\left(x, y, s_{1}, \ldots, s_{n}\right)\right)\right) .
\end{aligned}
$$

AC : The Axiom of Choice.

$$
\begin{gathered}
\forall x\left(\left(\forall y \in x(y \neq \emptyset) \wedge \forall y_{1}, y_{2} \in x\left(y_{1} \neq y_{2} \Longrightarrow y_{1} \cap y_{2}=\emptyset\right)\right) \Longrightarrow\right. \\
\Longrightarrow \exists z \forall y \in x \exists!t(t \in z \wedge t \in y)) .
\end{gathered}
$$

2. Some cardinal arithmetic

Proposition 2.1. If κ, λ are infinite cardinals, $\kappa>1$ and $\lambda \geqslant \kappa+\omega$ then $\kappa^{\lambda}=2^{\lambda}$.
Proof. We have $2^{\lambda} \leqslant \kappa^{\lambda} \leqslant \lambda^{\lambda} \leqslant\left(2^{\lambda}\right)^{\lambda}=2^{\lambda}$.
If $\left\{\kappa_{i}\right\}_{i \in I}$ is a collection of cardinals then we define $\sum_{i \in I} \kappa_{i}$ as the cardinality of $\bigcup_{i \in I} \kappa_{i} \times\{i\}$ and $\prod_{i \in I} \kappa_{i}$ as the cardinality of the product of κ_{i} 's.

Proposition 2.2. If $\beta>0$ is a limit ordinal and $\left\{\lambda_{\alpha}\right\}_{\alpha<\beta}$ is a strictly increasing sequence of cardinals then $\sum_{\alpha<\beta} \lambda_{\alpha}=\sup _{\alpha<\beta} \lambda_{\alpha}$.

Proof. Let $\kappa=\sup _{\alpha<\beta} \lambda_{\alpha}$. We have $\kappa \leqslant \sum_{\alpha<\beta} \lambda_{\alpha} \leqslant \sum_{\alpha<\beta} \kappa=\kappa|\beta|$. By induction we can show that $\lambda_{\alpha} \geqslant \alpha$ for every $\alpha<\beta$, since our sequence is strictly increasing. Hence $\beta \leqslant \kappa$ and $\kappa|\beta|=\kappa$.

Theorem 2.3 (König). Let $\left\{\lambda_{i}\right\}_{i \in I}$ and $\left\{\kappa_{i}\right\}_{i \in I}$ be two collections of cardinals such that $\lambda_{i}<\kappa_{i}$ for every $i \in I$. Then

$$
\sum_{i \in I} \lambda_{i}<\prod_{i \in I} \kappa_{i}
$$

Proof. Let $\varphi: \bigcup_{i \in I} \lambda_{i} \times\{i\} \rightarrow \prod_{i \in I} \kappa_{i}$ be a map. We show that φ is not onto. Set $A_{i}=$ $\varphi\left[\lambda_{i} \times\{i\}\right], B_{i}=\left\{f(i): f \in A_{i}\right\}$. Then $B_{i} \in\left[\kappa_{i}\right] \leqslant \lambda_{i}$ so there is $x_{i} \in \kappa_{i} \backslash B_{i}$, since $\lambda_{i}<\kappa_{i}$. Let $h \in \prod_{i \in I} \kappa_{i}$ be defined as $h(i)=x_{i}, i \in I$. Observe that $h \notin \bigcup_{i \in I} A_{i}$. Thus $\operatorname{rng}(\varphi) \neq$ $\prod_{i \in I} \kappa_{i}$.

Corollary 2.4. For every infinite cardinal $\kappa, \operatorname{cf}\left(2^{\kappa}\right)>\kappa$.
Proof. Applying König's theorem for $I=\kappa, \lambda_{i}=1, \kappa_{i}=2$ we get $\kappa<2^{\kappa}$. Suppose $\operatorname{cf}\left(2^{\kappa}\right) \leqslant \kappa$ and let $\left\{\lambda_{\alpha}\right\}_{\alpha<\kappa}$ be a sequence of cardinals such that $\lambda_{\alpha}<2^{\kappa}$ and $\sup _{\alpha<\kappa} \lambda_{\alpha}=2^{\kappa}$. Applying König's theorem once more for $I=\kappa$ and $\kappa_{\alpha}=2^{\kappa}$, we obtain $2^{\kappa}=\sum_{\alpha<\kappa} \lambda_{\alpha}<\left(2^{\kappa}\right)^{\kappa}=2^{\kappa}$, a contradiction.

Corollary 2.5 (König). For every infinite cardinal κ we have $\kappa^{\mathrm{cf}(\kappa)}>\kappa$.
Proof. If $\kappa=\operatorname{cf}(\kappa)$ then $\kappa^{\mathrm{cf}(\kappa)}=\kappa^{\kappa}=2^{\kappa}>\kappa$. Suppose that $\operatorname{cf}(\kappa)<\kappa$ and fix a strictly increasing sequence of cardinals $\left\{\lambda_{\alpha}\right\}_{\alpha<\operatorname{cf}(\kappa)}$ with $\sup _{\alpha<\operatorname{cf}(\kappa)}=\kappa$. Applying König's theorem we get $\kappa=\sum_{\alpha<\operatorname{cf}(\kappa)} \lambda_{\alpha}<\kappa^{\operatorname{cf}(\kappa)}$.

Theorem 2.6 (Hausdorff). If κ, λ are such cardinals that $\kappa>1, \lambda>0$ and $\kappa+\lambda$ is infinite then $\left(\kappa^{+}\right)^{\lambda}=\kappa^{+} \kappa^{\lambda}$.

Proof. Suppose first that $\lambda \geqslant \kappa^{+}$. Then λ is infinite and, by Proposition 2.1, we get $\left(\kappa^{+}\right)^{\lambda}=$ $2^{\lambda}=\kappa^{\lambda}=\kappa^{+} \kappa^{\lambda}$. Suppose now that $\lambda<\kappa^{+}$. Then κ is infinite. Observe that if $f \in\left(\kappa^{+}\right)^{\lambda}$ then $\operatorname{rng}(f)$ is bounded in κ^{+}so there is $\alpha<\kappa^{+}$such that $f \in \alpha^{\lambda}$. Hence

$$
\left(\kappa^{+}\right)^{\lambda} \leqslant\left|\bigcup_{\alpha<\kappa^{+}} \alpha^{\lambda}\right| \leqslant \kappa^{+} \kappa^{\lambda}
$$

The reverse inequality also holds, since $\lambda>0$.

Theorem 2.7. Assume $G C H$. If λ, κ are infinite cardinals then

$$
\kappa^{\lambda}= \begin{cases}\kappa & \text { if } \lambda<\operatorname{cf}(\kappa) \\ \kappa^{+} & \text {if } \operatorname{cf}(\kappa) \leqslant \lambda \leqslant \kappa \\ \lambda^{+} & \text {if } \kappa<\lambda\end{cases}
$$

Proof. If $\kappa<\lambda$ then $\lambda^{+}=2^{\lambda} \leqslant \kappa^{\lambda} \leqslant\left(2^{\kappa}\right)^{\lambda}=\lambda^{+}$. If $\operatorname{cf}(\kappa) \leqslant \lambda \leqslant \kappa$ then $\kappa<\kappa^{\operatorname{cf}(\kappa)} \leqslant \kappa^{\lambda} \leqslant$ $\left(2^{\kappa}\right)^{\lambda}=\kappa^{+}$so $\kappa^{\lambda}=\kappa^{+}$. Suppose that $\lambda<\operatorname{cf}(\kappa)$. If $\kappa=\delta^{+}$then $\kappa^{\lambda}=\left(2^{\delta}\right)^{\lambda}=2^{\delta}=\kappa$. Suppose now that κ is a limit cardinal. There exists an increasing sequence of cardinals $\left\{\kappa_{\alpha}\right\}_{\alpha<\operatorname{cf}(\kappa)}$ with $\lambda<\kappa_{0}$ and $\sup _{\alpha<\mathrm{cf}(\kappa)} \kappa_{\alpha}=\kappa$. We have

$$
\kappa^{\lambda}=\left|\bigcup_{\alpha<\operatorname{cf}(\kappa)}\left(\kappa_{\alpha}^{+}\right)^{\lambda}\right|=\sum_{\alpha<\operatorname{cf}(\kappa)}\left(\kappa_{\alpha}^{+}\right)^{\lambda}=\sum_{\alpha<\operatorname{cf}(\kappa)} \kappa_{\alpha}^{+}=\kappa .
$$

This completes the proof.

3. Partial orders

By a partially ordered set (or a poset) we mean a triple $\mathbb{P}=\left(P, \leqslant, 1_{\mathbb{P}}\right)$ where \leqslant is a partial order on a set P and $p \leqslant 1_{\mathbb{P}}$ holds for every $p \in P$. We consider partial orders with greatest elements for the sake of convenience only. We write $p \perp q$ whenever $p, q \in P$ are incompatible, i.e. there is no $r \in P$ with $r \leqslant p$ and $r \leqslant q$. We write $p \| q$ whenever p, q are compatible, i.e. $\neg(p \perp q)$. A subset $D \subset P$ is dense in \mathbb{P} provided for every $p \in P$ there is $d \in D$ with $d \leqslant p$. A subset $F \subset P$ is a filter if
(1) $p, q \in F \Longrightarrow(\exists r \in F) r \leqslant p \& r \leqslant q$,
(2) $p \in F \& q \geqslant p \Longrightarrow q \in F$.

When we apply these notions for Boolean algebras, we consider the set of all positive elements; for instance elements a, b in a Boolean algebra \mathbb{B} are compatible iff $a \cdot b>0_{\mathbb{B}}$.
Fix a partially ordered set $\mathbb{P}=\left(P, \leqslant, 1_{\mathbb{P}}\right)$. Define the left topology on P as the topology generated by all sets of the form $(p]=\{x \in P: x \leqslant p\}$, where $p \in P$. Observe that $(p]$ is the smallest neighborhood of p with respect to this topology. Let $\mathrm{RO}(\mathbb{P})$ denote the Boolean algebra of regular open subsets of P with respect to the left topology. Define $i_{\mathbb{P}}: P \rightarrow \mathrm{RO}(\mathbb{P})$ by setting $i_{\mathbb{P}}(p)=\operatorname{int} \operatorname{cl}(p]$. We have the following easy fact.

Proposition 3.1. Let \mathbb{P} be a partial order and let $\mathbb{B}=\operatorname{RO}(\mathbb{P})$. The map $i=i_{\mathbb{P}}: \mathbb{P} \rightarrow \mathbb{B}$ has the following properties:
(1) i is order preserving.
(2) $i[P]$ is dense in \mathbb{B}^{+}and $i\left(1_{\mathbb{P}}\right)=1_{\mathbb{B}}$.
(3) If $p, q \in P$ and $p \perp q$ then $i(p) \perp i(q)$.

The map $i_{\mathbb{P}}$ will be referred to as the canonical order preserving map. The algebra $\mathrm{RO}(\mathbb{P})$ is called the completion of \mathbb{P}. The next theorem says that Proposition 3.1 characterizes the completion of a poset.

Theorem 3.2. For any complete Boolean algebra \mathbb{B} and an order preserving and \perp-preserving map $f: \mathbb{P} \rightarrow \mathbb{B}^{+}$such that $f[\mathbb{P}]$ is dense in \mathbb{B} and $f\left(1_{\mathbb{P}}\right)=1_{\mathbb{B}}$, there exists a unique complete Boolean isomorphism $h: \operatorname{RO}(\mathbb{P}) \rightarrow \mathbb{B}$ such that $h \circ i_{\mathbb{P}}=f$.

Proof. Set $i=i_{\mathbb{P}}$. Define $h: \operatorname{RO}(\mathbb{P}) \rightarrow \mathbb{B}$ and $h^{*}: \mathbb{B} \rightarrow \mathrm{RO}(\mathbb{P})$ by setting

$$
\begin{aligned}
h(a) & =\sum^{\mathbb{B}}\{f(p): p \in \mathbb{P} \& i(p) \leqslant a\} \\
h^{*}(b) & =\sum^{\mathrm{RO}(\mathbb{P})}\{i(p): p \in \mathbb{P} \& f(p) \leqslant b\}
\end{aligned}
$$

Clearly, h and h^{*} are order preserving and $h \circ i=f$. We show that $h \circ h^{*}=\operatorname{id}_{\mathbb{B}}$ and $h^{*} \circ h=\operatorname{id}_{\mathrm{RO}(\mathbb{P})}$ which implies that h is an isomorphism of partial orders and therefore it is a complete Boolean isomorphism.
Fix $a \in \operatorname{RO}(\mathbb{P})$ and consider $a^{\prime}=h^{*}(h(a))$. If $i(p) \leqslant a$ then $f(p) \leqslant h(a)$ and hence $i(p) \leqslant a^{\prime}$. This shows that $a \leqslant a^{\prime}$. Suppose $a^{\prime} \cdot \neg a>0$ and let $p \in \mathbb{P}$ be such that $i(p) \leqslant a^{\prime}$ and $i(p) \cdot a=0$. By the definition of h^{*}, there is $q \in \mathbb{P}$ with $f(q) \leqslant h(a)$ and $i(p) \cdot i(q)>0$. Let $r \in \mathbb{P}$ be below p and q. Now $f(r) \leqslant h(a)$ and, by the definition of h, there is $q^{\prime} \in \mathbb{P}$ with $i\left(q^{\prime}\right) \leqslant a$ and $f(r) \cdot f\left(q^{\prime}\right)>0$. Let $r^{\prime} \in \mathbb{P}$ be below r and q^{\prime}. Then $i\left(r^{\prime}\right) \leqslant i\left(q^{\prime}\right) \leqslant a$ and $i\left(r^{\prime}\right) \cdot a \leqslant i(p) \cdot a=0$, a contradiction. This shows that $a=a^{\prime}$.
Thus we have proved that $h^{*} \circ h=\operatorname{id}_{\mathrm{RO}(\mathbb{P})}$. By the same arguments, $h \circ h^{*}=\operatorname{id}_{\mathbb{B}}$.
A partially ordered set \mathbb{P} is separative if

$$
\forall x, y \in \mathbb{P}(\neg(x \leqslant y) \Longrightarrow \exists z \leqslant x(z \perp y))
$$

Theorem 3.3. For a partially ordered set \mathbb{P} the following are equivalent:
(a) \mathbb{P} is separative.
(b) The map $i_{\mathbb{P}}: \mathbb{P} \rightarrow i_{\mathbb{P}}[\mathbb{P}]$ is an order isomorphism and $(p] \in \mathrm{RO}(\mathbb{P})$ for every $p \in \mathbb{P}$.
(c) There exists a complete Boolean algebra \mathbb{B} and an order preserving embedding $i: \mathbb{P} \rightarrow \mathbb{B}$ such that $i[\mathbb{P}]$ is dense in \mathbb{B}.

Proof. Implication (c) \Longrightarrow (a) is trivial and $(\mathrm{b}) \Longrightarrow$ (c) follows from Proposition 3.1. It remains to show $(\mathrm{a}) \Longrightarrow(\mathrm{b})$.
We first check that $(p] \in \operatorname{RO}(\mathbb{P})$. Clearly $(p] \subset \operatorname{int} \operatorname{cl}(p]$. Let $q \in \operatorname{int} \operatorname{cl}(p]$. Then $(q] \subset \operatorname{cl}(p]$ which implies that $(r] \cap(p] \neq \emptyset$ whenever $r \in(q]$. In other words, $r \| p$ whenever $r \leqslant q$. By the fact that \mathbb{P} is separative, we deduce that $q \leqslant p$ which means $q \in(p]$.
Now, if $p, q \in \mathbb{P}$ and $\neg(p \leqslant q)$ then $i_{\mathbb{P}}(p)=(p] \not \subset(q]=i_{\mathbb{P}}(q)$. It follows that $i_{\mathbb{P}}$ is an order isomorphism.

4. GENERIC FILTERS

A filter G on a partially ordered set \mathbb{P} is \mathbb{P}-generic over M if for any set $D \in M$ which is dense in \mathbb{P} we have $G \cap D \neq \emptyset$. Usually, M will be a fixed countable transitive model of ZFC (called the ground model). The next lemma says that in this case a generic filter over M exists.

Lemma 4.1 (Rasiowa-Sikorski). Let M be a countable set and let \mathbb{P} be a poset. Then for every $p \in \mathbb{P}$ there exists a \mathbb{P}-generic filter G over M with $p \in G$.

Proof. Enumerate as $\left\{D_{n}\right\}_{n \in \omega}$ the collection of all dense sets from M. Define inductively $p_{n} \in \mathbb{P}$ such that $p_{0}=p, p_{n+1} \leqslant p_{n}$ and $p_{n+1} \in D_{n}$. Now let $G=\left\{p \in \mathbb{P}:(\exists n \in \omega) p_{n} \leqslant p\right\}$. Clearly, G is a filter and $G \cap D_{n} \neq \emptyset$ for every $n \in \omega$.

Here we give some basic facts about generic filters. We always assume that M denotes a fixed countable transitive model (briefly ctm) of ZFC.

Proposition 4.2. Let G be a \mathbb{P}-generic filter over a $Z F C$ model M and assume that $H \subset M$ is a subset of \mathbb{P} containing G and consisting of pairwise compatible elements. Then $G=H$.

Proof. Fix a $q \in H$. Define $D=\{p \in \mathbb{P}: p \leqslant q \vee p \perp q\}$. Observe that D is dense and $D \in M$. Thus there exists $p \in G \cap D$ which means $p \leqslant q$ and consequently $q \in G$.

Proposition 4.3. Let \mathbb{P} be a poset in the ground model M and assume that $G \subset \mathbb{P}$ consists of pairwise compatible elements and meets every set from M which is dense in \mathbb{P}. Then G is a generic filter.

Proof. We have to show that G is a filter. Fix $p, q \in G$ and consider

$$
D=\{r \in \mathbb{P}:(r \leqslant p \& r \leqslant q) \vee(r \perp p) \vee(r \perp q)\}
$$

If $x \in \mathbb{P}$ and $x \notin D$ then $x \| p$ so there is $r_{1} \leqslant x$ with $r_{1} \leqslant p$. If $r_{1} \notin D$ then $r_{1} \| q$ so there is $r_{2} \leqslant r_{1}$ with $r_{2} \leqslant q$. Thus $r_{2} \in D$. It follows that D is dense in \mathbb{P}. Clearly, $D \in M$. If $r \in D \cap G$ then r is below p and q, since any two elements of G are compatible. Hence G is a filter.

Proposition 4.4. Let \mathbb{B} be a complete Boolean algebra in the ground model M and let G be a \mathbb{B}-generic filter over M. Then G is an ultrafilter and for each $S \in \mathcal{P}^{M}(\mathbb{B})$ the following holds:
(i) If $\sum S \in G$ then there is $p \in S$ with $p \in G$.
(ii) If $S \subset G$ then $\prod S \in G$.

Proof. Clearly, G is a filter. Fix $p \in \mathbb{B}$ and consider

$$
D_{p}=\{x \in \mathbb{B}: \text { either } x \leqslant p \text { or } x \leqslant \neg p\}
$$

Then D_{p} is dense and in M, so $G \cap D \neq \emptyset$. Hence either $p \in G$ or $\neg p \in G$. Thus G is an ultrafilter.
For the proof of (i), consider the set $D=\{x \in \mathbb{B}:(\exists q \in S) x \leqslant q\}$. Clearly, $D \in M$ and D is dense below $\sum S$. Thus $D \cap G \neq \emptyset$, that is $p \in G$ for some $p \in S$. Statement (ii) follows from (i) since G is an ultrafilter.

Theorem 4.5. Let \mathbb{P} be a poset in the ground model M and let G be a \mathbb{P}-generic filter over M. Consider the canonical order preserving map $i=i_{\mathbb{P}}: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$. Then

$$
\bar{G}=\{b \in \operatorname{RO}(\mathbb{P}):(\exists p \in G) i(p) \leqslant b\}
$$

is an $\mathrm{RO}(\mathbb{P})$-generic filter over M. Conversely, if G is $\mathrm{RO}(\mathbb{P})$-generic then $i^{-1}[G]$ is \mathbb{P}-generic over M.

Proof. It is easy to see that \bar{G} is a filter. Let $D \in M$ be dense in $\operatorname{RO}(\mathbb{P})$. Define

$$
E=\{p \in \mathbb{P}:(\exists d \in D) i(p) \leqslant d\}
$$

Clearly $E \in M$. We check that E is dense in \mathbb{P}. Fix $q \in \mathbb{P}$. As D is dense in $\operatorname{RO}(\mathbb{P})$, there is $d \in D$ with $d \leqslant i(q)$. Furthermore, there is $q^{\prime} \in \mathbb{P}$ with $i\left(q^{\prime}\right) \leqslant d$, since $i[\mathbb{P}]$ is dense in $\operatorname{RO}(\mathbb{P})$. Now observe that $q \| q^{\prime}$ by Proposition 3.1(2). Let $p \in \mathbb{P}$ be below q, q^{\prime}. Then $i(p) \leqslant i\left(q^{\prime}\right) \leqslant d$ so $p \in E$ and $p \leqslant q$. Thus E is dense in \mathbb{P}. Let $p \in E \cap G$. Then $i(p) \leqslant d$ for some $d \in D$ which implies that $d \in D \cap \bar{G}$. Thus we have shown that \bar{G} intersects all sets from M which are dense in $\mathrm{RO}(\mathbb{P})$.
For the reverse statement, consider an $\operatorname{RO}(\mathbb{P})$-generic filter G. Let $D \in M$ be dense in \mathbb{P}. Then $i[D]$ is dense in $\operatorname{RO}(\mathbb{P})$ so $G \cap i[D] \neq \emptyset$ which means that $i^{-1}[G] \cap D \neq \emptyset$. Now observe
that $i^{-1}[G]$ consists of pairwise compatible elements. By Proposition 4.3, $i^{-1}[G]$ is a generic filter.

An antichain in \mathbb{P} is a subset of \mathbb{P} consisting of pairwise compatible elements. By the Kuratow-ski-Zorn Lemma, every antichain is contained in a maximal antichain. Note that a maximal antichain in a dense subset of \mathbb{P} is also a maximal antichain in \mathbb{P}. Generic filters can be defined as those filters which intersect all maximal antichains from the ground model.

Proposition 4.6. Let \mathbb{P} be a poset in a ctm M. A set $G \subset \mathbb{P}$ consisting of pairwise compatible elements is a \mathbb{P}-generic filter over M iff G intersects all maximal antichains in \mathbb{P} which are in M.

Proof. Let G be \mathbb{P}-generic over M and fix an antichain $A \subset \mathbb{P}$ with $A \in M$. Define $D=\{x \in$ $\mathbb{P}:(\exists a \in A) x \leqslant a\}$. By the maximality of $A, D \in M$ and D is dense, so $D \cap G \neq \emptyset$. Thus also $A \cap G \neq \emptyset$.
Now assume that G consists of pairwise compatible elements and G intersects all maximal antichains in \mathbb{P} which are in M. Fix a dense set $D \subset \mathbb{P}$ with $D \in M$. Applying the KuratowskiZorn Lemma in M, we can find a maximal antichain $A \subset D$ which is also a maximal antichain in \mathbb{P}. Thus $A \cap G \neq \emptyset$. By Proposition 4.3, G is a \mathbb{P}-generic filter.

5. Complete embeddings

In this section we discuss the relationship between embeddings of posets and their completions, using the results on generic filters.
Let \mathbb{P}, \mathbb{Q} be two posets. For convenience, we assume that they are separative. A map $f: \mathbb{P} \rightarrow \mathbb{Q}$ will be called a complete embedding if f is order preserving and for every maximal antichain A in \mathbb{P} the image $f[A]$ is a maximal antichain in \mathbb{Q}. These properties imply that $f\left(1_{\mathbb{P}}\right)=1_{\mathbb{Q}}$ and $f\left(p_{1}\right) \perp f\left(p_{2}\right)$ whenever $p_{1} \perp p_{2}$. Indeed, $\left\{1_{\mathbb{P}}\right\}$ is the unique one-element maximal antichain and every antichain can be extended to a maximal antichain. Let us note that a complete embedding is not nessecarily an embedding, but it is an embedding whenever the domain is a separative poset.
A natural example of a complete embedding is the canonical map $i_{\mathbb{P}}: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$. In case where \mathbb{P} is separative, we will identify $p \in \mathbb{P}$ with its image $i_{\mathbb{P}}(p) \in \operatorname{RO}(\mathbb{P})$.
For Boolean algebras, one considers the notion of a complete homomorphism. A homomorphism of Boolean algebras $h: \mathbb{A} \rightarrow \mathbb{B}$ is complete if for every set $S \subset \mathbb{A}$ such that $\sum^{\mathbb{A}} S=1_{\mathbb{A}}$ we have $\sum^{\mathbb{B}} f[S]=1_{\mathbb{B}}$. Below we show that a complete embedding of posets extends to a complete homomorphism of their completions.

Proposition 5.1. Let \mathbb{P}, \mathbb{Q} be two posets and let $f: \mathbb{P} \rightarrow \mathbb{Q}$ be an order preserving and \perp-preserving map. The following properties are equivalent:
(a) For every maximal antichain $A \subset \mathbb{P}, f[A]$ is a maximal antichain in \mathbb{Q}.
(b) For every \mathbb{Q}-generic filter $G, f^{-1}[G]$ is a \mathbb{P}-generic filter.
(c) For every $S \subset \operatorname{RO}(\mathbb{P})$ with $\sum^{\mathrm{RO}(\mathbb{P})} S=1_{\mathrm{RO}(\mathbb{P})}$ we have $\sum^{\mathrm{RO}(\mathbb{Q})} f[S]=1_{\mathrm{RO}(\mathbb{Q})}$.

Proof. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ By Proposition 4.6.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$ Fix $S \subset \operatorname{RO}(\mathbb{P})$ with $\sum S=1_{\mathrm{RO}(\mathbb{P})}$ and suppose that $\sum f[S]<1_{\mathrm{RO}(\mathbb{Q})}$. Fix $q \in \mathbb{Q}$ such that $q \cdot \sum f[S]=0_{\mathrm{RO}(\mathbb{Q})}$. Let G be \mathbb{Q} generic with $q \in G$. By (b), Theorem 4.5 and Proposition 4.4, there exists $p \in \mathbb{P}$ such that $p \in f^{-1}[G]$ and $p \leqslant s$ for some $s \in S$.

Thus $f(p) \in G$ but also $f(p) \perp q$; a contradiction. That f extends to a complete Boolean homomorphism is a standard fact and can be proved using similar arguments like in the proof of Theorem 3.2.
$(\mathrm{c}) \Longrightarrow$ (a) If $A \subset \mathbb{P}$ is a maximal antichain then $\sum^{\mathrm{RO}(\mathbb{P})} A=1$ so $\sum^{\mathrm{RO}(\mathbb{Q})} f[A]=1$ and therefore $f[A]$ is a maximal antichain in \mathbb{Q}.
Corollary 5.2. Let $f: \mathbb{P} \rightarrow \mathbb{Q}$ be a complete embedding of separative posets. Then the formula

$$
\bar{f}(a)=\sum^{\mathrm{RO}(\mathbb{Q})}\{f(p): p \in \mathbb{P} \& p \leqslant a\}
$$

defines a complete Boolean homomorphism $\bar{f}: \mathrm{RO}(\mathbb{P}) \rightarrow \mathrm{RO}(\mathbb{Q})$ which extends f.
Proof. Clearly, \bar{f} is an order preserving map which extends f. We first show that $\bar{f}(a) \cdot \bar{f}(\neg a)=$ 0 . Suppose not, take a \mathbb{Q}-generic filter G such that some element below $b=\bar{f}(a) \cdot \bar{f}(\neg a)$ is in G. By Proposition $5.1, f^{-1}[G]$ is \mathbb{P}-generic, let H be the filter in $\mathrm{RO}(\mathbb{P})$ generated by $f^{-1}[G]$. Then H is $\operatorname{RO}(\mathbb{P})$-generic by Theorem 4.5. However, we have $a \in H$ and $\neg a \in H$, which is a contradiction.
Now it suffices to show that $\bar{f}\left(\sum^{\mathrm{RO}(\mathbb{P})} S\right)=\sum^{\mathrm{RO}(\mathbb{Q})} \bar{f}[S]$ for every $S \subset \operatorname{RO}(\mathbb{P})$. Suppose it is not true and let S be such that $b=f\left(\sum^{\mathrm{RO}(\mathbb{P})} S\right) \cdot \neg \sum^{\mathrm{RO}(\mathbb{Q})} \bar{f}[S]>0$. Let G and H be as before. Then $\sum S \in H$ and therefore some $s \in S$ is in H, so $f(p) \in G$ for some $p \leqslant s, p \in \mathbb{P}$. This is a contradiction to the fact that $b \cdot f(p)=0$.

6. Generic extensions

Let \mathbb{P} be a poset in the ground model M. Let G be a \mathbb{P}-generic filter over M. We define, using ϵ-recursion,

$$
\operatorname{val}_{G}(x)=\left\{\operatorname{val}_{G}(t):(\exists p \in G)(t, p) \in x\right\}
$$

Observe that $\operatorname{rank}(t)<\operatorname{rank}(x)$ whenever $(t, p) \in x$ for some p. Thus, val ${ }_{G}$ is well-defined. We will also write x_{G} instead of val_{G} (in the literature, there are also used symbols $\mathrm{I}_{G}, \mathrm{~K}_{G}$ or $\left.\operatorname{Int}_{G}\right) . \operatorname{val}_{G}(x)$ is called the G-interpretation of x. The set

$$
M[G]=\left\{\operatorname{val}_{G}(x): x \in M\right\}
$$

is called the G-extension (or a generic extension) of M. Observe that $M[G]$ is transitive, by the definition of val_{G}. Now define in M, using \in-recursion,

$$
\widehat{x}=\left\{\left(\widehat{t}, 1_{\mathbb{P}}\right): t \in x\right\}
$$

Define also $\Gamma=\{(\widehat{p}, p): p \in \mathbb{P}\}$. Clearly, $\Gamma \in M$. Any $a \in M$ such that $b=\operatorname{val}_{G}(a)$, is called a name for b; \widehat{x} is called the standard name for x.
In what follows, we always assume that M is a transitive model of ZFC, G is a \mathbb{P}-generic filter over M, where \mathbb{P} is a poset in M.

Proposition 6.1. For every $x \in M$ we have $\operatorname{val}_{G}(\widehat{x})=x$ and $\operatorname{val}_{G}(\Gamma)=G$. Consequently, $M \subset M[G]$ and $G \in M[G]$.

Proof. We use \in-induction. Clearly $\operatorname{val}_{G}(\widehat{\emptyset})=\emptyset$. If $\operatorname{val}_{G}(\widehat{t})=t$ whenever $t \in x$ then $\operatorname{val}_{G}(\widehat{x})=$ $\left\{\operatorname{val}_{G}(\widehat{t}): t \in x\right\}=x$. Now we have $\operatorname{val}_{G}(\Gamma)=\left\{\operatorname{val}_{G}(\widehat{p}): p \in G\right\}=G$.

Theorem 6.2. Let N be a transitive model of $Z F$ such that $M \subset N$ and $G \in N$. Then $M[G] \subset N$.

Proof. Applying \in-recursion in N, we can define $\operatorname{val}_{G}^{N}(x)$ in the same way as val ${ }_{G}$. Now, by \in-induction, we show that $\operatorname{val}_{G}^{N}(x)=\operatorname{val}_{G}(x)$ for every $x \in M$, since the formula defining val_{G} is absolute for transitive sets (it is even a Δ_{0} formula).

Proposition 6.3. For every $x \in M, \operatorname{rank}\left(\operatorname{val}_{G}(x)\right) \leqslant \operatorname{rank}(x)$. In particular, $O N^{M[G]}=$ $O N^{M}$.

Proof. The first statement can be proved by easy induction (recall that rank is absolute for transitive models). Clearly $O N^{M} \subset O N^{M[G]}$ since ordinals are absolute. Suppose $\lambda \in O N^{M[G]}$ is not in M. Then $\operatorname{rank}(\lambda) \leqslant \operatorname{rank}(\bar{\lambda})$ where $\bar{\lambda}$ is a name for λ. This is a contradiction, since $\operatorname{rank}(\lambda)=\lambda$.

7. Boolean value of a formula

Fix a partially ordered set \mathbb{P} and let \mathbb{B} denote the complete Boolean algebra $\mathrm{RO}(\mathbb{P})$. For each formula of set theory $\varphi\left(v_{1}, \ldots, v_{n}\right)$ with parameters x_{1}, \ldots, x_{n} we will define its Boolean value $\left\|\varphi\left(x_{1}, \ldots, x_{n}\right)\right\|_{\mathbb{P}} \in \mathbb{B}$ which "measures the probability of truth" of the interpretation of this formula in \mathbb{P}-generic extensions. Let $i: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$ be the canonical order preserving map.
The definition of $\|\varphi\|_{\mathbb{P}}$ proceeds by recursion on the length of the formula and, for atomic formulas, by induction on rank. For atomic formulas $x \in y$ and $x=y$ define

$$
\|x \in y\|_{\mathbb{P}}=\sum_{(t, p) \in y, p \in \mathbb{P}} i(p) \cdot\|t=x\|_{\mathbb{P}}
$$

and

$$
\|x=y\|_{\mathbb{P}}=\prod_{(t, p) \in x, p \in \mathbb{P}}\left(\neg i(p)+\|t \in y\|_{\mathbb{P}}\right) \cdot \prod_{(t, p) \in y, p \in \mathbb{P}}\left(\neg i(p)+\|t \in x\|_{\mathbb{P}}\right)
$$

Next, we define

$$
\begin{aligned}
\|\neg \varphi\|_{\mathbb{P}} & =\neg\|\varphi\|_{\mathbb{P}} \\
\|\varphi \vee \psi\|_{\mathbb{P}} & =\|\varphi\|_{\mathbb{P}}+\|\psi\|_{\mathbb{P}} \\
\|\exists x \varphi\|_{\mathbb{P}} & =\sum\left\{b \in \mathbb{B}:(\exists x) b=\|\varphi(x)\|_{\mathbb{P}}\right\}
\end{aligned}
$$

The definition of the Boolean value for atomic formulas is in fact recursive with respect to a well-founded set-like relation E on all unordered pairs, namely $a E b$ iff there are x, y, y^{\prime} such that $a=\{x, y\}, b=\left\{x, y^{\prime}\right\}$ and $\operatorname{rank}(y)<\operatorname{rank}\left(y^{\prime}\right)$.
Observe that $\|\emptyset=\emptyset\|_{\mathbb{P}}=1_{\mathbb{B}}$ and $\|\emptyset \in \emptyset\|_{\mathbb{P}}=0_{\mathbb{B}}$ and, inductively, $\|x=x\|_{\mathbb{P}}=1_{\mathbb{B}}$ and $\|x \in x\|_{\mathbb{P}}=0_{\mathbb{B}}$. We will write $\|\varphi\|$ instead of $\|\varphi\|_{\mathbb{P}}$ whenever it will be clear what poset is under consideration.

8. The Truth Lemma

Let \mathbb{P} be a partially ordered set and let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a formula with all free variables shown. Let t_{1}, \ldots, t_{n} and $p \in \mathbb{P}$ be fixed. We say that p forces $\varphi\left(t_{1}, \ldots, t_{n}\right)$ and we write $p \Vdash \varphi\left(t_{1}, \ldots, t_{n}\right)$, provided $i_{\mathbb{P}}(p) \leqslant\left\|\varphi\left(t_{1}, \ldots, t_{n}\right)\right\|$, where $i_{\mathbb{P}}$ is the canonical order preserving map. The definition of \Vdash does not mention models. The aim of this section is to show that the relation \Vdash tells us about interpretations of φ in generic extensions. Some authors define the relation of forcing by condition (b) in Corollary 8.2 below; in this case it is very important to
show that there is a formula in the ground model which defines the same relation (this is the Definability Lemma).

Proposition 8.1. Let \mathbb{P} be a poset in a ctm $M, p \in \mathbb{P}$. Then for any formula with parameters $\varphi, p \Vdash \varphi$ iff for every \mathbb{P}-generic filter G with $p \in G$ we have $\|\varphi\| \in \bar{G}$, where \bar{G} is the filter generated by $i_{\mathbb{P}}[G]$ in $\mathrm{RO}(\mathbb{P})$.

Proof. The "only if" part is trivial. For the "if" part, suppose $p \nvdash \varphi$, i.e. $i_{\mathbb{P}}(p) \cdot \neg\|\varphi\|>0_{\mathrm{RO}(\mathbb{P})}$. There is $q \leqslant p$ such that $i_{\mathbb{P}}(q) \leqslant \neg\|\varphi\|$. Now, by the theorem of Rasiowa-Sikorski, there is a \mathbb{P}-generic filter G with $q \in G$. Finally, $p \in G$ and $\|\varphi\| \notin G$.

The Truth Lemma. Let \mathbb{P} be a poset in a transitive $Z F$ model M and let G be a \mathbb{P}-generic filter over M. For any formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ with all free variables shown, for any $v_{1}, \ldots, v_{n} \in$ M the following are equivalent:
(a) $M[G] \models \varphi\left(\operatorname{val}_{G}\left(v_{1}\right), \ldots, \operatorname{val}_{G}\left(v_{n}\right)\right)$.
(b) There exists $p \in G$ with $p \Vdash \varphi\left(v_{1}, \ldots, v_{n}\right)$.

Proof. Denote by i the canonical order preserving map $i_{\mathbb{P}}: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$ and denote by \bar{G} the filter generated by $i_{\mathbb{P}}[G]$ in $\operatorname{RO}(\mathbb{P})$. Observe that $p \Vdash \varphi$ iff $\|\varphi\| \in \bar{G}$ (see Theorem 4.5).
We first prove the lemma for atomic formulas, i.e. formulas of the form $x=y$ and $x \in y$. We use induction on the well-founded relation E defined in Section 7 . The equivalence $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$ is obvious for the formulas $\emptyset=\emptyset$ and $\emptyset \in \emptyset$. Fix $x, y \in M$, assume $\{x, y\} \neq\{\emptyset\}$ and assume that we have proved the equivalence $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$ for atomic formulas with pairs of parameters of E-rank less the E-rank of $\{x, y\}$. Consider first the formula $x=y$.
Assume val $\operatorname{val}_{G}(x)=\operatorname{val}_{G}(y) . \operatorname{Fix}(t, p) \in x$. If $p \in G$ then, by the assumption, $\operatorname{val}_{G}(t) \in \operatorname{val}_{G}(y)$. By induction hypothesis, $\|t \in y\| \in \bar{G}$. Thus $\neg i(p)+\|t \in y\| \in \bar{G}$ for each $(t, p) \in x, p \in \mathbb{P}$. Similarly, $\neg i(p)+\|t \in x\| \in \bar{G}$ for $(t, p) \in y, p \in \mathbb{P}$. By Proposition 4.4, $\|x=y\| \in \bar{G}$. Conversely, assume that $\|x=y\| \in \bar{G}$. Then for $(t, p) \in x, p \in \mathbb{P}$ we have $\neg i(p)+\|t \in y\| \in \bar{G}$. Thus, if $p \in G$ and $(t, p) \in x$ then $\|t \in y\| \in \bar{G}$ and, by induction hypothesis, $\operatorname{val}_{G}(t) \in \operatorname{val}_{G}(y)$. Hence $\operatorname{val}_{G}(x) \subset \operatorname{val}_{G}(y)$. Similarly val $\operatorname{val}_{G}(y) \subset \operatorname{val}_{G}(x)$.
Now consider the formula $x \in y$. $\operatorname{Assume~}_{\operatorname{val}}^{G}(x) \in \operatorname{val}_{G}(y)$. Then there is $p \in G$ and $(t, p) \in y$ such that $\operatorname{val}_{G}(x)=\operatorname{val}_{G}(t)$. By induction hypothesis, $\|t=x\| \in \bar{G}$. It follows that $\|x \in y\| \in \bar{G}$. Conversely, assume that $\|x \in y\| \in \bar{G}$. By Proposition 4.4, there is $(t, p) \in y$, $p \in \mathbb{P}$ with $i(p) \cdot\|t=x\| \in \bar{G}$. Hence $p \in G$ and $\operatorname{val}_{G}(t) \in \operatorname{val}_{G}(y)$. By induction hypothesis, $\operatorname{val}_{G}(t)=\operatorname{val}_{G}(x)$ so val $\operatorname{val}_{G}(x) \in \operatorname{val}_{G}(y)$.
Suppose now that $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a non-atomic formula and assume that we have already proved the equivalence $(\mathrm{a}) \Longleftrightarrow(\mathrm{b})$ for all formulas of length less than the length of φ. Fix parameters v_{1}, \ldots, v_{n} for φ. We will write φ instead of $\varphi\left(v_{1}, \ldots, v_{n}\right)$ and φ_{G} instead of $\varphi\left(\operatorname{val}_{G}\left(v_{1}\right), \ldots, \operatorname{val}_{G}\left(v_{n}\right)\right)$. We have three cases.
Case 1. $\varphi=\neg \psi$. Then $M \models \varphi_{G}$ iff it is not true that $M \models \psi_{G}$ which, by induction hypothesis, is equivalent to $\|\psi\| \notin \bar{G}$; this means $\|\varphi\|=\neg\|\psi\| \in \bar{G}$, since \bar{G} is an ultrafilter.
Case 2. $\varphi=\psi \wedge \chi$. Using induction hypothesis, we have $M \models \psi_{G} \wedge \chi_{G}$ iff $\left(M \models \psi_{G}\right.$ and $\left.M \models \chi_{G}\right)$ iff $(\|\psi\| \in \bar{G}$ and $\|\chi\| \in \bar{G})$ iff $\|\psi \wedge \chi\|=\|\psi\| \cdot\|\chi\| \in \bar{G}$.
Case 3. $\varphi=\exists x \psi(x)$. In M define $A=\{a \in \operatorname{RO}(\mathbb{P}):(\exists x) a=\|\psi(x)\|\}$. Now, using induction hypothesis and Proposition 4.4, we have $M \models \varphi_{G}$ iff $(\exists x \in M) M \models \psi_{G}(x)$ iff $(\exists x \in M)\|\psi(x)\| \in \bar{G}$ iff $(\exists a \in A) a \in \bar{G}$ iff $\|\varphi\|=\sum A \in \bar{G}$.
This completes the proof.

Corollary 8.2 (The Definability Lemma). Let \mathbb{P} be a poset in a ctm M with $M \models Z F$. For any formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ with all free variables shown, for any $v_{1}, \ldots, v_{n} \in M$ and for every $p \in \mathbb{P}$ and $v_{1}, \ldots, v_{n} \in M$ the following are equivalent:
(a) $p \Vdash \varphi\left(v_{1}, \ldots, v_{n}\right)$.
(b) For each \mathbb{P}-generic filter G over M with $p \in G$ we have

$$
M[G] \models \varphi\left(\operatorname{val}_{G}\left(v_{1}\right), \ldots, \operatorname{val}_{G}\left(v_{n}\right)\right)
$$

Proof. We will write φ instead of $\varphi\left(v_{1}, \ldots, v_{n}\right)$ or $\varphi\left(\operatorname{val}_{G}\left(v_{1}\right), \ldots, \operatorname{val}_{G}\left(v_{n}\right)\right)$.
(a) $\Longrightarrow(\mathrm{b})$ Suppose $p \Vdash \varphi$ and $M[G] \models \neg \varphi$ for some generic G with $p \in G$. By the Truth Lemma, there is $q \in G$ with $q \Vdash \neg \varphi$. Thus also $q \Vdash \neg \varphi$, whence $i_{\mathbb{P}}(q) \leqslant\|\varphi\| \cdot \neg\|\varphi\|=0_{\mathrm{RO}(\mathbb{P})}$, a contradiction.
$(\mathrm{b}) \Longrightarrow(\mathrm{a})$ Suppose $p \Vdash \varphi$. There is $q_{1} \in \mathbb{P}$ with $i_{\mathbb{P}}\left(q_{1}\right) \leqslant i_{\mathbb{P}}(p) \cdot \neg\|\varphi\|$. Now $q_{1} \| p$ so there is $q \leqslant q_{1}, p$. Let G be \mathbb{P}-generic over M with $q \in G$ (here we use the theorem of RasiowaSikorski). Now $q \Vdash \neg \varphi$ so $M[G] \models \neg \varphi$, since we have proved that $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. It follows that $p \in G$ and $M[G] \not \vDash \varphi$.
Corollary 8.3. If φ is a tautology of logic then $\|\varphi\|=1_{\mathrm{RO}(\mathbb{P})}$ for every poset \mathbb{P}.
The Definability Lemma shows that the relation \Vdash, defined by us in the ground model, defines indeed the forcing relation in the sense that it "forces" truth in generic extensions. Later on, we will use the Truth and Definability Lemmas also for proving some results in ZF or ZFC. Specifically, if we want to prove that $Z F C \vdash \varphi$, where φ is a sentence, then we can argue as follows. Suppose $Z F C \nvdash \varphi$. Then, by Gödel's theorem, there is a ZFC model N with $N \models \neg \varphi$. Next, applying the Löwenheim-Skolem theorem and Mostowski's theorem on collapsing, we can find a countable transitive ZFC model M with $M \models \neg \varphi$. Now we can use generic filters to obtain a contradiction, by using some information about generic extensions. This is useful for instance when φ is " $\|\psi\|=1_{\mathrm{RO}(\mathbb{P})}$ " for some poset \mathbb{P} (see e.g. the proof of Theorem 9.2 below).

9. The maximal Principle

We give an important application of the Truth Lemma for computing Boolean values of formulas, called the maximal principle.

Lemma 9.1. Let \mathbb{P} be a partially ordered set and let $\left\{u_{i}: i \in J\right\}$ be an antichain in the Boolean algebra $\mathrm{RO}(\mathbb{P})$. Then for each collection $\left\{t_{i}: i \in J\right\}$ there exists t such that $(\forall i \in$ J) $u_{i} \leqslant\left\|t=t_{i}\right\|$.

Proof. Let $i=i_{\mathbb{P}}: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$ be the canonical order preserving map (see Section 3). Let

$$
t=\left\{(s, p) \in\left(\bigcup_{i \in J} \operatorname{dom}\left(t_{i}\right)\right) \times \mathbb{P}:(\exists i \in J)\left(p \Vdash s \in t_{i}\right) \& i(p) \leqslant u_{i}\right\}
$$

We check that t is as desired. Fix $i \in J$ and $p \in \mathbb{P}$ such that $i(p) \leqslant u_{i}$. Let G be a \mathbb{P}-generic filter with $p \in G$. If $\operatorname{val}_{G}(s) \in \operatorname{val}_{G}(t)$ and $(s, q) \in t, q \in G$ then $\operatorname{val}_{G}(s) \in \operatorname{val}_{G}\left(t_{j}\right)$ and $i(q) \leqslant u_{j}$ for some $j \in J$. As u_{i}, u_{j} are incompatible whenever $i \neq j$, we deduce that $i=j$ and $\operatorname{val}_{G}(s) \in \operatorname{val}_{G}\left(t_{i}\right)$. Conversely, if $x \in \operatorname{val}_{G}\left(t_{i}\right)$ then there is $q \in G$ and $(s, q) \in t_{i}$ with $x=\operatorname{val}_{G}(s)$. By the Truth Lemma, there is $r \in G$ with $r \leqslant p$ and $r \Vdash s \in t_{i}$. Hence $(s, r) \in t$ and $x \in \operatorname{val}_{G}(t)$. It follows that $\operatorname{val}_{G}(t)=\operatorname{val}_{G}\left(t_{i}\right)$. By the Definability Lemma, $p \Vdash t=t_{i}$. As p was chosen arbitrarily (with respect to the condition $\left.i(p) \leqslant u_{i}\right), u_{i} \leqslant\left\|t=t_{i}\right\|$.

Theorem 9.2. Let \mathbb{P} be a poset. For each formula $\varphi(x)$ there exists t such that

$$
\|\exists x \varphi(x)\|=\|\varphi(t)\| .
$$

Proof. Applying AC we can find $\left\{x_{\alpha}: \alpha<\kappa\right\}$, where κ is a cardinal and

$$
b:=\|\exists x \varphi(x)\|=\sum_{\alpha<\kappa}\left\|\varphi\left(x_{\alpha}\right)\right\| .
$$

Define

$$
a_{\alpha}=\sum_{\xi<\alpha}\left\|\varphi\left(x_{\xi}\right)\right\|, \quad b_{\alpha}=a_{\alpha} \cdot \neg \sum_{\xi<\alpha} a_{\xi}
$$

Then $\left\{b_{\alpha}\right\}_{\alpha<\kappa}$ is an anitchain in $\mathrm{RO}(\mathbb{P})$ and $\sum_{\alpha<\kappa} a_{\alpha}=\sum_{\alpha<\kappa} b_{\alpha}=b$. Applying Lemma 9.1 we find t such that $a_{\alpha} \leqslant\left\|t=x_{\alpha}\right\|$ for every $\alpha<\kappa$. Observe that by Corollary $8.3,\|\varphi(t)\| \leqslant$ $\|\exists x \varphi(x)\|$. It remains to check the reverse inequality. Fix a \mathbb{P}-generic filter G with $b \in \bar{G}$, where \bar{G} denotes the ultrafilter in $\mathrm{RO}(\mathbb{P})$ generated by $i_{\mathbb{P}}[G]$. By Proposition 4.4 there exists $\xi<\kappa$ with $b_{\xi} \in \bar{G}$. Let $\alpha=\min \left\{\xi<\kappa: b_{\xi} \in \bar{G}\right\}$. Then $a_{\alpha} \in \bar{G}$ and $a_{\xi} \notin \bar{G}$ whenever $\xi<\alpha$. It follows that $\left\|\varphi\left(x_{\alpha}\right)\right\| \in \bar{G}$ and $\left\|\varphi\left(x_{\xi}\right)\right\| \notin \bar{G}$ for $\xi<\alpha$. Hence $\operatorname{val}_{G}(t)=\operatorname{val}_{G}\left(x_{\alpha}\right)$ and $M[G] \models \varphi\left(\operatorname{val}_{G}\left(x_{\alpha}\right)\right)$. Thus $M[G] \models \varphi\left(\operatorname{val}_{G}(t)\right)$. It follows that $\|\varphi(t)\| \in \bar{G}$. This completes the proof.

For some purposes, we shall need a weaker version of Theorem 9.2.
Lemma 9.3. Let \mathbb{P} be a poset and let $\varphi(x)$ be formula with x the only free variable. For each a we have

$$
\|(\exists x \in a) \varphi(x)\|=\sum_{(s, p) \in a, p \in \mathbb{P}} i_{\mathbb{P}}(p) \cdot\|\varphi(s)\| .
$$

Proof. The inequality " \geqslant " is trivial, since if $(s, p) \in a$ then $p \Vdash s \in a$ and hence $i_{\mathbb{P}}(p) \cdot\|\varphi(s)\| \leqslant$ $\|s \in a \& \varphi(s)\| \leqslant\|(\exists x \in a) \varphi(x)\|$.
We show the reverse inequality. Let G be an $\operatorname{RO}(\mathbb{P})$-generic filter which contains $\|(\exists x \in$ a) $\varphi(x) \|$. By the definition of the Boolean value and by Proposition 4.4, there is x such that $\|x \in a \& \varphi(x)\| \in G$. Using the definition of $\|x \in a\|$ and Proposition 4.4 again, we find $(s, p) \in a$ with $p \in \mathbb{P}$ and $i(p) \cdot\|s=x\| \cdot\|\varphi(x)\| \in G$. Hence also $i(p) \cdot\|\varphi(s)\| \in G$ since it is a tautology of logic that $s=x \& \varphi(x) \Longrightarrow \varphi(s)$ (see Corollary 8.3). This completes the proof.

Theorem 9.4. Let \mathbb{P} be a poset and let $\varphi(x)$ be a formula of set theory. Then for each a and $p \in \mathbb{P}$ such that $p \Vdash(\exists x \in a) \varphi(x)$ there exists $q \leqslant p$ and there exists $(s, r) \in a$ such that $q \leqslant r$ and $q \Vdash \varphi(s)$.

Proof. Let $i: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$ be the canonical map. By Lemma 9.3, there exists $(s, r) \in a$ such that $i(p) \cdot i(r) \cdot\|\varphi(s)\|>0_{\mathrm{RO}(\mathbb{P})}$. Let $q \in \mathbb{P}$ be below p, r with $i(q) \leqslant\|\varphi(s)\|$. Then $q \Vdash \varphi(s)$.

10. More about names

Let M be a ctm of ZFC and let $\mathbb{P} \in M$ be a poset. Observe that if $a \in M$ and $b \subset \widehat{a} \times \mathbb{P}$ in M then for each \mathbb{P}-generic filter G we have $\operatorname{val}_{G}(b) \subset \operatorname{val}_{G}(a)$. We show that $\mathcal{P}^{M}(\widehat{a} \times \mathbb{P})$ contains all names for possible subsets of a.
Lemma 10.1. Let \mathbb{P} be a poset and let $a \in M$ be fixed. Then for each x there exists $y \subset \widehat{a} \times \mathbb{P}$ such that $\|x \subset \widehat{a} \Longrightarrow x=y\|_{\mathbb{P}}=1_{\mathbb{P}}$.

Proof. Set

$$
y=\{(\widehat{s}, p) \in \widehat{a} \times \mathbb{P}:(\exists(t, q) \in x) p \leqslant q \& p \Vdash t=\widehat{s}\}
$$

Let G be a \mathbb{P}-generic filter with $\operatorname{val}_{G}(x) \subset a$. We show that $\operatorname{val}_{G}(y)=\operatorname{val}_{G}(x)$.
Let $z \in \operatorname{val}_{G}(y)$. Then $z \in a$ and there is $p \in G$ and there is $(t, q) \in x$ with $p \leqslant q$ and $p \Vdash t=\widehat{z}$. Thus $q \in G$ and $z=\operatorname{val}_{G}(t) \in \operatorname{val}_{G}(x)$. This shows that $\operatorname{val}_{G}(y) \subset \operatorname{val}_{G}(x)$. Now fix $z=\operatorname{val}_{G}(t) \in \operatorname{val}_{G}(x)$, where $(t, q) \in x$ and $q \in G$. Then $z \in a$ so, by the Truth Lemma, there exists $p_{0} \in G$ with $p_{0} \Vdash \widehat{z}=t$. Let $p \in G$ be below p_{0} and q. Then $(\widehat{z}, p) \in y$ and $z \in \operatorname{val}_{G}(y)$. Hence $\operatorname{val}_{G}(x) \subset \operatorname{val}_{G}(y)$.

11. ZFC in GENERIC EXTENSIONS

In this section we assume, as usual, that M is a fixed transitive model of ZFC, \mathbb{P} is a partially ordered set in M and G is a fixed \mathbb{P}-generic filter over M. The aim of this section is to show that $M[G] \models Z F C$. This will done by several lemmas.

Lemma 11.1. $M[G] \models A 1+A 2+A 3+A 6+A 7$ (Extensionality, Empty Set, Pairing, Infinity, Regularity).

Proof. Every nonempty transitive set satisfies $A 1+A 2+A 7$. That $M[G] \models A 6$ follows from the fact that $\omega \in M[G]$. It remains to check that $M[G]$ satisfies the Pairing Axiom. Fix $a, b \in M[G], a=\operatorname{val}_{G}\left(a^{\prime}\right), b=\operatorname{val}_{G}\left(b^{\prime}\right) . \operatorname{Set} c^{\prime}=\left\{\left(a^{\prime}, 1_{\mathbb{P}}\right),\left(b^{\prime}, 1_{\mathbb{P}}\right)\right\}$. Then val $\operatorname{val}_{G}\left(c^{\prime}\right)=\{a, b\}$.

Lemma 11.2. $M[G] \models A 4$ (Union).
Proof. Fix $a=\operatorname{val}_{G}\left(a^{\prime}\right) \in M[G]$. In M define

$$
b^{\prime}=\left\{(t, p) \in\left(\bigcup_{s \in \operatorname{dom}\left(a^{\prime}\right)} \operatorname{dom}(s)\right) \times \mathbb{P}: p \Vdash\left(\exists x \in a^{\prime}\right) t \in x\right\}
$$

We check that $\operatorname{val}_{G}\left(b^{\prime}\right)=\bigcup a$. If $\operatorname{val}_{G}(t) \in a$, where $(t, p) \in b^{\prime}$ and $p \in G$ then $M[G] \models(\exists x \in$ a) $\operatorname{val}_{G}(t) \in x$, i.e. $\operatorname{val}_{G}(t) \in \bigcup a$. Conversely, if $z \in \bigcup a$ then there is $(s, q) \in a^{\prime}, q \in G$ with $z \in \operatorname{val}_{G}(s)$ and there is $(t, r) \in s, r \in G$ with $z=\operatorname{val}_{G}(t)$. Thus $t \in \bigcup_{s \in \operatorname{dom}\left(a^{\prime}\right)} \operatorname{dom}(s)$ and, by the Truth Lemma, there is $p \in G$ with $p \Vdash\left(\exists x \in a^{\prime}\right) t \in x$. Hence $(t, p) \in b^{\prime}$ and $z=\operatorname{val}_{G}(t) \in \operatorname{val}_{G}\left(b^{\prime}\right)$.

Lemma 11.3. $M[G] \models A 5$ (Power Set).
Proof. Fix $a=\operatorname{val}_{G}\left(a^{\prime}\right) \in M[G]$. Using the Axiom of Replacement in M we can define

$$
u=\left\{\left(t, 1_{\mathbb{P}}\right): t \subset \operatorname{dom}\left(a^{\prime}\right) \&(\forall(s, p) \in t) p \Vdash s \in a^{\prime}\right\}
$$

We show that $M[G] \mid=\operatorname{val}_{G}(u)=\mathcal{P}(a)$. If $y \in \operatorname{val}_{G}(u)$ and $y=\operatorname{val}_{G}(t)$, where $\left(t, 1_{\mathbb{P}}\right) \in u$ then for all $z \in y$ we have $z \in a$ since there is $p \in G$ with $(s, p) \in t, z=\operatorname{val}_{G}(s)$ and $p \Vdash s \in a^{\prime}$. Thus $y \subset a$.
Now fix $y \subset a, y=\operatorname{val}_{G}\left(y^{\prime}\right) \in M[G]$. In M, define

$$
y^{\prime \prime}=\left\{(s, p) \in \operatorname{dom}\left(a^{\prime}\right) \times \mathbb{P}: p \Vdash\left(s \in y^{\prime} \& s \in a^{\prime}\right)\right\}
$$

Then $\left(y^{\prime \prime}, 1_{\mathbb{P}}\right) \in u$. It remains to check that $\operatorname{val}_{G}\left(y^{\prime \prime}\right)=y$. If $x \in \operatorname{val}_{G}\left(y^{\prime \prime}\right)$ then $x=\operatorname{val}_{G}(s)$, where $(s, p) \in y^{\prime \prime}$ and $p \in G$. Thus $p \Vdash s \in y^{\prime}$ so $x \in y$. Conversely, if $x \in y$ then $x \in a$ so there is $(s, q) \in a^{\prime}, q \in G$ such that $x=\operatorname{val}_{G}(s)$. By the Truth Lemma, there is $p \in G$ with $p \Vdash\left(s \in y^{\prime} \& s \in a^{\prime}\right)$. Hence $(s, p) \in y^{\prime \prime}$ and $x \in \operatorname{val}_{G}\left(y^{\prime \prime}\right)$.

Lemma 11.4. $M[G] \models A 8$ (Comprehension Axiom Scheme).

Proof. Let $\varphi\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ be a formula with all free variables shown, fix $a \in M[G]$ and $x_{1}, \ldots, x_{n} \in M[G]$. Let $x_{i}=\operatorname{val}_{G}\left(x_{i}^{\prime}\right), a=\operatorname{val}_{G}\left(a^{\prime}\right)$. Using Comprehension in M, define

$$
b^{\prime}=\left\{(t, p) \in \operatorname{dom}\left(a^{\prime}\right) \times \mathbb{P}: p \Vdash \varphi\left(t, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right\} .
$$

Let $b=\operatorname{val}_{G}\left(b^{\prime}\right)$. We check that $b=\left\{z \in a: \varphi^{M[G]}\left(z, x_{1}, \ldots, x_{n}\right)\right\}$.
If $z \in b$ and $z=\operatorname{val}_{G}(t)$, where $(t, p) \in b^{\prime}, p \in G$ then $M[G] \vDash \varphi\left(z, x_{1}, \ldots, x_{n}\right)$. Suppose that $M[G] \models z \in a \& \varphi\left(z, x_{1}, \ldots, x_{n}\right)$. Then $z=\operatorname{val}_{G}(t)$, where $(t, q) \in a^{\prime}$ and $q \in G$. By the Truth Lemma, there is $p \in G$ such that $p \Vdash \varphi\left(t, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)$. Hence $(t, p) \in b^{\prime}$ and $z \in b$.
Lemma 11.5. $M[G] \models$ A9 (Replacement Axiom Scheme).
Proof. Let $\varphi\left(x, y, v_{1}, \ldots, v_{n}\right)$ be a formula with all free variables shown and fix $a, x_{1}, \ldots, x_{n} \in$ $M[G]$ such that $M[G] \models \forall x \in a \exists!y \varphi\left(x, y, x_{1}, \ldots, x_{n}\right)$. Let $a=\operatorname{val}_{G}\left(a^{\prime}\right), x_{i}=\operatorname{val}_{G}\left(x_{i}^{\prime}\right)$. Applying AC and Theorem 9.2 in M, we can choose for each $s \in \operatorname{dom}\left(a^{\prime}\right)$ an element $t_{s} \in M$ such that $\left\|\exists y \varphi\left(s, y, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right\|=\left\|\varphi\left(s, t_{s}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right\|$. Let

$$
b^{\prime}=\left\{\left(t_{s}, p\right):(s, p) \in a^{\prime}\right\}
$$

and let $b=\operatorname{val}_{G}\left(b^{\prime}\right)$. Fix $x \in a$. Then $x=\operatorname{val}_{G}(s)$ where $(s, p) \in a^{\prime}$ and $p \in G$. Now $M[G] \models \exists y \varphi\left(x, y, x_{1}, \ldots, x_{n}\right)$. Hence also $M[G] \models \varphi\left(x, \operatorname{val}_{G}\left(t_{s}\right), x_{1}, \ldots, x_{n}\right)$. This shows that $M[G] \models \forall x \in a \exists y \in b \varphi\left(x, y, x_{1}, \ldots, x_{n}\right)$.
Lemma 11.6. $M[G] \models A C$ (the Axiom of Choice).
Proof. Fix $a=\operatorname{val}_{G}\left(a^{\prime}\right) \in M[G]$. Applying AC in M, we can find a bijection $f: \alpha \rightarrow \operatorname{dom}\left(a^{\prime}\right)$, where α is an ordinal in M. Define $F: \alpha \rightarrow a$ by setting $F(\xi)=\operatorname{val}_{G}(f(\xi))$. Then $F \in M[G]$ and $a \subset \operatorname{rng}(F)$. It follows that a can be well-ordered in $M[G]$, since a map $g: a \rightarrow \alpha$ defined by $g(t)=\min F^{-1}(t)$ is an injection.

The above lemmas together give the following.
Theorem 11.7. Let \mathbb{P} be a partially ordered set in a transitive model M and let G be a \mathbb{P}-generic filter over M. If $M \models Z F C$ then also $M[G] \vDash Z F C$.

12. Chain conditions

Lemma 12.1. Let \mathbb{P} be a θ-cc poset in a tcm M and let G be a \mathbb{P}-generic filter over M. Then for each $f \in \kappa^{\lambda}$ in $M[G]$ there exists a map $F: \lambda \rightarrow[\kappa]^{<\theta}$ in M with

$$
M[G] \models(\forall \alpha \in \lambda) f(\alpha) \in F(\alpha) .
$$

Proof. Fix $\alpha \in \lambda$ and define

$$
F(\alpha)=\{\beta \in \kappa:(\exists p \in \mathbb{P}) p \Vdash \bar{f}(\widehat{\alpha})=\widehat{\beta}\},
$$

where \bar{f} denotes a name for f. For each $\beta \in F(\alpha)$ choose $p_{\beta} \in \mathbb{P}$ with $p_{\beta} \Vdash \bar{f}(\widehat{\alpha})=\widehat{\beta}$. Then $\left\{p_{\beta}\right\}_{\beta \in F(\alpha)}$ is in M and consists of pairwise incompatible elements of \mathbb{P}. Thus

$$
M \models|F(\alpha)|<\theta
$$

and, by the Truth Lemma, $f(\alpha) \in F(\alpha)$ for every $\alpha \in \lambda$.
Theorem 12.2. Under the above assumptions, for any $\kappa \in \operatorname{Card}^{M}, \kappa>\theta$ implies $\kappa \in$ $\operatorname{Card}^{M[G]}$. Moreover, if $\delta=\operatorname{cf}^{M}(\kappa) \geqslant \theta$ then $\delta=\operatorname{cf}^{M[G]}(\kappa)$.

Proof. Let $\delta=\operatorname{cf}^{M}(\kappa) \geqslant \theta$ and suppose that

$$
M[G] \models f: \lambda \rightarrow \kappa \text { is cofinal, }
$$

where $\lambda<\delta$. By Lemma 12.1 there is $F \in M$ such that $F: \lambda \rightarrow[\kappa]^{<\theta}$ and $f(\alpha) \in F(\alpha)$ for $\alpha \in \lambda$. As $M \models \operatorname{cf}(\kappa) \geqslant \theta$, we can define in M a map $g: \lambda \rightarrow \kappa$ by setting $g(\alpha)=\sup F(\alpha)$. Clearly g is cofinal, so $M \models \operatorname{cf}(\kappa) \leqslant \lambda$, a contradiction.
Now, if $\kappa \in \operatorname{Card}^{M}$ is regular and $\kappa \geqslant \theta$ then $\kappa=\operatorname{cf}^{M[G]}(\kappa) \in \operatorname{Card}^{M[G]}$. If $\kappa>\theta$ is a singular cardinal in M then $\kappa=\sup _{\alpha<\lambda} \kappa_{\alpha}$ where $\left\{\kappa_{\alpha}\right\}_{\alpha<\lambda}$ is an increasing sequence of regular cardinals in M and $\theta \leqslant \kappa_{0}$. Thus $\kappa \in \operatorname{Card}^{M[G]}$ as the supremum of cardinals.

Corollary 12.3. If \mathbb{P} is a ccc partial order then for every \mathbb{P}-generic filter G over a ctm M we have $\operatorname{Card}^{M}=\operatorname{Card}^{M[G]}$.

13. Distributivity laws

Recall that a complete Boolean algebra \mathbb{B} is (κ, λ)-distributive if for each indexed collection $\left\{a_{\alpha, \beta}: \alpha<\kappa, \beta<\lambda\right\}$ the following equality holds:

$$
\prod_{\alpha<\kappa} \sum_{\beta<\lambda} a_{\alpha, \beta}=\sum_{\varphi \in \lambda^{\kappa}} \prod_{\alpha<\kappa} a_{\alpha, \varphi(\alpha)} .
$$

Let us note that the inequality \geqslant always holds.
Theorem 13.1. Let M be a ctm and let \mathbb{B} be a complete Boolean algebra in M. If \mathbb{B} is (κ, λ) distributive in M then $\left(\lambda^{\kappa}\right)^{M}=\left(\lambda^{\kappa}\right)^{M[G]}$ for each \mathbb{B}-generic filter G over M. Conversely, if for every \mathbb{B}-generic filter G we have $\left(\lambda^{\kappa}\right)^{M[G]}=\left(\lambda^{\kappa}\right)^{M}$ then $M \models$ " \mathbb{B} is (κ, λ)-distributive".

Proof. Suppose that " \mathbb{B} is (κ, λ)-distributive" holds in M. Let $f=\operatorname{val}_{G}(\bar{f}) \in \lambda^{\kappa}$ in $M[G]$. Fix $\alpha \in \kappa$. For each $\beta \in \lambda$ define

$$
a_{\alpha, \beta}=\sum\left\{p \in \mathbb{B}^{+}: p \Vdash \bar{f}(\widehat{\alpha})=\widehat{\beta}\right\} .
$$

Observe that $a_{\alpha, \beta} \in G$ for $\beta=f(\alpha)$. It follows that $\sum_{\beta \in \lambda} a_{\alpha, \beta} \in G$. By Proposition 4.4 also $b=\prod_{\alpha \in \kappa} \sum_{\beta \in \lambda} a_{\alpha, \beta} \in G$. By the (κ, λ)-distributivity law we get

$$
M \models b=\sum_{\varphi \in \lambda^{\kappa}} \prod_{\alpha \in \kappa} a_{\alpha, \varphi(\alpha)} .
$$

Applying Proposition 4.4 again we obtain $\prod_{\alpha \in \kappa} a_{\alpha, \varphi(\alpha)} \in G$ for some $\varphi \in \lambda^{\kappa}$ in M. Finally, by the definition of $a_{\alpha, \beta}$ we get $M \models f(\alpha)=\varphi(\alpha)$ for every $\alpha \in \kappa$. Hence $f \in M$.
Suppose now that $M \models$ " \mathbb{B} is not (κ, λ)-distributive" and let $\left\{a_{\alpha, \beta}: \alpha<\kappa, \beta<\lambda\right\} \in \mathcal{P}^{M}(\mathbb{B})$ be such that

$$
M \models l:=\prod_{\alpha<\kappa} \sum_{\beta<\lambda} a_{\alpha, \beta}>\sum_{\varphi \in \lambda^{\kappa}} \prod_{\alpha<\kappa} a_{\alpha, \varphi(\alpha)}=: r .
$$

Let G be a \mathbb{B}-generic filter containing $l \cdot \neg r$. In $M[G]$ we can define a function $f: \kappa \rightarrow \lambda$ by letting $f(\alpha)=\min \left\{\beta<\lambda: a_{\alpha, \beta} \in G\right\}$. This is well-defined since $\sum_{\beta<\lambda} a_{\alpha, \beta} \in G$ and $\left\{a_{\alpha, \beta}\right\}_{\beta<\lambda} \in M$. Suppose that $f \in M$. Then $\left\{a_{\alpha, f(\alpha)}: \alpha<\kappa\right\} \in M$ and consequently $\prod_{\alpha<\kappa} a_{\alpha, f(\alpha)} \in G$. On the other hand, this element is below r and $r \notin G$, a contradiction. This completes the proof.

Now we show that some distributivity implies that some cardinals are preserved in generic extensions. First observe that (κ, λ)-distributivity implies $\left(\kappa^{\prime}, \lambda^{\prime}\right)$-distributivity for $\kappa^{\prime} \leqslant \kappa$ and $\lambda^{\prime} \leqslant \lambda$. This fact can be easily seen using Theorem 13.1. Indeed, if $f: \kappa^{\prime} \rightarrow \lambda^{\prime}$ is a "new" function then any function $F: \kappa \rightarrow \lambda$, which extends f, is also "new". Thus, in particular, (κ, λ)-distributivity implies $(\kappa, 2)$-distributivity (provided $\lambda \geqslant 2$).

Theorem 13.2. Let \mathbb{P} be a poset and let κ be an infinite cardinal. If $\mathrm{RO}(\mathbb{P})$ is $(\kappa, 2)$ distributive then for each cardinal $\lambda \leqslant \kappa^{+}, 1_{\mathbb{P}} \Vdash$ " $\widehat{\lambda}$ is a cardinal".

Proof. Let G be a \mathbb{P}-generic filter over a ctm model M of ZFC. Assume first that $\lambda \leqslant \kappa$. Suppose that $f \in M[G]$ is a bijection from δ onto λ, where $\delta<\lambda$. Then $f \subset \delta \times \lambda$ so, using Theorem 13.1, we have $f \in \mathcal{P}^{M[G]}(\delta \times \lambda)=\mathcal{P}^{M}(\delta \times \lambda)$ since $\lambda \times \delta$ has cardinality at most κ in M. Thus $f \in M$ and f is a bijection from δ onto λ in M, because this property is absolute; a contradiction. Thus λ is a cardinal in $M[G]$.
Assume now that $\lambda=\kappa^{+}$and suppose that λ is not a cardinal in $M[G]$. Then $|\lambda|^{M[G]}=\kappa$ and hence in $M[G]$ there is a bijection from κ onto λ. This bijection induces a well-order \prec on κ. Then $\prec \in M$ because $\prec \in \mathcal{P}^{M[G]}(\kappa)=\mathcal{P}^{M}(\kappa)$. Hence (κ, \prec) is isomorphic in M to (δ, \in) for some ordinal δ, which is the order type of \prec. But the fact that two well-ordered sets are isomorphic is absolute, so $\delta=\kappa^{+}$in M. This is a contradiction since $\kappa<\kappa^{+}$.

There is an important property of partial orders which implies some distributive laws for their completions. A partially ordered set \mathbb{P} is κ-closed (κ is an infinite cardinal), if for any $\lambda<\kappa$, for any decreasing sequence $\left\{p_{\alpha}\right\}_{\alpha<\lambda} \subset \mathbb{P}$ there exists $p \in \mathbb{P}$ such that $p \leqslant p_{\alpha}$ holds for every $\alpha<\lambda$. A complete Boolean algebra is (κ, ∞)-distributive if it is (κ, λ)-distributive for every cardinal λ.

Theorem 13.3. Let κ be an infinite cardinal and let \mathbb{P} be a κ-closed poset. Then for each $\lambda<\kappa, \operatorname{RO}(\mathbb{P})$ is (λ, ∞)-distributive.

Proof. Suppose $\operatorname{RO}(\mathbb{P})$ is not (λ, μ)-distributive for some μ. Consider the canonical map $i=$ $i_{\mathbb{P}}: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$. There is $p \in \mathbb{P}$ with $i(p) \leqslant \prod_{\alpha<\lambda} \sum_{\beta<\mu} a_{\alpha, \beta}$ and $i(p) \cdot \sum_{f \in \mu^{\lambda}} \prod_{\alpha<\lambda} a_{\alpha, f(\alpha)}=$ $0_{\mathrm{RO}(\mathbb{P})}$. Construct inductively a decreasing sequence $\left\{p_{\alpha}\right\}_{\alpha<\lambda} \subset \mathbb{P}$ and a sequence $\{g(\alpha)\}_{\alpha<\lambda} \subset$ μ such that $i\left(p_{\alpha}\right) \leqslant a_{\alpha, g(\alpha)}$. On limit ordinals we use the fact that \mathbb{P} is λ-closed. Now, as \mathbb{P} is κ-closed, there is $q \in \mathbb{P}$ with $q \leqslant p_{\alpha}$ for each $\alpha<\lambda$. We have $i(q) \leqslant \prod_{\alpha<\lambda} a_{\alpha, g(\alpha)}$ and $q \leqslant p$, a contradiction.

Combining the two last theorems we see that a κ-closed poset does not collapse cardinals up to κ. Cardinals greater than κ can be collapsed, see Section 15.

14. Continuum Hypothesis

Lemma 14.1. Assume that \mathbb{P} is a partial order in a ctm $M, \kappa \in M$ and in M define $S_{\mathbb{P}}(\kappa)={ }^{\kappa} \mathrm{RO}(\mathbb{P})$. Then

$$
M[G] \models|\mathcal{P}(\kappa)| \leqslant\left|S_{\mathbb{P}}(\kappa)\right|
$$

for every \mathbb{P}-generic filter G over M.
Proof. (a) Let $A=\mathcal{P}^{M}(\widehat{\kappa} \times \mathbb{P})$ and let $i: \mathbb{P} \rightarrow \mathrm{RO}(\mathbb{P})$ be the canonical map. By Lemma 10.1, $\mathcal{P}^{M[G]}(\kappa)=\left\{\operatorname{val}_{G}(x): x \in A\right\}$. Fix $x \in A$. In M define

$$
f_{x}(\alpha)=\sum^{\mathrm{RO}(\mathbb{P})}\{i(p): p \in \mathbb{P} \& p \Vdash \widehat{\alpha} \in x\}
$$

for $\alpha \in \kappa$. Then $f_{x} \in M$ and $f_{x}: \kappa \rightarrow \operatorname{RO}(\mathbb{P})$.
(b) Suppose $x, y \in A$ and $\operatorname{val}_{G}(x) \neq \operatorname{val}_{G}(y)$. If e.g. $\alpha \in \operatorname{val}_{G}(x) \backslash \operatorname{val}_{G}(y)$ then there are $p, q \in G$ such that $p \Vdash \widehat{\alpha} \in x$ and $q \Vdash \widehat{\alpha} \notin y$. Consequently $0_{\mathrm{RO}(\mathbb{P})}<i(p) \cdot i(q) \leqslant f_{x}(\alpha) \cdot \neg f_{y}(\alpha)$. It follows that $f_{x} \neq f_{y}$.
(c) Now for $a \in \mathcal{P}^{M[G]}(\kappa)$ in $M[G]$ define

$$
\theta(a)=\left\{f_{x}: \operatorname{val}_{G}(x)=a \& x \in A\right\} .
$$

Observe that each $\theta(a)$ is a nonempty subset of $S_{\mathbb{P}}(\kappa)$. Applying AC in $M[G]$ we can find a function $\varphi \in M[G]$ such that $\varphi(a) \in \theta(a)$ for $a \in \mathcal{P}^{M[G]}(\kappa)$. By (b) φ is 1-1, which completes the proof.

For an infinite cardinal cardinal κ define $C_{\kappa}=\{p \subset \kappa \times 2: \operatorname{Func}(p) \&|p|<\omega\}$, i.e. C_{κ} is the set of all functions defined on finite subsets of κ with values in $2=\{0,1\}$. This is called the Cohen forcing of size κ. The partial order of C_{κ} is just the reverse inclusion. Observe that C_{κ} is isomorphic to a dense subset of the free Boolean algebra of size κ, hence it is ccc. Moreover $\left|\operatorname{RO}\left(C_{\kappa}\right)\right|=\kappa^{\omega}$. Note that $1_{C_{\kappa}}=\emptyset$.
Lemma 14.2. Let κ be such a cardinal that $\kappa^{\omega}=\kappa$. Then $1_{C_{\kappa}} \Vdash 2^{\widehat{\omega}}=\widehat{\kappa}$.
Proof. Let M be a fixed ctm. Fix a bijection $\varrho: \kappa \times \omega \rightarrow \kappa$. Let G be a C_{κ}-generic filter. Set $g=\bigcup G$. Then g is a function in $M[G]$. For any $\alpha<\kappa$ the set

$$
D_{\alpha}=\left\{p \in C_{\kappa}: \alpha \in \operatorname{dom}(p)\right\}
$$

is dense and in M, so $D_{\alpha} \cap G \neq \emptyset$. It follows that $\operatorname{dom}(g)=\kappa$. Now set

$$
E_{\alpha}=\left\{p \in C_{\kappa}:(\exists n \in \omega) p(\varrho(\alpha, n)) \neq p(\varrho(\alpha, m))\right\} .
$$

Observe that $E_{\alpha} \in M$ is dense. Hence $G \cap E_{\alpha} \neq \emptyset$ so for each $\alpha<\kappa$ there is $n \in \omega$ with $g(\varrho(\alpha, n)) \neq g(\varrho(\alpha, n))$. This means that a $\operatorname{map} \varphi: \kappa \rightarrow \mathcal{P}(\omega)$ defined by

$$
\varphi(\alpha)=\{n \in \omega: g(\varrho(\alpha, n))=1\}
$$

is $1-1$. As C_{κ} is ccc, κ is a cardinal in $M[G]$ (see Corollary 12.3). It follows that $M[G] \models \kappa \leqslant 2^{\omega}$. On the other hand

$$
M \models\left|{ }^{\omega} \operatorname{RO}\left(C_{\kappa}\right)\right|=\kappa^{\omega}=\kappa,
$$

so by Lemma 14.1 we obtain $M[G] \models 2^{\omega}=\kappa$.
Corollary 14.3. $\operatorname{Con}(Z F C) \Longrightarrow \operatorname{Con}(Z F C+\neg C H)$.

15. Collapsing cardinals

Lemma 15.1. Let \mathbb{P} be a κ^{+}-cc poset and assume that $|\mathbb{P}| \leqslant 2^{\kappa}$. If $p \in \mathbb{P}$ and $p \Vdash|\widehat{\kappa}|=\widehat{\omega}$ then $p \Vdash 2^{\widehat{\omega}}=\widehat{2^{\kappa}}$.

Proof. First observe that every element of $\mathrm{RO}(\mathbb{P})$ can be represented as the supremum of an antichain, hence $|\operatorname{RO}(\mathbb{P})| \leqslant\left(2^{\kappa}\right)^{\kappa}=2^{\kappa}$. By Lemma $14.1,1_{\mathbb{P}} \Vdash 2^{\widehat{\omega}} \leqslant \widehat{2^{\kappa}}$.
Fix a \mathbb{P}-generic filter G with $p \in G$, set $\delta=\left(2^{\kappa}\right)^{M}$. In the ground model M, there is a 1-1 map $f: \delta \rightarrow\left(2^{\kappa}\right)^{M} \subset\left(2^{\kappa}\right)^{M[G]}$. In $M[G]$, there is a bijection $g:\left(2^{\kappa}\right)^{M[G]} \rightarrow\left(2^{\omega}\right)^{M[G]}$. Setting $h=g f$, we obtain a 1-1 map from δ into $\left(2^{\omega}\right)^{M[G]}$. This shows that $M[G] \models 2^{\omega} \leqslant \delta$.

As an application, consider $\mathbb{P}=\left(\kappa^{<\omega}, \supset, \emptyset\right)$. Let G be a \mathbb{P}-generic filter over M and set $g=\bigcup G$. Observe that g is a function with $\operatorname{dom}(g)=\omega$. For $\alpha<\kappa$ define

$$
D_{\alpha}=\left\{\sigma \in \kappa^{<\omega}: \alpha \in \operatorname{rng}(\sigma)\right\}
$$

It is obvious that D_{α} is dense, hence $D_{\alpha} \cap G \neq \emptyset$ which means $\alpha \in \operatorname{rng}(g)$. Thus $\operatorname{rng}(g)=\kappa$. It follows that $1_{\mathbb{P}} \Vdash|\widehat{\kappa}|=\widehat{\omega}$. By Lemma 15.1, $M[G]\left|=2^{\omega}=\left|\left(2^{\kappa}\right)^{M}\right|\right.$. Note that if $M \models G C H$ then $M[G] \vDash G C H+V \neq L$.
Now consider the poset $\mathbb{P}=\left(\kappa^{<\omega_{1}}, \supset\right)$. Observe that \mathbb{P} is ω_{1}-closed. As above, we can easily show that if G is a \mathbb{P}-generic filter over M then $\bigcup G$ is a function from ω_{1} onto κ. On the other hand, by Theorems 13.1 and $13.3, \mathcal{P}^{M[G]}(\omega)=\mathcal{P}^{M}(\omega)$. If for instance $\kappa=\left(2^{\omega}\right)^{M}$ then $M[G] \models 2^{\omega}=\omega_{1}$. It follows that $\operatorname{Con}(Z F C) \Longrightarrow \operatorname{Con}(Z F C+C H)$.

16. Weak distributivity

A complete Boolean algebra \mathbb{B} is weakly (κ, λ)-distributive provided

$$
\prod_{\alpha<\kappa} \sum_{\beta<\lambda} a_{\alpha, \beta}=\sum_{f \in \lambda^{\kappa}} \prod_{\alpha<\kappa} \sum_{\beta<f(\alpha)} a_{\alpha, \beta}
$$

holds for each indexed collection $\left\{a_{\alpha, \beta}: \alpha<\kappa, \beta<\lambda\right\} \subset \mathbb{B}$. Observe that the inequality \geqslant always holds.

Theorem 16.1. A complete Boolean algebra \mathbb{B} is weakly (κ, λ)-distributive iff

$$
\left\|\forall f \in \widehat{\lambda}^{\widehat{\kappa}} \exists g \in \widehat{\lambda^{\kappa}} \forall \alpha \in \widehat{\kappa}(f(\alpha)<g(\alpha))\right\|_{\mathbb{B}}=1_{\mathbb{B}} .
$$

Proof. Let M be a ctm of ZFC and let $M \models$ " \mathbb{B} is weakly (κ, λ)-distributive". Fix a \mathbb{B}-generic filter G over M and $f \in\left(\lambda^{\kappa}\right)^{M[G]}$. Set $a_{\alpha, \beta}=\|\bar{f}(\widehat{\alpha})=\widehat{\beta}\|_{\mathbb{B}}$ for $\alpha<\kappa, \beta<\lambda$, where \bar{f} is a name for f. Observe that $\sum_{\beta<\lambda} a_{\alpha, \beta} \in G$ since $a_{\alpha, \beta} \in G$ for $\beta=f(\alpha)$. By Proposition 4.4, $\prod_{\alpha<\kappa} \sum_{\beta<\lambda} a_{\alpha, \beta} \in G$. Using weak (κ, λ)-distributivity of \mathbb{B} in M we get

$$
\sum_{g \in\left(\lambda^{\kappa}\right)^{M}} \prod_{\alpha<\kappa} \sum_{\beta<g(\alpha)} a_{\alpha, \beta} \in G
$$

Thus there exists $g \in\left(\lambda^{\kappa}\right)^{M}$ such that $a_{\alpha, \beta} \in G$ for $\alpha<\kappa$ and $\beta<g(\alpha)$. It follows that $M[G] \models(\forall \alpha<\kappa) f(\alpha)<g(\alpha)$.
Conversely, suppose that $M \models$ " \mathbb{B} is not weakly (κ, λ)-distributive" and let $\left\{a_{\alpha, \beta}: \alpha<\kappa, \beta<\right.$ $\lambda\} \in \mathcal{P}^{M}(\mathbb{B})$ be such that

$$
l:=\prod_{\alpha<\kappa} \sum_{\beta<\lambda} a_{\alpha, \beta}>\sum_{g \in\left(\lambda^{\kappa}\right)^{M}} \prod_{\alpha<\kappa} \sum_{\beta<g(\alpha)} a_{\alpha, \beta}=: r .
$$

Let G be a \mathbb{B}-generic filter over M with $l \cdot \neg r \in G$. Define

$$
f(\alpha)=\min \left\{\beta<\lambda: a_{\alpha, \beta} \in G\right\} .
$$

Then $f \in\left(\lambda^{\kappa}\right)^{M[G]}$. Suppose $g \in\left(\lambda^{\kappa}\right)^{M}$ is such that $f(\alpha)<g(\alpha)$ for every $\alpha<\kappa$. Then $r \geqslant \prod_{\alpha<\kappa} \sum_{\beta<g(\alpha)} a_{\alpha, \beta} \in G$, a contradiction. This completes the proof.

17. Maximal almost Disjoint families

A collection $\mathcal{A} \subset \mathcal{P}(\kappa)(\kappa$ an infinite cardinal) is called almost disjoint (briefly: a.d.) on κ, if \mathcal{A} consists of sets of cardinality κ and $|a \cap b|<\kappa$ whenever $a, b \in \mathcal{A}$ are distinct. A family $\mathcal{A} \subset \mathcal{P}(\kappa)$ is maximal almost disjoint (briefly: a m.a.d. family) if it is a maximal with respect to inclusion a.d. family on κ. It is easy and well-known that there is an a.d. family of size 2^{ω} on ω. More generally, if $2^{<\kappa}=\kappa$ then there is an a.d. family on κ of size 2^{κ}. Indeed, if we identify κ with $2^{<\kappa}$ then setting $a_{f}=\left\{\sigma \in 2^{<\kappa}: \sigma \subset f\right\}$, where $f: \kappa \rightarrow 2$, we get an a.d. family $\left\{a_{f}\right\}_{f \in\{0,1\}^{\kappa}}$ on κ of size 2^{κ}. Thus, if CH is true then there is an a.d. family on ω_{1} of size $2^{\omega_{1}}$. On the other hand, it is well-known that every m.a.d. family on κ has size $>\kappa$ provided κ is regular. Indeed, if $\left\{a_{\alpha}\right\}_{\alpha<\kappa}$ is an a.d. family on a regular cardinal κ then picking $x_{\alpha} \in a_{\alpha} \backslash \bigcup_{\xi<\alpha} a_{\xi}$ we obtain a set $b=\left\{x_{\alpha}: \alpha<\kappa\right\}$ which has cardinality κ and which is almost disjoint from each a_{α}.
We show that the sentence "there exists an a.d. family on ω_{1} of size $2^{\omega_{1}}$ " is independent of $\mathrm{ZFC}+2^{\omega}=2^{\omega_{1}}=\omega_{3}$.

Theorem 17.1 (Baumgartner). If $\operatorname{Con}(Z F C)$ then $\operatorname{Con}\left(Z F C+\right.$ "every a.d. family on ω_{1} has size $<2^{\omega_{1}} "$.

Proof. Let M be a ctm of $\mathrm{ZFC}+\mathrm{GCH}$ and let \mathbb{P} be the Cohen forcing of size ω_{3}. Let G be a \mathbb{P}-generic filter over M. Then \mathbb{P} preserves cardinals since it is ccc and $M[G] \models 2_{1}^{\omega} \geqslant \omega_{3}$. Suppose that $\mathcal{A} \subset \mathcal{P}^{M[G]}\left(\omega_{1}\right)$ is an a.d. family in $M[G]$ of size ω_{3}. Let \mathcal{A}^{\prime} be a name for \mathcal{A}. Choose $\tau \in M$ and $q \in G$ such that $q \Vdash$ " $\tau: \widehat{\omega_{3}} \rightarrow \mathcal{A}^{\prime}$ is a bijection and \mathcal{A}^{\prime} is an a.d. family on $\widehat{\omega_{3}}$ ". Fix $\{\alpha, \beta\} \in\left[\omega_{3}\right]^{2}$. Set $T=\left\{\gamma<\omega_{1}: i_{\mathbb{P}}(q) \cdot\|\sup (\tau(\widehat{\alpha}) \cap \tau(\widehat{\beta}))=\widehat{\gamma}\|>0\right\}$. For each $\gamma \in T$ choose $p_{\gamma} \leqslant q$ with $p_{\gamma} \Vdash \sup (\tau(\widehat{\alpha}) \cap \tau(\widehat{\beta}))=\widehat{\gamma}$. Then $\left\{p_{\gamma}\right\}_{\gamma \in T}$ forms an antichain in \mathbb{P}. Thus $|T| \leqslant \omega$. Let $\varphi(\{\alpha, \beta\})=\sup T$. Thus we have defined in M a map $\varphi:\left[\omega_{3}\right]^{2} \rightarrow \omega_{1}$. Let $f=\operatorname{val}_{G}(\tau)$. Observe that

$$
M[G] \models f(\alpha) \cap f(\beta) \subset \varphi(\{\alpha, \beta\})
$$

for $\{\alpha, \beta\} \in\left[\omega_{3}\right]^{2}$. As $M \models \omega_{3}=\left(2^{\omega_{1}}\right)^{+}$, we can apply the theorem of Erdös-Rado in M to obtain a set $K \in\left[\omega_{3}\right]^{\omega_{2}}$ and $\xi<\omega_{1}$ such that $\varphi(\{\alpha, \beta\})=\xi$ for all $\{\alpha, \beta\} \in[K]^{2}$. Then $\mathcal{B}=\{f(\alpha)\}_{\alpha \in K}$ is an a.d. family on ω_{1} in $M[G]$ of size ω_{2}. Furthermore the intersection of each two distinct elements of \mathcal{B} is contained in ξ. Define

$$
g(\alpha)=f(\alpha) \backslash \bigcup_{\eta \in \alpha \cap K}(f(\alpha) \cap f(\eta))
$$

for $\alpha \in K$. We get a disjoint collection of nonempty subsets of ω_{1} of size ω_{2}, a contradiction.

18. Kurepa trees

Recall that a Kurepa tree is a tree T with height ω_{1}, such that each level of T is countable and there are at least ω_{2} paths through T. Here a path through T is a linearly ordered subset of T which intersects each nonempty level of T, a maximal linearly ordered subset of T is called a branch. We denote by $\operatorname{Lev}_{\alpha}(T)$ the α-th level of T, i.e. the set of all elements $x \in T$ such that the order type of $\{y \in T: y<x\}$ is α. The height of T is denoted by $\operatorname{ht}(T)$, this is the minimum of ordinals $\alpha \geqslant 0$ such that $\operatorname{Lev}_{\alpha}(T)=\emptyset$. For $x \in T$ we denote by $\operatorname{ht}_{T}(x)$ the unique ordinal α such that $x \in \operatorname{Lev}_{\alpha}(T)$. A Kurepa tree is a tree T of height ω_{1}, with countable levels and with at least ω_{2} paths.

We define two posets, the second one "adds a Kurepa tree" that is, assuming CH, in a generic extension there exists a Kurepa tree. However, there is no proof of Con $(Z F) \Longrightarrow$ Con $\left(Z F C+\right.$ "there are no Kurepa trees") since the last sentence implies that ω_{2} is inaccessible in L (see Kunen [1, Exercise (B9) on page 240]).
A natural example of a tree is $T=\lambda^{<\kappa}$ with inclusion of maps. If $\lambda=2$ then it is called the complete binary tree of height κ. By a subtree of a tree T we mean a subset $P \subset T$ with the property $x \in P \& y<x \Longrightarrow y \in P$.
Fix an uncountable cardinal κ. The Jech κ-poset \mathbb{J}_{κ} is the set of all subtrees p of $2^{<\kappa}$ such that there exists $\alpha<\kappa$ with the following properties

$$
\operatorname{ht}(p)=\alpha+1 \& \forall \xi<\alpha\left(\forall s \in \operatorname{Lev}_{\xi}(p)\left(s^{\frown}(0), s^{\frown}(1) \in p\right) \&\left|\operatorname{Lev}_{\xi}(p)\right|<\kappa\right)
$$

and

$$
\forall s \in p \exists t \in \operatorname{Lev}_{\alpha}(p)(s \subset t)
$$

For $p, q \in \mathbb{J}_{\kappa}$ define $p \leqslant q$ iff $q=\left\{s \in p: \operatorname{ht}_{p}(s)<\operatorname{ht}(q)\right\}$. Observe that if κ is regular then $|p|<\kappa$ for each $p \in \mathbb{J}_{\kappa}$.
Next we define the Jensen \diamond^{+}poset as

$$
\mathbb{J}^{+}=\left\{(p, \mathcal{S}): p \in \mathbb{J}_{\omega_{1}} \& \mathcal{S} \in\left[2^{\omega_{1}}\right] \leqslant \omega \quad \&(\forall f \in \mathcal{S}) f \mid(\operatorname{ht}(p)-1) \in p\right\}
$$

For $(p, \mathcal{S}),\left(p^{\prime} \mathcal{S}^{\prime}\right) \in \mathbb{J}^{+}$define $(p, \mathcal{S}) \leqslant\left(p^{\prime}, \mathcal{S}^{\prime}\right)$ iff $p \leqslant p^{\prime}$ and $\mathcal{S}^{\prime} \subset \mathcal{S}$.
We show that in a \mathbb{J}^{+}-generic extension there exists a Kurepa tree, provided that in the ground model CH holds.

Proposition 18.1. For each cardinal κ of uncountable cofinality, \mathbb{J}_{κ} is ω_{1}-closed.
Proof. Let $\left\{p_{n}\right\}_{n \in \omega}$ be a strictly decreasing chain in \mathbb{J}_{κ}, let $\alpha_{n}+1=\operatorname{ht}\left(p_{n}\right), \beta=\sup _{n \in \omega} \alpha_{n}$ and $q=\bigcup_{n \in \omega} p_{n}$. Then q is a subtree of $2^{<\kappa}$ of height β with all levels of size $<\kappa$. Observe that for every $s \in q$ there is $f_{s}: \beta \rightarrow 2$ such that $\{f \mid \xi: \xi<\beta\}$ is a path in q which contains s. Such a function f_{s} can be constructed by simple induction, using the fact that all p_{n} 's have successor height. Set $d=\bigcup_{n \in \omega} \operatorname{Lev}_{\alpha_{n}}(q)$. Observe that $|d|<\kappa$ since $\operatorname{cf}(\kappa)>\omega$. Define $q^{\prime}=q \cup\left\{f_{s}: s \in d\right\}$. Then $q^{\prime} \in \mathbb{J}_{\kappa}$ and $p_{n} \geqslant q^{\prime}$ for every $n \in \omega$.

Proposition 18.2. \mathbb{J}^{+}is ω_{1}-closed.
Proof. Fix a decreasing chain $\left\{\left(p_{n}, \mathcal{S}_{n}\right)\right\}_{n \in \omega}$ in \mathbb{J}^{+}. Set $\mathcal{S}=\bigcup_{n \in \omega} \mathcal{S}_{n}$ and let $\alpha_{n}+1=\operatorname{ht}\left(p_{n}\right)$, $\beta=\sup _{n \in \omega} \alpha_{n}$. By Proposition 18.1 there is $q \in \mathbb{J}_{\omega_{1}}$ such that $p_{n} \geqslant q_{0}$ for $n \in \omega$. We may assume that $\operatorname{ht}(q)=\beta+1$. Observe that for $f \in \mathcal{S}$ and $n \in \omega$ we have $f \mid \alpha_{n} \in p_{n} \subset q$. Thus if we define

$$
q^{\prime}=q \cup\{f \mid \beta: f \in \mathcal{S}\}
$$

then $\left(q^{\prime}, \mathcal{S}\right) \in \mathbb{J}^{+}$and $\left(p_{n}, \mathcal{S}_{n}\right) \geqslant\left(q^{\prime}, \mathcal{S}\right)$ for every $n \in \omega$.
Proposition 18.3. For each $\alpha<\omega_{1}$ the set $D_{\alpha}=\left\{(p, \mathcal{S}) \in \mathbb{J}^{+}: \operatorname{ht}(p)>\alpha\right\}$ is dense in \mathbb{J}^{+}.
Proof. Fix $(p, \mathcal{S}) \in \mathbb{J}^{+}$and let $\operatorname{ht}(p)=\beta+1$. Using Proposition 18.2, we can define inductively a sequence $\left\{p_{\xi}\right\}_{\xi \leqslant \alpha}$ such that $\left(p_{\xi}, \mathcal{S}\right) \in \mathbb{J}^{+}, \operatorname{ht}\left(p_{\xi}\right) \geqslant \xi+1$ and $p_{\xi} \leqslant p$ for $\xi \leqslant \alpha$. Then $\left(p_{\alpha}, \mathcal{S}\right) \leqslant(p, \mathcal{S})$ and $\left(p_{\alpha}, \mathcal{S}\right) \in D_{\alpha}$.

Proposition 18.4. If $C H$ holds, then \mathbb{J}^{+}is $\omega_{2}-c c$.

Proof. First note that if $(p, \mathcal{S}),\left(p^{\prime}, \mathcal{S}^{\prime}\right) \in \mathbb{J}^{+}$are incompatible then $p \neq p^{\prime}$. Now observe that $\mathbb{J}_{\omega_{1}} \subset\left[2^{<\omega_{1}}\right] \leqslant \omega$ and, under CH, the last set has cardinality ω_{1}. Thus $\left|\mathbb{J}_{\omega_{1}}\right|=\omega_{1}$ and hence there are no antichains in \mathbb{J}^{+}of size $>\omega_{1}$.
Theorem 18.5. Let $M \models Z F C+C H$ and let G be a \mathbb{J}^{+}-generic filter over M, set $T=$ $\bigcup\{p:(\exists \mathcal{S})(p, \mathcal{S}) \in G\}$. Then $M[G] \models$ " T is a Kurepa tree".

Proof. By Proposition 18.2 and 18.4, \mathbb{J}^{+}adds no new subsets of ω and \mathbb{J}^{+}preserves cardinals, so $\omega_{1}^{M[G]}=\omega_{1}^{M}\left(2^{\omega}\right)^{M[G]}=\left(2^{\omega}\right)^{M}=\omega_{1}$ and T is a subtree of $2^{<\omega_{1}}$ with countable levels. By Proposition 18.3, $\operatorname{ht}(T)=\omega_{1}$. It remains to check that there are at least ω_{2} paths through T. Define

$$
\mathcal{B}=\bigcup\{\mathcal{S}:(\exists p)(p, \mathcal{S}) \in G\} .
$$

Fix $f \in \mathcal{B}$. If $\alpha<\omega_{1}$ then there is p of height $\geqslant \alpha+1$ such that $(p, \mathcal{S}) \in G$ for some \mathcal{S}. Thus $f \mid \alpha \in p \subset T$. It follows that each $f \in \mathcal{B}$ determines a path through T. Now it suffices to show that $|\mathcal{B}| \geqslant \omega_{2}$.
In $M[G]$ define an equivalence relation \sim on $2^{\omega_{1}}$ as $f \sim g$ iff there is $\alpha<\omega_{1}$ with $f \mid\left(\omega_{1} \backslash \alpha\right)=$ $g \mid\left(\omega_{1} \backslash \alpha\right)$. For $f \in\left(2^{\omega_{1}}\right)^{M}$ define in M,

$$
E_{f}=\left\{(p, \mathcal{S}) \in \mathbb{J}^{+}:\left(\exists \alpha<\omega_{1}\right)(\exists g \in \mathcal{S}) f \sim g\right\} .
$$

Note that \sim is absolute for M and $M[G]$. Observe that E_{f} is dense in \mathbb{J}^{+}. Indeed, if $(p, \mathcal{S}) \in \mathbb{J}^{+}$, $h \in \mathcal{S}$ and $\alpha+1=\operatorname{ht}(p)$ then $(p, \mathcal{S}) \geqslant\left(p, \mathcal{S} \cup\left\{f^{\prime}\right\}\right) \in E_{f}$ where $f^{\prime}(\xi)=f(\xi)$ for $\xi>\alpha$ and $f^{\prime}(\xi)=h(\xi)$ for $\xi \leqslant \alpha$. Thus $G \cap E_{f} \neq \emptyset$ which means that

$$
\begin{equation*}
M[G] \models\left(\forall f \in\left(2^{\omega_{1}}\right)^{M}\right)(\exists g \in \mathcal{B}) f \sim g . \tag{*}
\end{equation*}
$$

Now observe that each equivalence class under \sim has cardinality $\left|2^{<\omega_{1}}\right|=2^{\omega}=\omega_{1}$ in $M[G]$. Let $\pi: 2_{1}^{\omega} \rightarrow 2_{1}^{\omega} / \sim$ be tha canonical surjection. By $\left({ }^{*}\right), \pi\left[\left(2^{\omega_{1}}\right)^{M}\right] \subset \pi[\mathcal{B}]$. Furthermore, in $M[G]$ we have $\left|\pi\left[\left(2^{\omega_{1}}\right)^{M}\right]\right|=\left|\left(2^{\omega_{1}}\right)^{M}\right| \geqslant \omega_{2}$. Thus $|\pi[\mathcal{B}]| \geqslant \omega_{2}$ and also \mathcal{B} has size at least ω_{2}. This completes the proof.

19. More about Cohen forcing

Recall that by C_{κ} we denote the Cohen forcing of size κ, in particular C_{ω} can be regarded as any non-atomic countable partial order.
Theorem 19.1. $1_{C_{\omega}} \Vdash\left(\forall f \in \widehat{\omega}^{\widehat{\omega}}\right)\left(\exists g \in \widehat{\omega^{\omega}}\right)(\forall n \in \widehat{\omega})(\exists k>n) f(k)=g(k)$.
Proof. Fix a C_{ω}-generic filter G over M and fix $f \in\left(\omega^{\omega}\right)^{M[G]}$. Suppose that $p \in C_{\omega}$ is such that $p \Vdash \bar{f} \in \widehat{\omega}^{\widehat{\omega}}$ and $p \Vdash(\forall g \in \widehat{\omega \omega})(\exists n \in \widehat{\omega})(\forall k>n) \bar{f}(k) \neq g(k)$, where \bar{f} is a name for f. Let $\left\{q \in C_{\omega}: q \leqslant p\right\}=\left\{p_{n}\right\}_{n \in \omega}$, where $p_{0}=p$.
Now, in M define inductively $q_{n} \leqslant p_{n}$ and $m_{n} \in \omega$ such that $q_{n} \Vdash \bar{f}(\widehat{n})=\widehat{m_{n}}$. Let $g=$ $\left\{\left(n, m_{n}\right): n \in \omega\right\}$. Let $N \in \omega$ be such that $p_{N} \Vdash(\forall k \geqslant \widehat{N}) \bar{f}(k) \neq \widehat{g}(k)$. Then, also q_{N} forces the same formula, but on the other hand, $q_{N} \Vdash \bar{f}(\widehat{N})=\widehat{g}(\widehat{N})$, a contradiction.

Now, let us assume that C_{ω} consists of all finite functions s with $\operatorname{dom}(s) \subset \omega$ and $\operatorname{rng}(s) \subset 2$. Let $M \subset N$ be two transitive models of ZFC. We say that $x \in\left(2^{\omega}\right)^{N}$ is a Cohen real over M if for every dense set $D \subset C_{\omega}$ such that $D \in M$, there exists $d \in D$ with $d \subset x$. In other words, x is a Cohen real over M iff the set $G=\left\{p \in C_{\omega}: p \subset x\right\}$ is a C_{ω}-generic flter over M.

Observe that the sentence " p forces that r is a Cohen real" is a sentence of the language of ZF, because it can be written formally as:

$$
p \Vdash(\forall D \in \widehat{P}) D \text { is dense in } \widehat{C} \Longrightarrow(\exists d \in D) d \subset r
$$

where $C=C_{\omega}$ and $P=\mathcal{P}(C)$.
Theorem 19.2. Let \mathbb{P} be a poset such that $1_{\mathbb{P}} \Vdash$ "there exists a Cohen real". Then there exists a complete embedding of C_{ω} in $\mathrm{RO}(\mathbb{P})$ and consequently $\mathrm{RO}\left(C_{\omega}\right)$ is a complete subalgebra of $\mathrm{RO}(\mathbb{P})$.

Proof. By the Maximal Principle, there exists r such that $1_{\mathbb{P}} \Vdash$ " r is a Cohen real". Let

$$
F=\left\{n \in \omega:(\exists k<2) 1_{\mathbb{P}} \Vdash r(\widehat{n})=\widehat{k}\right\} .
$$

We claim that F is finite. Indeed, otherwise defining $f: F \rightarrow 2$ so that $1_{\mathbb{P}} \Vdash r(\widehat{n})=\widehat{f(n)}$ and setting

$$
D=\left\{s \in C_{\omega}:(\exists n \in F) s(n)=1-f(n)\right\}
$$

we define a dense subset of C_{ω} and $1_{\mathbb{P}} \Vdash \widehat{s} \subset r$ for any $s \in D$, which is a contradiction. Thus F is finite, so without loss of generality assume that $F=\emptyset$ (consider $\omega \backslash F$ instead of ω).
Define $f: C_{\omega} \rightarrow \mathrm{RO}(\mathbb{P})$ by setting

$$
f(s)=\|\widehat{s} \subset r\|_{\mathbb{P}}=\sum^{\mathrm{RO}(\mathbb{P})}\{p \in \mathbb{P}: p \Vdash \widehat{s} \subset r\} .
$$

We will check that f is a complete embedding of posets. Then, by Corollary $5.2, f$ extends to a complete monomorphism of $\mathrm{RO}\left(C_{\omega}\right)$ into $\mathrm{RO}(\mathbb{P})$.
Clearly, f is order preserving and \perp-preserving. Let $A \subset C_{\omega}$ be a maximal antichain. We need to show that $f[A]$ is a maximal antichain in $\operatorname{RO}(\mathbb{P})$. Fix $p_{0} \in \mathbb{P}$. By the fact that r is a name for a C_{ω}-generic real, we have

$$
1_{\mathbb{P}} \Vdash(\exists s \in \widehat{A}) s \subset r .
$$

Hence, by Theorem 9.4, there exists $p \leqslant p_{0}$ and $s \in A$ such that $p \Vdash \widehat{s} \subset r$. Hence $p \leqslant f(s)$. It follows that every element of \mathbb{P} is compatible with some element of $f[A]$, so $f[A]$ is a maximal antichain in $\mathrm{RO}(\mathbb{P})$.

The converse to the above theorem also holds, by Proposition 5.1(b).

References

[1] K. Kunen, Set theory. An introduction to independence proofs. Studies in Logic and the Foundations of Mathematics, 102. North-Holland Publishing Co., Amsterdam-New York, 1980.

Instytut Matematyki, Uniwersytet Ślaski, Katowice (POLAND)
E-mail address: kubis@ux2.math.us.edu.pl

