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Abstract

We present category-theoretic framework for universal homogeneous struc-
tures, with selected applications.

Most of the material had been presented as a series of lectures for graduate
students at Department of Mathematics, University of Silesia in Katowice,
Poland (21 – 23 November 2012).

Introduction

When studying a given class of structures, it is an interesting and important issue
to find a “special” object that is universal for the class, namely, every other object
“embeds” into this special one. A better property of this special object would be
some sort of homogeneity, namely, that every isomorphism between two “small”
substructures extends to an automorphism of the special object (as we shall see later,
the exact meaning of “small” will depend on the class under consideration). Probably
one of the earliest results in this spirit was Cantor’s theorem on the uniqueness of
the set of rational numbers among all countable linear orders. More precisely, Q
is the only (up to isomorphism) countable linear order which contains all other
countable linear orders and every isomorphism between two finite subsets extends
to an automorphism of Q. A typical statement of Cantor’s theorem is different: the
extension property is equivalent to saying that Q is order dense and has no end-
points. The argument used in the proof is now called the “back-and-forth” method:
an automorphism extending a given finite isomorphism is constructed inductively,
interchanging the domain and the co-domain at each step.

1



It was Urysohn who found an analogue of Cantor’s back-and-forth argument for
metric spaces. Namely, he found a complete separable metric space U which has
very similar properties to the rationals, now considering isometries between finite
subsets. Urysohn’s work [45] was actually forgotten for many years; it received some
significant attention in the end of the 20th century due to problems in topological
dynamics; perhaps the most representative work is [24].

One of the most important works on this subject, independent of Urysohn, was
done by Roland Fräıssé [11] in 1954. This is a model-theoretic approach to Cantor’s
back-and-forth argument, which can be partially applied also to the case of Urysohn’s
metric space. Roughly speaking, Fräıssé considers a class K of finite (or, at least,
finitely generated) models of some first order language. The class should have the
amalgamation property, that is, each two embeddings of the same model Z ∈ K can
be extended to a further embedding into a bigger model in K. In other words, given
two embeddings f : Z → X, g : Z → Y , there should exist a model W ∈ K and
embeddings f ′ : X → W and g′ : Y → W satisfying f ′ ◦f = g′ ◦g. If such a class has
only countably many isomorphic types and each two models embed into a common
one (the joint embedding property), then there exists a countable model U that can
be represented as the union of a chain of models from the class K, contains isomorphic
copies of all models in K and has the following strong homogeneity property: every
isomorphism between submodels of U which are in K extends to an automorphism
of U. Furthermore, the model U is unique up to isomorphism. It is often called the
Fräıssé limit of the class K.

This line of investigation was further continued by Jónsson [19] and Morley
& Vaught [35] (see also Yasuhara [46]), where uncountable classes of models were
studied. Besides the amalgamation property, typical cardinal-arithmetic assumption
κ = 2<κ is needed for the existence of the universal homogeneous structure of
cardinality κ. One has to mention a curious independent work of Trnková [44] with
metamathematical results on universal categories, in the setting of Bernays-Gödel
set theory. One of the main tools is the amalgamation property for certain classes
of categories, treated just as first-order structures.

All the authors cited above assume that the class of structures is closed under
unions of chains of length less than the size of the universal homogeneous structure
(in the last case, the union of any chain of small categories is a category). One
of the objectives of this work is to relax this assumption and to make the theory
general enough for capturing new cases and obtaining new examples of universal
homogeneous objects.

We believe that category theory is the proper language for Fräıssé-Jónsson lim-
its. In fact, this has already been confirmed by the works of Droste & Göbel [9, 10],
where the authors consider some categories of first-order structures with special
types of embeddings, obtaining new applications in algebra and theoretical com-
puter science. In this context, one has to mention a recent work of Pech & Pech [39]
where the authors, based on the results of Droste & Göbel, develop the theory of
Fräıssé limits in comma categories, leading to universal homomorphisms and uni-
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versal retractions. Finally, Irwin & Solecki [16] presented a version of Fräıssé theory
with reversed arrows, i.e., epimorphisms of finite structures instead of embeddings.
By this way, they obtained an interesting new characterization of the pseudo-arc, a
certain connected compact metric space, never associated to Fräıssé limits before.

There is no doubt that universal structures with strong homogeneity properties
can be discovered or identified in various areas of pure mathematics, theoretical
computer science and even mathematical physics (see [7]). Model-theoretic Fräıssé
limits are nowadays important objects of study in combinatorics, permutation group
theory and topological dynamics, see Macpherson’s survey [33] for more informa-
tion and further references. Category theory brings much more freedom for dealing
with Fräıssé limits, offering the possibility of constructing new objects from old and
eliminating superfluous assumptions. It has been demonstrated in [9, 10, 39] that
category-theoretic approach brings new important examples of universal homoge-
neous objects and the work [16] shows that one of the simplest constructions in
category theory, namely, passing to the opposite category, leads to new and some-
what surprising examples. Actually, one of the author’s construction of a universal
pre-image for a certain class of compact linearly ordered spaces [26] turns out to be
the Fräıssé limit of a category whose arrows are increasing quotient maps. Summa-
rizing, category-theoretic approach allows constructing new universal homogeneous
objects as well as identifying existing objects, discovering their homogeneity prop-
erties.

Here a notational issue has to be pointed out. Namely, in category theory the
notion of a “universal object” is totally different from the notion of a “universal
structure” in model theory and related areas. In order to avoid this confusion, we
shall replace the adjective “universal” by “cofinal” in the latter case. Namely, an
object U is defined to be cofinal for a class K if every object from K embeds into U ,
where “embedding” will be just an arrow of a category under consideration.

hhhaaaggg

The purpose of this note is to present category-theoretic framework for universal
homogeneous structures. We shall explain the Fräıssé theory using the language of
category theory, emphasizing on new applications in topology and functional analy-
sis. Part of the material is devoted to continuous Fräıssé limits, that is, objects like
the universal homogeneous metric space of Urysohn. As it happens, these structures
can be easily described and studied using the language of categories enriched over
metric spaces.

The key point of our approach is dealing with sequences instead of (co-)limits,
where a sequence is nothing but a functor from an ordinal into a fixed category.
We shall concentrate on countable sequences, i.e., functors from the set of natural
numbers. The crucial notion is that of a Fräıssé sequence, a sequence which is sup-
posed to “converge” to a universal (cofinal, in our terminology) and homogeneous
object in a bigger category, where homogeneity is meant with respect to the original
category. In other words, we deal with the base category of “small” objects and we
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use sequences for encoding the category of “large” objects. This approach is similar
in spirit to the idea of forcing in set theory, where one deals with approximations of
a generic object, working in the base model instead of its forcing extension.
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1 Preliminaries

t We recall relevant basic notions from category theory. (1 hour)

We start with the definition of a category. Namely, a category is a structure of
the form K = 〈V,A, dom, cod, ◦〉, where V is the class of objects, A is the class of
arrows, dom: A → V and cod: A → V are the domain and codomain functions,
and ◦ is a partial binary operation on arrows, such that the following conditions are
satisfied:

(1) f ◦ g is defined iff cod(g) = dom(f) and ◦ is associative, that is, (f ◦ g) ◦ h =
f ◦ (g ◦ h) whenever cod(h) = dom(g) and cod(g) = dom(f).

(2) For each object a ∈ V there is an arrow ida with dom(ida) = a = cod(ida) and
ida ◦g = g, f ◦ ida = f holds for every f, g ∈ A such that dom(f) = a = cod(g).
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(3) For every objects a, b ∈ V the class

K(a, b) := {f ∈ A : dom(f) = a and cod(f) = b}

is a set.

We omit the metamathematical discussion of classes, since it is not relevant for our
subject. We shall actually consider mainly categories whose class of objects has a
countable set of “representatives”.

Categories will usually be denoted by letters K, L, M, etc. The class of objects
of K will be denoted by Ob(K) and the class of arrows of K will be denoted by
the same letter K. All functors considered here are assumed to be covariant, unless
otherwise specified. Let K be a category. We shall write “a ∈ K” for “a is an object
of K”. Given a, b ∈ K, we shall denote by K(a, b) the set of all K-morphisms from
a to b. A subcategory of K is a category L such that each object of L is an object
of K and each arrow of L is an arrow of K (with the same domain and co-domain).
We write L ⊆ K. Recall that a subcategory L of K is full if L(a, b) = K(a, b) for
every objects a, b ∈ L. We say that L is cofinal in K if for every object x ∈ K there
exists an object y ∈ L such that K(x, y) 6= ∅. The opposite category to K will be
denoted by Kop. That is, the objects of Kop are the objects of K and all arrows are
reversed, i.e. Kop(a, b) = K(b, a) for every a, b ∈ K. Recall that a category K is ordered
if |K(x, y)| 6 1 and K(x, y) 6= ∅ 6= K(y, x) implies x = y for every K-objects x, y.
Removing the last condition we get the notion of a quasi-ordered category. Every
(not necessarily ordered) category induces a partial order 6 on the objects of K
defined by the formula K(x, y) 6= ∅ iff x 6 y. Every partially ordered set 〈P,6〉 can
be viewed as an ordered category KP with P the class of objects and the class of
arrows defined by KP (x, y) = {〈x, y〉} whenever x 6 y and KP (x, y) = ∅ otherwise.
In particular, ordinals treated as well ordered sets are important examples of ordered
categories.

Let K be a category. We say that K has the amalgamation property if for every
a, b, c ∈ K and for every morphisms f ∈ K(a, b), g ∈ K(a, c) there exist d ∈ K and
morphisms f ′ ∈ K(b, d) and g′ ∈ K(c, d) such that f ′ ◦ f = g′ ◦ g. If, additionally, for
every arrows f ′′, g′′ such that f ′′ ◦ f = g′′ ◦ g there exists a unique arrow h satisfying
h ◦ f ′ = f ′′ and h ◦ g′ = g′′ then the pair 〈f ′, g′〉 is a pushout of 〈f, g〉. Reversing
the arrows, we define the reversed amalgamation and the pullback. We say that K is
directed if for every a, b ∈ K there exists g ∈ K such that both sets K(a, g), K(b, g)
are nonempty. In model theory, where the arrows are embeddings, this is usually
called the joint embedding property.

Fix a category K and fix an ordinal δ > 0. An inductive δ-sequence in K is
formally a covariant functor from δ (treated as a poset category) into K. In other
words, it could be described as a pair of the form 〈{aξ}ξ<δ, {aηξ}ξ<η<δ〉, where δ is
an ordinal, {aξ : ξ < δ} ⊆ K and aηξ ∈ K(aξ, aη) are such that a%η ◦ a

η
ξ = a%ξ for every

ξ < η < % < δ. We shall denote such a sequence shortly by ~a. The ordinal δ is the
length of ~a.
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Let κ be an infinite cardinal. A category K is κ-complete if all inductive sequences
of length < κ have co-limits in K. Every category is ℵ0-complete, since the co-limit
of a finite sequence is its last object. A category K is κ-bounded if for every inductive
sequence ~x in K of length λ < κ there exist y ∈ K and a co-cone of arrows {yα}α<λ
such that yα : xα → y and yβ ◦ xβα = yα for every α < β < λ. Obviously, every
κ-complete category is κ-bounded. We shall write “σ-complete” and “σ-bounded”
for “ℵ1-complete” and “ℵ1-bounded” respectively.

We shall need the following notion concerning families of arrows. Fix a family of
arrows F in a given category K. We shall write Dom(F ) for the set {dom(f) : f ∈
F}. We say that F is dominating in K if the family of objects Dom(F ) is cofinal
in F and moreover for every a ∈ Dom(F ) and for every arrow f : a→ x in K there
exists an arrow g in K such that g ◦ f ∈ F .

For all undefined category-theoretic notions we refer to Mac Lane [32] or John-
stone [18].

2 Categories of sequences

t We look at the class of sequences as a category. (1 hour)

Fix a category K and denote by σK the class of all sequences in K. We would
like to turn σK into a category in such a way that an arrow from a sequence ~a into
a sequence ~b induces an arrow from lim~a into lim~b, whenever K is embedded into a
category in which sequences ~a, ~b have co-limits.

Fix two sequences ~a and ~b in a given category K. A transformation from ~a to
~b is, by definition, a natural transformation from ~a into ~b ◦ ϕ, where ϕ : ω → ω is
a strictly order preserving map (i.e. a covariant functor from ω to ω, treated as an
ordered category).

In order to define an arrow from ~a to ~b we need to identify some transformations.
Fix two natural transformations F : ~a→ ~b ◦ ϕ and G : ~a→ ~b ◦ ψ. We shall say that
F and G are equivalent if the following conditions hold:

(1) For every k there exists ` > k such that ϕ(k) 6 ψ(`) and

b
ψ(`)
ϕ(k) ◦ F (k) = G(`) ◦ a`k.

(2) For every k there is ` > k such that ψ(k) 6 ϕ(`) and

b
ϕ(`)
ψ(k) ◦G(k) = F (`) ◦ a`k.

It is rather clear that this defines an equivalence relation, which is actually a congru-
ence on the category of transformations. Every equivalence class of this relation will
be called an arrow (or morphism) from ~a to ~b. It is easy to check that this indeed

6



defines a category structure on all sequences in K. Formally, this is the quotient cat-
egory with respect to the equivalence relation described above. The identity arrow
of ~a is the equivalence class of the identity natural transformation id~a : ~a→ ~a.

Categories of sequences are special cases (or rather “parts”) of more general
categories called Ind-completions, see Chapter VI of Johnstone’s monograph [18].

We shall later need the following two facts.

Lemma 2.1. Let K be a category and let ~~x be a sequence in σK. Then ~~x has the
co-limit in σK.

Proof. Refining inductively each ~xn (n ∈ ω) to a cofinal subsequence, we may assume

that all bonding maps are natural transformations. Now look at ~~x as a functor from
ω × ω into K and let ~y be the diagonal sequence. Then ~y is easily seen to be the
co-limit of ~~x.

Corollary 2.2. For every category K, the category of sequences σK is σ-complete.

3 Fräıssé sequences

t We define the crucial notion of a Fräıssé sequence, characterizing its existence and

listing its basic properties. (1 hour)

Below we introduce the key notion of this course.
Let K be a fixed category. A Fräıssé sequence in K is an inductive sequence ~u

satisfying the following conditions:

(U) For every x ∈ K there exists n ∈ ω such that K(x, un) 6= ∅.

(A) For every k ∈ ω and for every arrow f ∈ K(uk, y), there exist ` > k and
g ∈ K(y, u`) such that u`k = g ◦ f .

A sequence satisfying (U) will be called K-cofinal. More generally, a collection U of
objects of K is K-cofinal if for every x ∈ Ob(K) there is u ∈ U such that K(x, u) 6= ∅.
Condition (A) will be called amalgamation property.

Below is the existence result, proved by using the Baire Category Theorem.
Recall that a family of arrows F is dominating in K if it satisfies the following two
conditions.

(D1) The family Dom(F ) is cofinal in K, i.e. for every x ∈ K there is a ∈ Dom(F )
such that K(x, a) 6= ∅.

(D2) Given a ∈ Dom(F ) and f : a → y in K, there exist g : y → b in K such that
g ◦ f ∈ F .

Theorem 3.1. Let K be a directed category with the amalgamation property. Assume
that K is dominated by a countable family of arrows. Then K has a Fräıssé sequence.
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Proof. Without loss of generality, we may assume that a countable dominating fam-
ily F is a subcategory of K. A sequence ~x in F may be regarded as a function from
∆ = {〈m,n〉 : m 6 n} into F satisfying the obvious conditions. Thus, the set S of
all sequences in F is a closed subspace of the Polish space F ∆, endowed with the
product topology. Given an object x in F , let Ux be the set of all ~x ∈ S for which
there exists an arrow x → ~x. Clearly, Ux is open and dense in S. Given an arrow
f : a→ b in F and n ∈ ω, let

Vf,n = {~x ∈ S : xn = a =⇒ (∃ m > n)(∃ g) g ◦ f = xmn }.

Again, Vf,n is open and dense in S (for the density one needs to use amalgamations).
Using the Baire Category Theorem, we can find a sequence ~u ∈ S that belongs to
all the sets defined above. It is easy to check, using the fact that F is dominating
in K, that ~u is a Fräıssé sequence in K.

Below we list some of the basic properties of Fräıssé sequences. The proofs are
easy exercises.

Let ~v be a sequence in a category K. We say that ~v has the extension property if
the following holds:

(E) For every arrows f : a → b, g : a → vk in K, where k ∈ ω, there exist ` > k
and an arrow h : b→ v` such that v`k ◦ g = h ◦ f .

Clearly, this condition implies (A).

Proposition 3.2. Let ~u be a Fräıssé sequence in a category K. Then K is directed.
Moreover, the following conditions are equivalent:

(a) ~u has the extension property.

(b) K has the amalgamation property.

Proposition 3.3. Assume K is a directed category. Then every sequence in K sat-
isfying condition (A) is Fräıssé.

Proposition 3.4. Let K be a category, let ~u be a sequence in K and let S ⊆ ω be
an infinite set.

(a) If ~u is a Fräıssé sequence in K then ~u � S is Fräıssé in K.

(b) If K has the amalgamation property and ~u � S is a Fräıssé sequence in K then
so is ~u.

Proposition 3.5. Let K be a category with the amalgamation property and let
~g : ~u→ ~v, ~h : ~v → ~u be transformations of sequences such that ~g ◦ ~h is equivalent to
the identity of ~v. If ~u is a Fräıssé sequence then so is ~v.

The last statement says that, assuming the amalgamation property, the definition
of a Fräıssé sequence indeed does not depend on its representation with respect to
the equivalence relation on sequences defined in Section 2.
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4 Cofinality and homogeneity

t We show that a Fräıssé sequence is cofinal (universal, in model-theoretic terminology),

homogeneous with respect to the base category and unique. (1 hour)

We start with the first important property of Fräıssé sequences.

Theorem 4.1 (Cofinality). Assume ~u is a Fräıssé sequence in a category K with
the amalgamation property. Then for every sequence ~x in K there exists an arrow of
sequences F : ~x→ ~u.

Proof. We use the extension property (property (E)) of the sequence ~u, which is
equivalent to the amalgamation property of K (Proposition 3.2). Let ~x be a sequence
in K. Using (U), find an arrow f0 : x0 → uα0 , where α0 ∈ ω. Now assume that arrows
f0, . . . , fn−1 have been defined so that fm : xm → uαm and the diagram

x`
f` // uα`

xk

x`k

OO

fk // uαk

u
α`
αk

OO

commutes for every k < ` < n (in particular α0 < α1 < · · · < αn−1 are natural
numbers). Using (E), find αn > αn−1 and an arrow f : xn → uαn so that f ◦ xnn−1 =
uαnαn−1

◦ fn−1 and define fn := f . Given m < n− 1, by the inductive hypothesis, we
get

fn ◦ xnm = fn ◦ xnn−1 ◦ xn−1
m = uαnαn−1

◦ fn−1 ◦ xn−1
m = uαnαn−1

◦ uαn−1
αm ◦ fm = uαnαm ◦ fm.

Finally, setting F = {fn}n∈ω, we obtain the required morphism F : ~x→ ~u.

In model theory, when the sequences are interpreted as certain countable struc-
tures, the property described above is called universality.

We now turn to the question of homogeneity and uniqueness.

Theorem 4.2. Assume that ~u, ~v are Fräıssé sequences in a given category K. Fur-
thermore, assume that k, ` ∈ ω and f : uk → v` is an arrow in K. Then there exists
an isomorphism F : ~u→ ~v in σK such that the diagram

~u
F // ~v

uk

u∞k

OO

f // v`

v∞`

OO

commutes. In particular ~u ≈ ~v.
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Proof. We construct inductively arrows fn : ukn → v`n , gn : v`n → ukn+1 , where
k0 6 `0 < k1 6 `1 < . . . and for each n ∈ ω the diagram

ukn
fn

!!DDDDDDDD

u
kn+1
kn // ukn+1

fn+1

$$HHHHHHHHH

u
kn+2
kn+1 // ukn+2

//___

v`n

gn

;;xxxxxxxxx

v
`n+1
`n

// v`n+1

gn+1

::vvvvvvvvv
//_________

commutes.
We start with f0 := f , k0 := k, `0 := `, possibly replacing f by some arrow

of the form jm` ◦ f to ensure that k0 6 `0. Using property (A) of the sequence ~u,
find k1 > k0 and g1 : v0 → uk1 such that g1 ◦ f = uk10 . Assume that fm, gm have
already been constructed for m 6 n. Using the amalgamation of ~v, find `n+1 > kn+1

and an arrow fn+1 : ukn+1 → v`n+1 such that fn+1 ◦ gn = v
`n+1

`n
. Now, using the

amalgamation of ~u, we find kn+2 > `n+1 and an arrow gn+1 : v`n+1 → ukn+2 such that

gn+1◦fn+1 = u
kn+2

kn+1
. By the induction hypothesis, gn◦fn = u

kn+1

kn
, therefore the above

diagram commutes. This finishes the construction.
Finally, set F = {fn}n∈ω and G = {gn}n∈ω. Then F : ~u → ~v, G : ~v → ~u are

morphisms of sequences and by a simple induction we show that

(*) gn ◦ v`n`m ◦ fm = u
kn+1

km
and fn ◦ uknkm+1

◦ gm = v`n`m

holds for every m < n < ω. This shows that F ◦G = id~v and G◦F = id~u, therefore F
is an isomorphism. The equality v∞0 ◦f = F ◦u∞0 means that v`n0 ◦f = fn◦ukn0 should
hold for every n ∈ ω. Fix n > 0. Applying (*) twice (with m = 0 and m = n − 1
respectively), we get

fn ◦ ukn0 = fn ◦ gn−1 ◦ v`n−1

0 ◦ f = v`n`n−1
◦ v`n−1

0 ◦ f = v`n0 ◦ f.

Thus v∞0 ◦ f = F ◦ u∞0 .
Finally, notice that, by property (U) of the sequence ~v, for some ` < ω there

exists an arrow f : u0 → v`, so applying the first part we see that ~u ≈ ~v.

As a corollary we obtain the homogeneity of a Fräıssé sequence:

Corollary 4.3. Let K be a directed category with the amalgamation property and let
~u be a Fräıssé sequence in K. Then for every K-arrow f : a→ b, for every σK-arrows
i : a→ ~u, j : b→ ~u there exists an automorphism H : ~u→ ~u for which the diagram

~u
H // ~u

a

i

OO

f
// b

j

OO

is commutative.
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5 Metric categories and norms

t We say what a metric category is. We revise some notions and define a norm on a

category. (2 hours)

Let Ms denote the category of metric spaces with non-expansive (i.e., 1-Lipschitz)
mappings. A category K is enriched over Ms if for every K-objects a, b there is a
metric % on the set of K-arrows K(a, b) so that the composition operator is non-
expansive from both sides. More precisely, we have

(M) %(f0 ◦ g, f1 ◦ g) 6 %(f0, f1) and %(h ◦ f0, h ◦ f1) 6 %(f0, f1)

whenever the compositions make sense. This allows us to consider ε-commutative
diagrams, with the obvious meaning. Formally, on each hom-set we have a different
metric, but there is no ambiguity with using always the same letter %. For the sake
of convenience, we allow +∞ as a possible value of the metric.

Later on, we shall say that K is metric-enriched having in mind that K is enriched
over Ms.

In order to present the approximate variant of Fräıssé theory, it is necessary
to work with a pair of categories 〈K0,K〉, where K0 is a subcategory of K with
Ob(K0) = Ob(K) and we always assume that K is a metric-enriched category.

We now define the notion of a norm of K-arrows, with respect to the subcategory
K0. Namely, we define the norm of f ∈ K by the formula

µ(f) = inf{%(i, j ◦ f) : i, j ∈ K0},

where only K0-arrows i, j satisfying dom(i) = dom(f), cod(i) = cod(j) and dom(j) =
cod(f) are taken into account. By definition, µ(f) = 0 whenever f ∈ K0, although
it may formally happen that µ(f) = 0 for some f ∈ K \ K0.

A pair of categories 〈K,K0〉 as above will be called a normed category.
Let 〈K,K0〉 be a fixed normed category. We now re-define the category of se-

quences, taking into account the metric. A sequence in K is formally a covariant
functor from the set of natural numbers ω into K.

Denote by σ(K,K0) the category of all sequences in K0 with arrows in K. This
is indeed a category with arrows being equivalence classes of semi-natural trans-
formations. A semi-natural transformation from ~x to ~y is, by definition, a natural
transformation from ~x to ~y ◦ ϕ for some increasing function ϕ : ω → ω. Slightly
abusing notation, we shall consider transformations (arrows) of sequences, having in
mind their equivalence classes. Thus, an arrow from ~x to ~y is a sequence of arrows
~f = {fn}n∈ω ⊆ K together with an increasing map ϕ : ω → ω such that for each
n < m the diagram

yϕ(n)

y
ϕ(m)
ϕ(n) // yϕ(m)

xn

fn

OO

xmn

// xm

fm

OO

11



is commutative.
Since the category K is enriched over Ms, it is natural to allow more arrows

in σ(K,K0). An approximate arrow from a sequence ~x into a sequence ~y is ~f =
{fn}n∈ω ⊆ K together with an increasing map ϕ : ω → ω satisfying the following
condition:

(	) For every ε > 0 there exists n0 such that all diagrams of the form

yϕ(n)

y
ϕ(m)
ϕ(n) // yϕ(m)

xn

fn

OO

xmn

// xm

fm

OO

are ε-commutative, i.e., %(fm ◦ xmn , y
ϕ(m)
ϕ(n) ◦ fn) < ε whenever n0 6 n < m.

It is obvious that the composition of approximate arrows is an approximate arrow,
therefore σ(K,K0) is indeed a category. It turns out that σ(K,K0) is naturally metric-

enriched. Indeed, given approximate arrows ~f : ~x→ ~y, ~g : ~x→ ~y, define

(⇒) %(~f,~g) := lim
n→∞

lim
m>n

%(ymn ◦ fn, ymn ◦ gn),

assuming that ~f and ~g are natural transformations. Replacing ~y by its cofinal
subsequence, we can make such assumption, without loss of generality. We need to
show that the limit above exists.

Given n < m < `, we have

%(y`n ◦ fn, y`n ◦ gn) = %(y`m ◦ ymn ◦ fn, y`m ◦ ymn ◦ gn) 6 %(ymn ◦ fn, ymn ◦ gn),

therefore for each n ∈ ω the sequence {%(ymn ◦ fn, ymn ◦ gn)}m>n is decreasing. On
the other hand, given ε > 0, given n0 6 n < k < m such that (	) holds for both
{fn}n>n0 and {gn}n>n0 , we have that

%(ymn ◦ fn, ymn ◦ gn) 6 %(ymk ◦ ykn ◦ fn, ymk ◦ fk ◦ xkn) + %(ymk ◦ fk ◦ xkn, ymk ◦ gk ◦ xkn)

+ %(ymk ◦ gk ◦ xkn, ymk ◦ ykn ◦ gn) 6 %(ymk ◦ fk, ymk ◦ gk)
+ %(ykn ◦ fn, fk ◦ xkn) + %(gk ◦ xkn, ykn ◦ gn)

< %(ymk ◦ fk, ymk ◦ gk) + 2ε.

Passing to the limit as m→∞, we see that the sequence{
lim
m>n

%(ymn ◦ fn, ymn ◦ gn)
}
n∈ω

is increasing. This shows that the double limit in (⇒) exists.

12



One should mention that a much more natural definition for % would be

(�) %(~f,~g) = lim
n→∞

%(fn, gn).

The problem is that this limit may not exist in general. In practice however, we
shall always have

%(i ◦ f, i ◦ g) = %(f, g)

whenever i ∈ K0. To be more precise, when K is a metric-enriched category, an
arrow i ∈ K is called a monic (or a monomorphism) if the above equation holds for
arbitrary compatible arrows f, g ∈ K. This is an obvious generalization of the notion
of a monic in category theory. In fact, every category is metric-enriched over the 0-1
metric: %(f, g) = 0 iff f = g.

In all natural examples of normed categories 〈K,K0〉 the subcategory K0 consists
of arrows that are monics in K. Thus, we can use (�) instead of the less natural (⇒)

as the definition of %(~f,~g). It is an easy exercise to check that % is indeed a metric
on each hom-set of σ(K,K0) and that all composition operators are non-expansive.

The important fact is that every normed category 〈K,K0〉 naturally embeds into
σ(K,K0), identifying a K0-object x with the sequence of identities

x // x // x // · · ·

and every K-arrow becomes a natural transformation between sequences of identities.
Actually, it may happen that K is not a full subcategory of σ(K,K0). Namely, every
Cauchy sequence of K-arrows fn : x → y is an approximate arrow from x to y,
regarded as sequences. Now, if K(x, y) is not complete, there may be no f : x → y
satisfying f = limn→∞ fn. The problem disappears if all hom-sets of K are complete
with respect to the metric %.

In practice, we can partially ignore the construction described above, because
usually there is a canonical faithful functor from σ(K,K0) into a natural category
containing K and in which all countable sequences in K0 have co-limits. Two relevant
examples are described below.

Example 5.1. Let K be the category of all finite metric spaces with non-expansive
mappings and let K0 be the subcategory of isometric embeddings. Let C be the
category of all separable complete metric spaces. Given a K0-sequence ~x, we can
identify it with a chain of finite metric spaces, therefore it is natural to consider
lim ~x to be the completion of the union of this chain. This is in fact the co-limit of
~x in the category Ms. In particular, lim ~x = lim ~y, whenever ~x and ~y are equivalent.
Furthermore, every approximate arrow ~f : ~x → ~y “converges” to a non-expansive
map F : lim ~x → lim ~y and again it is defined up to an equivalence of approximate
arrows. By this way we have defined a canonical faithful functor lim: σ(K,K0)→ C.
Unfortunately, since we are restricted to 1-Lipschitz mappings, the functor F is not
onto. The simplest example is as follows.

13



Let X = {0, 1} ∪ {±1/n : n ∈ N} with the metric induced from the real line.
Let Xn = {±1/k : k < n} and let Y = {0, 1}. Then X = limn∈ωXn although the
canonical embedding e : Y → X is not the co-limit of any approximate arrow from
the sequence {Xn}n∈ω into Y (the space Y can be treated as the infinite constant
sequence with identities).

Note that if we change C to the category of all countable metric spaces then
the canonical co-limit is just the union of the sequence, however some approximate
arrows of sequences would not have co-limits.

Concerning applications, the situation where the canonical “co-limiting” functor
is not surjective does not cause any problems, since our main results say about the
existence of certain arrows (or isomorphisms) of sequences only. In the next example
we have a better situation.

Example 5.2. Let B be the category of all finite-dimensional Banach spaces with
linear operators of norm 6 1 and let B0 be the subcategory of all isometric embed-
dings. It is clear that B is a metric-enriched category, where %(f, g) = ‖f − g‖ for
f, g : X → Y in B.

Now assume f : X → Y is a linear operator satisfying

(∗) (1− ε)‖x‖ 6 ‖f(x)‖ 6 ‖x‖.

We claim that µ(f) 6 ε. In fact, consider Z = X ⊕ Y with the norm defined by the
following formula:

‖〈x, y〉‖ = inf{‖u‖X+‖v‖Y +ε‖w‖X : 〈x, y〉 = 〈u, v〉+〈w,−f(w)〉, u, w ∈ X, v ∈ Y }.

Let i : X → Z, j : Y → Z be the canonical injections. Note that ‖i− j ◦ f‖ 6 ε, just
by definition. It remains to check that i, j are isometric embeddings, that is, they
belong to the category B0.

It is clear that ‖i‖ 6 1 and ‖j‖ 6 1. On the other hand, if x = u + w and
0 = v − f(w) then

‖u‖X + ‖v‖Y + ε‖w‖X > ‖u‖X + (1− ε)‖w‖X + ε‖w‖X > ‖u+ w‖X = ‖x‖X .

This shows that ‖i(x)‖ = ‖x‖X . A similar calculation shows that ‖j(y)‖ = ‖y‖Y .
Thus, if f satisfies (∗) then µ(f) 6 ε. On the other hand, if ‖f(x)‖ = 1 − ε for

some x with ‖x‖ = 1, then given isometric embeddings i, j, we have

‖i(x)− j(f(x))‖ > |‖i(x)‖ − ‖j(f(x))‖| = |1− ‖f(x)‖| = ε.

Finally, we conclude that µ(f) = ε, where ε > 0 is minimal for which the inequality
(∗) holds.

It follows that 〈B,B0〉 is a normed category.
Again, we have a canonical functor lim: σ(B,B0)→ C, where C is the category

of all separable Banach spaces with non-expansive linear operators. It turns out
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that this functor is surjective. Namely, fix two Banach spaces X =
⋃
n∈ωXn and

Y =
⋃
n∈ω Yn, where {Xn}n∈ω and {Yn}n∈ω are chains of finite-dimensional spaces.

Fix a linear operator T : X → Y such that ‖T‖ 6 1 and let Tn = T � Xn. By an
easy induction, we define a sequence of linear operators T ′n : Xn → Yn so that T ′n+1

extends T ′n and ‖Tn − T ′n‖ < 1/n for each n ∈ ω. Note that ‖T ′n‖ 6 1 + 1/n. Define
T ′′n = n

n+1
T ′n. Now ~t = {T ′′n}n∈ω is a sequence of B-arrows and standard calculation

shows that ‖T ′′n − Tn‖ < 2/n for every n ∈ ω. Thus ~t is an approximate arrow from
{Xn}n∈ω to {Yn}n∈ω with lim~t = T .

It is natural to extend the norm µ to the category of sequences. More precisely,
given an approximate arrow ~f : ~x→ ~y, we define

µ(~f) = lim
n→∞

µ(fn).

This is indeed well defined, because given ε > 0 and taking n < m as in (	), we
have that µ(fn) 6 µ(fm) + ε. The function µ obviously extends the norm of 〈K,K0〉,
although it is formally not a norm, because it is defined in a different way, without
referring to any subcategory of σ(K,K0). An approximate arrow ~f is a 0-arrow if

µ(~f) = 0. We shall be interested in 0-arrows only.
We say that a normed category 〈K,K0〉 has the almost amalgamation property

if for every K0-arrows f : c → a, g : c → b, for every ε > 0, there exist K0-arrows
f ′ : a→ w, g′ : b→ w such that the diagram

b
g′ // w

c

g

OO

f
// a

f ′

OO

is ε-commutative, i.e. %(f ′ ◦ f, g′ ◦ g) < ε. We say that 〈K,K0〉 has the strict amal-
gamation property if for each f, g the diagram above is commutative (i.e. no ε is
needed).

It turns out that almost amalgamations can be moved to the bigger category K.
Namely:

Proposition 5.3. Let 〈K,K0〉 have the almost amalgamation property. Then for
every ε, δ > 0, for every K-arrows f : c→ a, g : c→ b with µ(f) < ε, µ(g) < δ, there
exist K0-arrows f ′ : a→ w and g′ : b→ w such that the diagram

b
g′ // w

c
f
//

g

OO

a

f ′

OO

is (ε+ δ)-commutative.
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Proof. Fix η > 0. Find K0-arrows i, j such that %(j◦f, i) < µ(f)+η. Find K0-arrows
k, ` such that %(` ◦ g, k) < µ(g) + η. Using the almost amalgamation property, find
K0-arrows j′, `′ such that %(j′ ◦ i, `′ ◦ k) < η. Define f ′ := j′ ◦ j, g′ := `′ ◦ `. Then

%(f ′ ◦ f, g′ ◦ g) 6 %(j′ ◦ j ◦ f, j′ ◦ i) + %(j′ ◦ i, `′ ◦ k) + %(`′ ◦ k, `′ ◦ ` ◦ g)

< %(j ◦ f, i) + η + %(k, ` ◦ g) < µ(f) + µ(g) + 3η.

Thus, it is clear that if η is small enough then %(f ′ ◦ f, g′ ◦ g) < ε+ δ.

The next simple proposition shows that the norm µ satisfies natural conditions
that look like triangle inequalities. In general, it may happen that µ(f) 66 µ(f ◦ g) +
µ(g).

Proposition 5.4. Assume 〈K,K0〉 is a normed category with the almost amalga-
mation property. Then for every compatible K-arrows f, g the following inequalities
hold:

(N1) µ(f ◦ g) 6 µ(f) + µ(g).

(N2) µ(g) 6 µ(f) + µ(f ◦ g).

Proof. Fix ε > 0 and fix i, j, k, ` ∈ K0 such that

%(j ◦ f, i) < µ(f) + ε/3 and %(` ◦ g, k) < µ(g) + ε/3.

Using the almost amalgamation property, we can find i′, `′ ∈ K such that

%(i′ ◦ i, `′ ◦ i) < ε/3.

Combining these inequalities we obtain that %(`′ ◦ k, i′ ◦ j) < µ(f) +µ(g) + ε, which
shows (N1).

A similar argument shows (N2).

6 Approximate Fräıssé sequences

t We re-define the notion of a Fräıssé sequence and discuss its basic properties and ex-

istence. (1 hour)

As usual, we assume that 〈K,K0〉 is a normed category. A sequence ~u : ω → K0

is Fräıssé in 〈K,K0〉 if it satisfies the following two conditions:

(U) For every K-object x, for every ε > 0, there exist n ∈ ω and a K-arrow f : x→
un such that µ(f) < ε.

(A) Given ε > 0, given a K0-arrow f : un → y, there exist m > n and a K-arrow
g : y → um such that µ(g) < ε and %(umn , g ◦ f) < ε.
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Recall that we identify a sequence with all of its cofinal subsequences. It turns out
that the definition above is “correct” because of the almost amalgamation property:

Proposition 6.1. Assume 〈K,K0〉 is a normed category with the almost amalgama-
tion property. Let ~u be a sequence in K0. The following conditions are equivalent.

(a) ~u is Fräıssé in 〈K,K0〉.

(b) ~u has a cofinal subsequence that is Fräıssé in 〈K,K0〉.

(c) Every cofinal subsequence of ~u is Fräıssé in 〈K,K0〉.

Proof. Implications (a) =⇒ (c) and (c) =⇒ (b) are obvious. In fact, the almost
amalgamation property is used only for showing that (b) =⇒ (a).

Suppose M ⊆ ω is infinite and such that ~u �M is Fräıssé in 〈K,K0〉. Fix n ∈ ω\M
and fix a K0-arrow f : un → y. Fix ε > 0. Using the almost amalgamation property,
we can find K0-arrows f ′ : um → w and j : y → w such that m ∈M , m > n and the
diagram

un

f   AAAAAAAA
umn // um

f ′

!!BBBBBBBB

y
j

// w

is ε/2-commutative. Since ~u � M is Fräıssé, there is a K-arrow g : w → u` with
` > m, µ(g) < ε, and such that the triangle

um

f ′ !!CCCCCCCC
u`m // u`

w
g

>>||||||||

is ε/2-commutative. Finally, µ(g◦j) 6 µ(g) < ε and %(g◦j ◦f, u`n) < ε, which shows
that ~u satisfies (A).

The following characterization of a Fräıssé sequence turns out to be useful:

Proposition 6.2. Let 〈K,K0〉 be a normed category and let ~u be a sequence in K0

satisfying (U). Then ~u is Fräıssé in 〈K,K0〉 if and only if it satisfies the following
condition:

(B) Given ε > 0, given n ∈ ω, given a K-arrow f : un → y with µ(f) < +∞, there
exist m > n and a K-arrow g : y → um such that

µ(g) < ε and %(g ◦ f, umn ) < µ(f) + ε.
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Proof. It is obvious that (B) implies (A). Suppose ~u is Fräıssé and choose K0-arrows
i : un → w and j : y → w such that %(j ◦ f, i) < µ(f) + ε/2. Using (A), find m > n
and a K-arrow k : y → um such that µ(k) < ε and %(k◦i, umn ) < ε/2. Define g = k◦j.
Then µ(g) 6 µ(k) + µ(j) = µ(k) < ε and

%(g ◦ f, umn ) 6 %(k ◦ j ◦ f, k ◦ i) + %(k ◦ i, umn ) < µ(f) + ε/2 + ε/2 = µ(f) + ε,

which shows that ~u satisfies (A).

In order to characterize the existence of a Fräıssé sequence, we shall introduce
the concept of separability. A subcategory F of K0 is dominating in 〈K,K0〉 if

(D1) Every K-object has K-arrows into F -objects of arbitrarily small norm. More
precisely, given x ∈ Ob(K), given ε > 0, there exists f : x → y such that
y ∈ Ob(F ) and µ(f) < ε.

(D2) Given ε > 0, a K0-arrow f : a→ y such that a ∈ Ob(F ), there exist a K-arrow
g : y → b and an F -arrow u : a→ b such that µ(g) < ε and %(g ◦ f, u) < ε.

A normed category 〈K,K0〉 is separable if there exists a countable F ⊆ K0 that is
dominating in 〈K,K0〉.

Finally, we need to adapt the notion of directedness. Namely, we say that 〈K,K0〉
is directed if for every K0-objects a, b, for every ε > 0 there exist K-arrows f : a→ d
and g : b→ d such that µ(f) < ε and µ(g) < ε.

Theorem 6.3. Let 〈K,K0〉 be a directed normed category with the almost amalga-
mation property. The following conditions are equivalent:

(a) 〈K,K0〉 is separable.

(b) 〈K,K0〉 has a Fräıssé sequence.

Furthermore, if F is a countable directed dominating subcategory of 〈K,K0〉 with the
almost amalgamation property, then there exists a sequence in F that is Fräıssé in
〈K,K0〉.

Proof. Implication (b) =⇒ (a) is obvious: the image of a Fräıssé sequence is a
countable dominating subcategory of 〈K,K0〉. It remains to show that (a) =⇒ (b).
We shall use the simple folklore fact, known as the Rasiowa-Sikorski Lemma: given a
directed partially ordered set P, given a countable family {Dn}n∈ω of cofinal subsets
of P, there exists an increasing sequence {pn}n∈ω ⊆ P such that pn ∈ Dn for every
n ∈ ω.

Assume F ⊆ K0 is countable and dominating in 〈K,K0〉. Enlarging F if neces-
sary, we may assume that it is directed and has the almost amalgamation property.
We are going to find a Fräıssé sequence in F , which by (D1) and (D2) must also be
Fräıssé in 〈K,K0〉. This will also show the “furthermore” statement.
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Define the following partially ordered set P: Elements of P are finite sequences
in F (i.e. covariant functors from n < ω into F ). The order is end-extension, that
is, ~x 6 ~y if ~y � n = ~x, where n = dom(~x).

Fix n, k ∈ ω and fix an F -arrow f : a→ b. We define Df,n,k ⊆ P to be the set of
all ~x ∈ P such that dom(~x) > n and the following two conditions are satisfied:

(1) There exists ` < dom(~x) such that F (a, x`) 6= ∅.

(2) If a = xn then there exists an F -arrow g : b→ xm such that n 6 m < dom(~x)
and %(g ◦ f, xmn ) < 1/k.

Since F is directed and has the almost amalgamation property, it is clear that all
sets of the form Df,n,k are cofinal in P. It is important that there are only countably
many such sets. Thus, by the Rasiowa-Sikorski Lemma, there exists a sequence

~u0 < ~u1 < ~u2 < · · ·

such that for each suitable triple f, n, k there is r ∈ ω satisfying ~ur ∈ Df,n,k. It is
now rather clear that ~u :=

⋃
n∈ω ~un is a Fräıssé sequence in F which, by the remarks

above, is also a Fräıssé sequence in 〈K,K0〉.

7 Approximate back-and-forth argument and co-

finality

t We present an approximate variant of the back-and-forth argument, which gives unique-

ness and almost homogeneity. (1 hour)

We now show that a Fräıssé sequence is “almost homogeneous” in the sense
described below.

Lemma 7.1. Let 〈K,K0〉 be a normed category and let ~u, ~v be Fräıssé sequences in
〈K,K0〉. Furthermore, let ε > 0 and let h : u0 → v0 be a K-arrow with µ(f) < ε.
Then there exists an approximate isomorphism H : ~u → ~v such that µ(H) = 0 and
the diagram

~u
H // ~v

u0

u∞0

OO

h
// v0

v∞0

OO

is ε-commutative.

Proof. Fix a decreasing sequence of positive reals {εn}n∈ω such that

µ(h) < ε0 < ε and 2
∞∑
n=1

εn < ε− ε0.
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We define inductively sequences of K-arrows fn : uϕ(n) → vψ(n), gn : vψ(n) → uϕ(n+1)

such that

(1) ϕ(n) 6 ψ(n) < ϕ(n+ 1);

(2) %(gn ◦ fn, uϕ(n+1)
ϕ(n) ) < εn;

(3) %(fn ◦ gn−1, v
ψ(n)
ψ(n−1)) < εn;

(4) µ(fn) < εn and µ(gn) < εn+1;

We start by setting ϕ(0) = ψ(0) = 0 and f0 = h. We find g0 and ϕ(1) by using
condition (B) of Proposition 6.2.

We continue, using condition (B) for both sequences repeatedly. More precisely,
having defined fn−1 and gn−1, we first use property (B) of the sequence ~v is Fräıssé,
constructing fn satisfying (3) and with µ(fn) < εn; next we use the fact that ~u
satisfies (B) in order to find gn satisfying (2) and with µ(gn) < εn+1.

We now check that ~f = {fn}n∈ω and ~g = {gn}n∈ω are approximate arrows. Fix
n ∈ ω and observe that

%
(
v
ψ(n+1)
ψ(n) ◦ fn, fn+1 ◦ uϕ(n+1)

ϕ(n)

)
6 %
(
v
ψ(n+1)
ψ(n) ◦ fn, fn+1 ◦ gn ◦ fn

)
+ %
(
fn+1 ◦ gn ◦ fn, fn+1 ◦ uϕ(n+1)

ϕ(n)

)
6 %
(
v
ψ(n+1)
ψ(n) , fn+1 ◦ gn

)
+ %
(
gn ◦ fn, uϕ(n+1)

ϕ(n)

)
< εn+1 + εn.

Since the series
∑

n∈ω εn is convergent, we conclude that {fn}n∈ω is an approximate
arrow from ~u to ~v.

By symmetry, we deduce that ~g is an approximate arrow from ~v to ~u. Conditions
(2) and (3) tell us that the compositions ~f ◦ ~g and ~g ◦ ~f are equivalent to the

identities, which shows that H := ~f is an isomorphism. Condition (4) ensures us
that µ(H) = 0. Finally, recalling that h = f0, we obtain

%(v∞0 ◦ h,H ◦ u∞0 ) 6
∞∑
n=0

%
(
v
ψ(n+1)
ψ(n) ◦ fn, fn+1 ◦ uϕ(n+1)

ϕ(n)

)
<
∞∑
n=0

(εn + εn+1) = ε0 + 2
∞∑
n=1

εn < ε.

This completes the proof.

The lemma above has two interesting corollaries. Recall that a 0-isomorphism is
an isomorphism H with µ(H) = 0. In such a case also µ(H−1) = 0.

Theorem 7.2 (Uniqueness). A normed category may have at most one Fräıssé
sequence, up to an approximate 0-isomorphism.
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Theorem 7.3 (Almost homogeneity). Assume 〈K,K0〉 is a normed category with
the almost amalgamation property and with a Fräıssé sequence ~u. Then for every
K-objects a, b, for every approximate 0-arrows i : a → ~u, j : b → ~u, for every K-
arrow f : a → b, for every ε > 0 such that µ(f) < ε, there exists an approximate
0-isomorphism H : ~u→ ~u such that the diagram

~u
H // ~u

a

i

OO

f
// b

j

OO

is ε-commutative.

Note that the existence of a Fräıssé sequence automatically implies directedness.

Proof. Recall that, by definition, i = {in}n>n0 , where limn>n0 %(u∞n ◦ in, i) = 0 and
limn>n0 µ(in) = 0. The same applies to i. Choose δ > 0 such that µ(f) < ε − 6δ.
Choose k big enough so that

(1) %(u∞k ◦ ik, i) < δ and %(u∞k ◦ jk, j) < δ

holds and µ(in) < δ, µ(jn) < δ whenever n > k. Let f1 = jk ◦ f . Then µ(f1) 6
µ(f) + µ(jk) < ε − 5δ. Using Proposition 5.3, we find K0-arrows f2 : uk → w and
g1 : uk → w such that

(2) %(g1 ◦ f1, f2 ◦ ik) < ε− 4δ.

Using the fact that ~u is Fräıssé, we find ` > k and g2 : w → u` such that

(3) µ(g2) < δ and %(g2 ◦ g1, u
`
k) < δ.

Define g = g2 ◦ f2. Then µ(g) < δ and the sequences {un}n>k, {un}n>` are Fräıssé,
therefore by Lemma 7.1 there exists an approximate 0-isomorphism H : ~u → ~u
satisfying

(4) %(u∞` ◦ g,H ◦ u∞k ) < δ.

The situation is described in the following diagram

a

f

��

f1

��0
0000000000000

ik // uk
f2

  BBBBBBBB
// · · · // ~u

H

��

w
g2

  AAAAAAAA

b
jk
// uk

g1
>>||||||||

// u` // · · · // ~u
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where the first triangle is commutative, the second one is δ-commutative, and the
internal square is (ε−4δ)-commutative. Applying (1), (2), (3), the triangle inequality
and inequalities (M), we obtain

%(j ◦ f,H ◦ i) 6 %(j ◦ f, u∞k ◦ jk ◦ f) + %(u∞k ◦ f1, u
∞
` ◦ g2 ◦ g1 ◦ f1)

+ %(u∞` ◦ g2 ◦ g1 ◦ f1, u
∞
` ◦ g2 ◦ f2 ◦ ik) + %(u∞` ◦ g ◦ ik, H ◦ u∞k ◦ ik)

+ %(H ◦ u∞k ◦ ik, H ◦ i)
6 %(j, u∞k ◦ jk) + %(u`k, g2 ◦ g1) + %(g1 ◦ f1, f2 ◦ ik) + %(u∞` ◦ g,H ◦ u∞k )

+ %(u∞k ◦ ik, i)
< δ + δ + (ε− 4δ) + δ + δ = ε.

This completes the proof.

We finish with showing that a Fräıssé sequence if cofinal in the category of
sequences.

Theorem 7.4. Assume 〈K,K0〉 is a normed category with the almost amalgamation
property and with a Fräıssé sequence ~u. Then for every sequence ~x in K0 there exists
an approximate arrow

~f : ~x→ ~u

such that µ(~f) = 0.

Proof. We construct inductively a strictly increasing sequence of natural numbers
{kn}n∈ω and a sequence of K-arrows fn : xn → ukn satisfying for each n ∈ ω the
condition

(∗) %(u
kn+1

kn
◦ fn, fn+1 ◦ xn+1

n ) < 3 · 2−n and µ(fn) < 2−n.

We start by finding f0 using condition (U) of a Fräıssé sequence. Fix n ∈ ω and
suppose fn and kn have been defined already.

Let ε = 2−n. Since µ(fn) < 2−n, there exist K0-arrows i : xn → v, j : ukn → v
such that

%(i, j ◦ fn) < 2−n.

Next, using the almost amalgamation property, we find K0-arrows k : v → w and
` : xn+1 → w such that

%(k ◦ i, ` ◦ xn+1
n ) < 2−n.

Finally, using the fact that ~u is Fräıssé, find kn+1 > kn and a K-arrow g : w → ukn+1

such that µ(g) < 2−(n+1) and

%(g ◦ k ◦ j, ukn+1

kn
) < 2−n.
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The situation is described in the following diagram, where both internal squares and
the triangle are 2−n-commutative:

ukn //

j !!BBBBBBBB
ukn+1

// · · ·

v k // w

g

OO

xn //

fn

OO

i
=={{{{{{{{

xn+1

`

OO

// · · ·

Define fn+1 := g ◦ `. Then µ(fn+1) 6 µ(g) + µ(`) = µ(g) < 2−(n+1). The diagram
above shows that condition (∗) is satisfied. This completes the inductive construc-
tion.

Finally, ~f = {fn}n∈ω is an approximate arrow from ~x to ~u satisfying µ(~f) =
limn→∞ µ(fn) = 0.

8 Selected applications

t We present some examples and general constructions, including embedding-projection

pairs. (2 hours)

First of all, properties of the classical Fräıssé limits can be easily described using
the results of Sections 3 and 4.

Recall that a Fräıssé class is a class K of finitely generated models of a fixed
first-order language, satisfying the following conditions:

1. Given A,B ∈ K there exists C ∈ K such that both A and B embed into C.

2. Given embeddings f : C → A, g : C → B with A,B,C ∈ K there exist D ∈ K
and embeddings f ′ : A→ D, g′ : B → D such that f ′ ◦ f = g′ ◦ g.

3. K is hereditary, i.e., given A ∈ K, the class {X : X embeds into A} is contained
in K.

4. K has countably many isomorphic types.

Looking at K as a category (with embeddings as arrows) it is clear that σK
can be identified with the class of all countable models whose finitely generated
substructures are in K. Thus we obtain:

Theorem 8.1 (Fräıssé [11]). Given a Fräıssé class K there exists a unique countable
model U = FlimK (called the Fräıssé limit of K) satisfying the following conditions:

1. Every countable model whose all finitely generated substructures are in K is
embeddable into U .
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2. Up to isomorphism, K = {X 6 U : X is finitely generated}.

3. Every isomorphism between finitely generated substructures of U extends to an
automorphism of U .

8.1 Reversed Fräıssé limits

Now we describe briefly the theory of inverse limits of models, the so-called projective
Fräıssé theory, developed by Irwin & Solecki [16]. Fix a first-order language L and
consider some class M of L-models. The classical Fräıssé theory deals with the
category of all embeddings of L-models. In the reversed Fräıssé theory one deals
with quotient maps f : M → N that are, by definition, surjective homomorphisms
satisfying the following formula

RN(y0, . . . , yn−1) =⇒ (∃ x0, . . . , xn−1 ∈M) RM(x0, . . . , xn−1)∧(∀ i < n) f(xi) = yi

for each n-ary relation symbol R ∈ L and for each y0, . . . , yn−1 ∈ N . More precisely,
we consider the category K whose class of objects consists of finite L-models and an
arrow from A ∈ Ob(K) to B ∈ Ob(K) is a quotient map of models f : B → A.

The following result from [16] is a direct application of the results from Sections 3
and 4. It can also be derived from the results of [10], however our approach is more
direct and explains why the topology is needed.

Theorem 8.2 (Irwin & Solecki [16]). Let M be a countable class of finite models of
a fixed first-order language L. Suppose M satisfies the following conditions:

(J) For every a, b ∈ M there exist c ∈ M and quotient maps f : c → a and
g : c→ b.

(A) Given quotient maps f : c → a and g : c → b with a, b, c ∈ M, there exist
w ∈M and quotient maps f ′, g′ for which the diagram

b

g

��

w
g′oo

f ′

��
c a

f
oo

commutes.

Then there exists a unique (up to a topological isomorphism) topological L-model M
satisfying the following conditions:

(1) M is the inverse limit of a sequence of models from M with quotient maps.

(2) Every model from M is a continuous quotient of M.
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(3) Given continuous quotients p : M → a and q : M → b with a, b ∈ M, given a
quotient map f : b→ a, there exists a topological isomorphism h : M→M for
which the diagram

M
p

��

Mhoo

q

��
a b

f
oo

is commutative.

Furthermore, every L-model which is the inverse limit of a sequence of models from
M with quotient maps is a continuous quotient of M.

Proof. Let K be the category whose objects are elements of M and an arrow from
a ∈ M into b ∈ M is a quotient map f : b → a. It is obvious that conditions
(J) and (A) translate to directedness and the amalgamation property. Since M is
countable, the category K is countable. Now observe that the category σK can be
naturally identified with the category of compact L-models that are inverse limits
of sequences of models from M. In fact, the topology becomes natural here, because
given two sequences ~x and ~y in K and taking X and Y to be their inverse limits
in the category of sets, one can easily check that precisely the continuous quotient
maps f : Y → X correspond to σK-arrows from ~x to ~y. Summarizing: the existence
and properties of M follow directly from Theorems 3.1, 4.1 and 4.2.

8.2 Universal diagrams

We shall describe a quite general procedure of building a category with the amal-
gamation property. First of all, let us note that typical categories with monics do
not admit pushouts. For instance, this is the case with the category of finite sets
with one-to-one maps. In order to capture these situations, we define the following
natural notion.

Let K ⊆ L be two categories. We say that K has pushouts in L (or, that 〈K,L〉 has
pushouts) if for every K-arrows f : c → a, g : c → b there exist K-arrows f ′ : a → w
and g′ : b→ w such that

b
g′ // w

c
f
//

g

OO

a

f ′

OO

is a pushout in L.
Now, fix a small category S and let f (S,K,L) be the category whose objects are

covariant functors from S to L taking objects from K and the arrows are natural
transformations into K. More precisely, x is an object of iff x is a functor from S into
L such that x(s) is an object of K for every object s of S. Furthermore, f : x→ y is an
f (S,K,L)-arrow iff it is a natural transformation from x to y whose all components
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(arrows) are in K. In other words, for every object s of S, the arrow f(s) belongs to
K.

Lemma 8.3. Let K ⊆ L be a pair of categories such that K has pushouts in L and
let S be a small category. Then f (S,K,L) has pushouts in f (S,L,L).

Proof. Fix a, b, c ∈ f (S,K,L) and fix natural transformations f : c → a, g : c → b.
We are going to define w ∈ f (S,K,L). Fix p ∈ S. Let 〈f ′(p), g′(p)〉 be the pushout
of 〈f(p), g(p)〉 in L, and let w(p) be the common co-domain of f ′(p) and g′(p). Now
fix an arrow j : p→ q in S. Using the property of a pushout, there is a unique arrow
w(j) making the following diagram commutative.

c(q)
g(q) //

f(q) ""DDDDDDDD
b(q)

g′(q)

""EEEEEEEE

a(q)
f ′(q) // w(q)

c(p)

c(j)

OO

f(p) ""DDDDDDDD

g(p) // b(p)

b(j)

OO

g′(p)

""EEEEEEEE

a(p)

a(j)

OO

f ′(p) // w(p)

w(j)

OO

Indeed, 〈f ′(q) ◦ a(j), g′(q) ◦ b(j)〉 is an amalgamation of 〈f(p), g(p)〉. By uniqueness,
we have that w(j ◦ k) = w(j) ◦ w(k), whenever j, k are compatible arrows in S.

Thus we have defined a functor w : S→ K. Further, p 7→ f ′(p) and p 7→ g′(p) are
natural transformations from a to w and from b to w respectively.

It is clear that f ′ ◦ f = g′ ◦ g.
It remains to check that 〈f ′, g′〉 is a pushout of 〈f, g〉 in f (S,L,L). For this aim,

fix v ∈ f (S,L,L) and natural transformations f ′′ : a → v, g′′ : b → v such that
f ′′ ◦ f = g′′ ◦ g. By the fact that 〈f ′, g′〉 is a pushout of 〈f, g〉 in L, for each p ∈ S
there is a unique L-arrow h(p) : w(p) → v(p) satisfying h(p) ◦ f ′(p) = f ′′(p) and
h(p)◦g′(p) = g′′(p). This defines uniquely a map h : S→ ArrL that satisfies h◦f ′ =
f ′′ and h ◦ g′ = g′′. It remains to check that h is indeed a natural transformation.

Fix an arrow j : p→ q in S and let k = h(q) ◦ w(j), ` = v(j) ◦ h(p). We need to
show that k = `. Notice that k ◦ f ′(p) = f ′′(q) ◦ a(j) and k ◦ g′(p) = g′′(q) ◦ b(j).
Also, `◦f ′(p) = f ′′(q)◦a(j) and `◦g′(p) = g′′(q)◦b(j). It follows that k = `, because
〈f ′(p), g′(p)〉 is a pushout of 〈f(p), g(p)〉 in L.

We now demonstrate a possible use of Lemma 8.3 in the context of Fräıssé
model-theoretic structures.
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Given categories K ⊆ L, we say that 〈K,L〉 has the mixed pushout property if for
every K-arrow i : c → a, for every L-arrow f : c → b, there exist j ∈ K and g ∈ L
such that

b
j // w

c
i
//

f

OO

a

g

OO

is a pushout in L. In case M is a class of models of some first-order language, it is
natural to consider K(M) to be the category of all embeddings between models of M
and L(M) to be the category of all homomorphisms between these models. We then
say that M has the mixed pushout property if so does 〈K(M),L(M)〉. We denote by
M the class of all (countable) models that are unions of ω-chains of models from M.

Theorem 8.4. Let M be a countable Fräıssé class of finitely generated models, with
the mixed pushout property. Let W denote the Fräıssé limit of M. Then there exists
a unique (up to isomorphism) homomorphism L : W → W satisfying the following
conditions.

(a) For every X, Y ∈M, for every homomorphism F : X → Y there exist embed-
dings IX : X → W and IY : Y → W such that the square

W
L //W

X

IX

OO

F
// Y

IY

OO

is commutative.

(b) Given finitely generated substructures x0, x1, y0, y1 of W such that L[xi] ⊆ yi
for i < 2, given isomorphisms hi : xi → yi for i < 2 such that L ◦ h0 = h1 ◦ L,
there exist automorphisms Hi : W → W extending hi for i < 2, and such that
L ◦H0 = H1 ◦ L.

Proof. Consider the category C = f (2,K(M),L(M)), where 2 denotes the two-
element poset category. The assumptions above, combined with Lemma 8.3, give
a Fräıssé sequence {`n}n∈ω which translated back to L(M) looks as follows.

u0

`0
��

// u1

`1
��

// . . . // un

`n
��

// . . .

v0 // v1 // . . . // vn // . . .

The horizontal arrows are embeddings and the vertical arrows are homomorphisms
of models. Without loss of generality, we may assume that the horizontal arrows are
inclusions. Now let U =

⋃
n∈ω un, V =

⋃
n∈ω vn and define L =

⋃
n∈ω `n. It is clear

that L satisfies conditions (a) and (b) above. It remains to check that both U and
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V are isomorphic to the M-Fräıssé limit W . For this aim, it suffices to show that
both {un}n∈ω and {vn}n∈ω are Fräıssé sequences in K(M).

It is clear that both sequences satisfy (U), because identity arrows can be viewed
as objects of C.

Fix n ∈ ω and fix an embedding j : un → x, where x ∈ M. Using the mixed
pushout property, we can find an embedding k : vn → y and a homomorphism
f : x → y such that k ◦ `n = f ◦ j. Now f can be regarded as an object of C and
the pair 〈j, k〉 is an arrow of C. Using the Fräıssé property of the sequence {`n}n∈ω,
we find m > n and embeddings j′ : x → um, k′ : y → vm such that `m ◦ j′ = k′ ◦ f
and j′ ◦ j, k′ ◦ k are inclusions. In particular, this shows that {un}n∈ω is Fräıssé and
therefore U = W .

Now fix an embedding i : vn → z. Let g = i ◦ `n. The pair 〈idun , i〉 can be viewed
as a C-arrow into g, therefore by the Fräıssé property of {`n}n∈ω we again find m > n
and embeddings e : un → um, i′ : z → um such that, among other conditions, the
composition i′ ◦ i is the inclusion vn ⊆ vm. This shows that {vn}n∈ω is Fräıssé and
consequently V = W .

Note that the mixed pushout property is needed for concluding that the domain
of the universal homogeneous homomorphism is the Fräıssé limit of the class in
question. Relaxing this by assuming only that embeddings have pushouts among all
homomorphisms, one still gets a homomorphism with properties (a) and (b) above,
whose co-domain is the Fräıssé limit of the considered class of models. It is clear
how to formulate a similar statement for reversed Fräıssé limits, where pushouts are
replaced by pullbacks.

8.3 Embedding-projection pairs

We describe a general construction on a given category, involving retractions. This
construction had been first used by Dana Scott in order to get faithful models of
untyped λ-calculus. It also appears in Droste & Göbel [10] in the context of Scott
domains.

We fix a category K. Define ‡K to be the category whose objects are the objects
of K and a morphism f : X → Y is a pair 〈e, r〉 of arrows in K such that e : X → Y ,
r : Y → X and r ◦ e = idX . We set e(f) := e and r(f) := r, so f = 〈e(f), r(f)〉.
Given morphisms f : X → Y and g : Y → Z in ‡K, we define their composition in
the obvious way:

g ◦ f := 〈e(g) ◦ e(f), r(f) ◦ r(g)〉.

It is clear that this defines an associative operation on compatible arrows. Further,
given an object a ∈ K, pair of the form 〈ida, ida〉 is the identity morphism in ‡K. Thus,
‡K is indeed a category. Note that f 7→ e(f) defines a covariant functor e : ‡K→ K
and f 7→ r(f) defines a contravariant functor r : ‡K → K. Following [10], we shall
call ‡K the category of embedding-projection pairs or briefly EP-pairs. The idea of
considering EP-pairs is to obtain more special Fräıssé sequences, namely we would
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like to obtain a unique cofinal object u in the category of sequences such that every
other x can be both “embedded” into u and “projected” from u. In other words, we
would like to have arrows j : x → u and r : u → x satisfying r ◦ j = idx. We shall
demonstrate this in Example 8.7 below, dealing with the category of finite nonempty
sets.

One can consider a stronger version of arrows between sequences (see Example 8.7
below for more explanations). This leads to the following concept.

Let f : Z → X and g : Z → Y be arrows in ‡K. We say that arrows h : X → W ,
k : Y → W provide a proper amalgamation of f, g if h ◦ f = k ◦ g and moreover
e(g) ◦ r(f) = r(k) ◦ e(h), e(f) ◦ r(g) = r(h) ◦ e(k) hold. Translating it back to the
original category K, this means that the following four diagrams commute:

W Yoo
e(k)oo

X

OO
e(h)

OO

Zoo
e(f)oo

OO
e(g)

OO W
r(k) // //

r(h)
����

Y

r(g)
����

X
r(f) // // Z

W
r(k) // // Y

X

OO
e(h)

OO

r(f) // // Z

OO
e(g)

OO W

r(h)
����

Y

r(g)
����

ooe(k)oo

X Zoo
e(f)oo

We draw arrows // // and // // in order to indicate mono- and epimorphisms
respectively. We shall say that ‡K has proper amalgamations if every pair of arrows
in ‡K with common domain can be properly amalgamated in ‡K.

Below is a useful criterion for the existence of proper amalgamations.

Lemma 8.5. Let K be a category and let f, g be arrows in ‡K with the same domain.
If e(f), e(g) have a pushout in K then f, g can be properly amalgamated in ‡K.

Proof. Let h : X → W and k : Y → W form a pushout of e(f), e(g). Consider the
following diagram:

Z // e(f) // X
r(f) // // Z

Y

r(g)

OOOO

Y

r(g)

OOOO

k
//

idY

11

W

`

FF

j

66

Z

OO
e(g)

OO

//e(f) // X

h

OO

r(f) // //

idX

LL

Z

OO

e(g)

OO

The dotted arrows indicate unique morphisms completing appropriate diagrams, i.e.
j is the unique arrow satisfying equations j ◦ h = e(g) ◦ r(f), j ◦ k = idY and ` is
the unique arrow satisfying equations ` ◦ k = e(f) ◦ r(g), ` ◦ h = idX . Consequently,
〈k, j〉 and 〈h, `〉 are morphisms in ‡K. Set s = r(f) ◦ `. Then

(1) s◦k = r(f)◦`◦k = r(f)◦e(f)◦r(g) = r(g) and s◦h = r(f)◦`◦h = r(f).

Recall that r(f) ◦ e(f) = idZ = r(g) ◦ e(g). Since k, h is a pushout of e(f), e(g), we
deduce that s must be the unique arrow satisfying (1). Now let t = r(g) ◦ j. Similar
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computations show that t ◦ k = r(g) and t ◦ h = r(f), therefore by uniqueness we
deduce that s = t or, in other words, r(f) ◦ ` = r(g) ◦ j. This shows that the full
diagram is commutative and hence 〈k, j〉 and 〈h, `〉 provide a proper amalgamation
of f, g in the category ‡K.

As an example, if K is the category of nonempty sets, then Lemma 8.5 says that
category ‡K has proper amalgamations. We show below that not all amalgamations
in ‡K are proper.

Example 8.6. Consider the category of nonempty finite sets Set+. Let a, b, c, d
be pairwise distinct elements and set Z = {a}, X = {a, b}, Y = {a, c} and W =
{a, b, c}. We are going to define arrows f : Z → X, g : Z → Y , h : X → W and
k : Y → W in the category ‡Set+. Let e(f), e(g), e(h) and e(k) be the inclusion
maps and let r(f) and r(g) be the obvious constant maps. Finally, let r(h)(c) = a
and r(k)(b) = c. This already defines r(h) and r(k), since these maps must be
identity on the ranges of e(h) and e(k) respectively. It is clear that h ◦ f = k ◦ g, i.e.
h, k amalgamate f, g in the category ‡Set+. On the other hand, e(g) ◦ r(f)(b) = a
and r(k) ◦ e(h)(b) = c, therefore e(g) ◦ r(f) 6= r(k) ◦ e(h). Note that actually
e(f) ◦ r(g) = r(h) ◦ e(k) holds, although redefining r(h)(c) to b we can even get
e(f) ◦ r(g) 6= r(h) ◦ e(k).

Now assume that K is a countable category with pushouts. Then ‡K has proper
amalgamations and, assuming it is directed, it has a unique Fräıssé sequence ~u. Every
other sequence in ‡K has a proper arrow into ~u. This turns out to be non-trivial even
in one of the simplest cases, as we describe below.

Example 8.7. Let Set+ denote the category of nonempty finite sets. It is clear that
monomorphisms have pushouts in Set+, therefore it has proper amalgamations. We
claim that σ(‡Set+) is isomorphic to the following category L. The objects of L are
pairs of the form 〈K,D〉, where K is a totally disconnected compact metric space
and D ⊆ K is a countable dense set. An arrow from 〈K,D〉 to 〈L,E〉 is a pair of
functions 〈j, f〉, where j : D → E, f : L→ K, f ◦ j = idD and f is continuous.

Given a sequence ~x in ‡Set+, we take D to be the co-limit of e[~x] in the category
of sets. Clearly, D is a countable set. Now take K to be the inverse limit of r[~x] in
the category of topological spaces. Why do we mention topology here? As we shall
see in a moment, arrows correspond to continuous quotients. Clearly, K is compact
metrizable and totally disconnected. Observe that there is a canonical embedding of
D into K. Thus, we may think of D as a subset of K. Notice that every projection
from K to an element of the sequence r[~x] is a continuous quotient; in other words,
it corresponds to a partition into clopen sets.

Fix two sequences ~x, ~y in ‡Set+ and fix an arrow ~f : ~x → ~y. Let 〈K,D〉 and
〈L,E〉 be the L-objects corresponding to ~x and ~y, respectively. Notice that the
sequence e(fn) “converges to a one-to-one map j : D → E, and the sequence r(fn)
“converges” to a continuous quotient f : L → K. Clearly, f ◦ j = idD. By this way
we have described a functor from σ(‡Set+) into L.
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Now fix an L-object 〈K,D〉 and write D = {dn}n∈ω. Assume D is infinite and
its enumeration is one-to-one. Construct inductively partitions Un of K into clopen
sets, in such a way that for each U ∈ Un there is a unique index i 6 n such that
di ∈ U . Let Dn = {d0, . . . , dn} and define rn : K → Dn so that r−1

n (di) ∈ Un and
rn(di) = di for i 6 n. Let en : Dn → D be the inclusion. Set x∞n = 〈en, rn〉. Then x∞n
is a ‡Set+ arrow and for each n < m there is a unique ‡Set+-arrow xmn satisfying
x∞n = x∞m ◦ xmn . It is clear that this defines a sequence ~x in ‡Set+ which induces
the L-object 〈K,D〉. Call an L-arrow proper if it corresponds to a proper arrow of
sequences in ‡Set+.

Claim 8.8. An L-arrow f : 〈K,D〉 → 〈L,E〉 is proper if and only if f = 〈j, r〉,
where j : K → L, r : L → K are continuous maps such that j[D] ⊆ E, r[E] ⊆ D,
and r ◦ j = idK.

The last three conditions actually imply that r[E] = D.

Proof. It is clear that a proper arrow of sequences induces a pair 〈j, r〉 satisfying the
conditions above. Fix continuous maps j : K → L, r : L→ K satisfying r ◦ j = idK
and j[D] ⊆ E, r[E] = D. Without loss of generality, we may assume that L ⊆ K,
j is the inclusion, and D = E ∩ L. Choose a chain {Dn}n∈ω of finite subsets of D
such that

⋃
n∈ωDn = D. Choose inductively finite sets En ⊆ E so that Dn ⊆ En,

r[En] = Dn, and En ⊆ En+1 for n ∈ ω. We can do it in such a way that
⋃
n∈ω En = E,

because r−1[D] ⊇ E. Now observe that fn := 〈en, rn〉 is a ‡Set+-arrow, where en is
the inclusion Dn ⊆ En and rn = r � En. Finally, {fn}n∈ω is a proper arrow from the
sequence {Dn}n∈ω to the sequence {En}n∈ω.

The category ‡Set+ is certainly countable, therefore it has a Fräıssé sequence ~u.
Let C be the inverse limit of r[~u] in the category of sets and let D be the co-limit
of e[~u], also in the category of sets. Then C can be regarded as the Cantor set and
D is its countable dense subset. Note that a proper automorphism h of 〈C,D〉 has
the property that h[D] = D.

By this way we obtain in particular the well-known fact that every totally discon-
nected metric compact space K is a topological retract of the Cantor set. Moreover,
the retraction maps the dense set D ⊆ C onto a given countable dense subset of K.

We finally give examples of improper arrows in σ(‡Set+). Namely, let xn =
{0, . . . , n}, yn = {0, . . . , n,∞}. Then x0 ⊆ x1 ⊆ . . . and y0 ⊆ y1 ⊆ . . . . Let
K = L = ω ∪ {∞}, where ω is discrete and ∞ = limn→∞ n. Given n < m, let
xmn ∈ (‡Set+) be such that e(xnm) is inclusion and r(xmn ) is the retraction mapping
all elements of the set {n + 1, . . . ,m} to n. Let ymn ∈ (‡Set+) be such that e(ymn )
is again inclusion, while r(ymn ) maps the set {n + 1, . . . ,m,∞} to ∞. This defines
ω-sequences ~x and ~y in ‡Set+. Now let fn : xn → yn be defined by fn = 〈en, rn〉,
where en is inclusion and rn maps ∞ to n. Notice that, given n < m, the equation
ymn ◦ fn = fm ◦ xmn holds in ‡Set+, although this amalgamation is not proper.

The sequences ~x and ~y correspond to pairs 〈K,ω〉 and 〈L,L〉 in L, respectively.

The sequence ~f = {fn}n∈ω induces maps e : ω → L and r : L → K, where e is the
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inclusion of ω into L and r is the identity. Note that r[L] 6⊆ ω, therefore 〈e, r〉 is not
proper.

Another example of an improper arrow can be obtained as follows. Consider the
compact space L = Z∪ {−∞,∞}, where Z is the (discrete!) set of the integers and
limn→∞∞ and limn→∞−n = −∞. Let K = Z ∪ {∞} be a quotient of L obtained
by identifying −∞ with ∞. Let r : L → K be the quotient map. Furthermore, let
D = K, E = L, and let e : D → E be the inclusion. We claim that 〈e, r〉 is an
arrow from 〈K,D〉 into 〈L,E〉. Of course, it cannot be proper, because e is even not
continuous.

Let xn = {i ∈ Z : |i| 6 n} ∪ {∞}, yn = {i ∈ Z : |i| 6 n} ∪ {−∞,∞}. Let
xmn be such that e(xmn ) is the inclusion xn ⊆ xm and r(xmn ) is identity on xn and
maps all j ∈ xm \ xn to ∞. Define ymn in a similar manner, with the difference that
r(ymn )(j) = −∞ whenever j < −n and r(ymn )(j) = ∞ whenever j > n. We have
defined sequences ~x and ~y corresponding to 〈K,K〉 and 〈L,L〉, respectively. Finally,
let fn = 〈en, rn〉, where en is the inclusion xn ⊆ yn and rn is a quotient map of yn
onto xn that maps −∞ onto ∞ and satisfies rn ◦ en = idxn . Then ~f = {fn}n∈ω is an
improper arrow of sequences inducing 〈e, r〉.

8.4 The Gurarĭı space

The Gurarĭı space is the unique separable Banach space G satisfying the following
condition:

(G) Given ε > 0, given finite-dimensional Banach spacesX ⊆ Y , given an isometric
embedding f : X → G, there exists an ε-isometric embedding g : Y → G such
that g � X = f .

Recall that a linear operator T : E → F is an ε-isometric embedding if (1+ε)−1‖x‖ <
‖Tx‖ < (1 + ε)‖x‖ holds for every x ∈ E.

The Gurarĭı space was constructed by Gurarĭı [13] in 1966, where it is shown
that it is almost homogeneous in the sense that every linear isometry between finite-
dimensional subspaces of G extends to a bijective ε-isometry of G. Furthermore, an
easy back-and-forth argument shows that the Gurarĭı space is unique up to an ε-
isometry for every ε > 0. The question of uniqueness of G up to a linear isometry was
open for some time, solved by Lusky [31] in 1976, using rather advanced methods.
The first completely elementary proof of the isometric uniqueness of G has been
found very recently by Solecki and the author [28].

It turns out that our framework explains both the existence of G, its isometric
uniqueness and almost homogeneity with respect to isometries (already shown in
[28]). Actually, a better understanding of the Gurarĭı space was one of the main
motivations for our study.

Namely, as in Example 5.2, let B0 and B be the category of finite-dimensional
Banach spaces with linear operators of norm 6 1 and with isometric embeddings,
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respectively. For simplicity, we consider real Banach spaces, although the same ar-
guments work for the complex ones. As mentioned before, 〈B,B0〉 is a normed
category.

It is well known that B has strict amalgamations. Obviously, it is directed. Let
F be the subcategory of B whose objects are Banach spaces of the form 〈Rn, ‖ · ‖〉,
where the norm is given by the formula

‖x‖ = max
i<k
|ϕi(x)|

in which each ϕi is a functional satisfying ϕi[Qn] = Q. Call such a space rational.
An arrow of F is a linear isometry f : Rn → Rm satisfying ϕ[Qn] ⊆ Qm. It is clear
that F is countable.

Lemma 8.9. F is dominating in 〈B,B0〉.

Proof. It is rather clear that F satisfies (D1). In order to see (D2), fix an isometric
embedding f : X → Y , where X is a rational Banach space. We may assume that
X = Rn and Y = X ⊕ Rk and f(x) = 〈x, 0〉 for x ∈ X. Given ε > 0, there exist
functionals ϕ0, . . . , ϕm on Y such that ‖y‖Y is ε/2-close to

‖y‖′ = max
i<m
|ϕi(y)|.

We may assume that ‖ϕi‖ 6 1 for each i < m and that some of the ϕis are extensions
of the rational functionals defining the norm on X. We can now “correct” each non-
rational ϕi so that it becomes rational and the respective norm is ε/2-close to ‖ · ‖′.
Finally, the same map f becomes an isometric embedding ε-close to the original
one, when Y is endowed with the new norm. This shows (D2).

Thus, 〈B,B0〉 is separable, therefore it has a Fräıssé sequence. Example 5.2 shows
that σ(B,B0) has a canonical co-limiting functor onto the category of separable
Banach spaces. We still need to translate condition (G). By a chain of Banach
spaces we mean a chain {Xn}n∈ω, where each Xn is a Banach space and the norm
of Xn+1 extends the norm of Xn for every n ∈ ω.

Lemma 8.10. Let {Gn}n∈ω be a chain of finite-dimensional Banach spaces with
G∞ =

⋃
n∈ω Gn. If G∞ satisfies (G) then {Gn}n∈ω is a Fräıssé sequence in 〈B,B0〉.

Proof. We check that ~G = {Gn}n∈ω satisfies (A). Fix ε > 0 and an isometric em-
bedding f : Gn → Y , where Y is a finite-dimensional Banach space. Using condition
(G) for the map f−1 : f [Gn]→ G∞, we find an ε-isometric embedding h : Y → G∞
such that h(f(x)) = x for every x ∈ Gn. Using the fact that Y is finite-dimensional,
we can find m > n and an ε-isometric embedding h1 : Y → Gm that is ε-close
to h. Finally, define g := (1 + ε)−1h1. Then g : Y → Gm is a B0-arrow, be-
cause ‖g‖ 6 1. Clearly, g is ε-close to h1. Finally, g is 2ε-close to h, therefore
‖g(f(x))− x‖ = ‖g(f(x))− h(f(x))‖ 6 2ε‖x‖ for x ∈ Gn. This shows (A).

Since B0 has the initial object {0}, condition (U) follows from (A).
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It turns out that the converse to the lemma above is also true, because of the
uniqueness of the Fräıssé sequence, up to a linear isometry of its co-limit:

Lemma 8.11. Let ~x, ~y be sequences in B and let ~f : ~x → ~y be an approximate
0-arrow in σ(B,B0). Let X and Y be the co-limits of ~x, ~y in the category of Banach

spaces. Then lim ~f is an isometric embedding of X into Y .

Proof. We may assume that ~x = {Xn}n∈ω, ~y = {Yn}n∈ω are chains of (finite-
dimensional) Banach spaces and that fn : Xn → Yn for each n ∈ ω. Since µ(fn)→ 0,
given ε > 0 there is n0 such that

(1− ε)‖x‖ 6 ‖fn(x)‖ 6 ‖x‖

holds for every n > n0 and for every x ∈ Xn. Since {fn}n∈ω is an approximate arrow,
for each x ∈ Xk, the limit

f(x) = lim
n>k

fn(x)

exists, because {fn(x)}n>k is a Cauchy sequence. Thus f(x) is defined on
⋃
n∈ωXn,

therefore it has a unique extension to a continuous linear operator from X to Y
which is an ε-isometric embedding for every ε > 0. Thus, the extension of f is an
isometric embedding.

Thus, a Fräıssé sequence in 〈B,B0〉 yields an isometrically unique separable
Banach space G, which must be the Gurarĭı space by Lemma 8.10. As we have
mentioned before, an elementary proof of its isometric uniqueness [28] was one of
the main inspirations for studying Fräıssé sequences in the context of metric-enriched
categories.

Remark 1. The work [12] contains a construction of a universal linear operator on
the Gurarĭı space. It is possible to describe it in the language of normed categories.
Namely, the objects of the category K0 are linear operators T : X0 → X1, where X0,
X1 are finite-dimensional Banach spaces and ‖T‖ 6 1. An arrow from T to S is a
pair 〈f0, f1〉 of linear operators of norm 6 1 satisfying S ◦ f0 = f1 ◦ T . Obviously,
K should be the subcategory of all pairs of isometric embeddings. The main lemma
in [12] says that 〈K,K0〉 has the strict amalgamation property. The remaining issues
are easily solved and the Fräıssé sequence in 〈K,K0〉 leads to the universal (almost
homogeneous) linear operator whose domain and range turn out to be isometric to
the Gurarĭı space. The details can be found in [12], actually without referring to
normed categories.

8.5 The pseudo-arc

We describe the universal chainable continuum, known under the name pseudo-arc,
as the limit of a Fräıssé sequence in a suitable metric category. Actually, we shall
work in a normed category of the form 〈K,K〉, so in particular µ = 0 and only the
metric % is relevant.
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Recall that a continuum is a compact connected metrizable space. A continuum
is chainable (also called snake-like) if it is homeomorphic to the limit of an inverse
sequence of quotient maps of the unit interval. In particular, a chainable continuum
maps onto the unit interval and therefore cannot be degenerate.

It turns out that we can restrict attention to piece-wise linear maps:

Proposition 8.12. Every inverse sequence of quotient maps of the unit interval
is equivalent to an inverse sequence of piece-wise linear quotient maps of the unit
interval.

Proof. Let ~f = {fmn }n<m<ω be an inverse sequence of quotient maps of I. We con-
struct inductively piece-wise linear quotient maps gn+1

n : I→ I such that

%(fn+1
n , gn+1

n ) < 2−n/kn

where
kn = Lip

(
g1

0

)
· Lip

(
g2

1

)
· · · · · Lip

(
gnn−1

)
.

Note that every piece-wise linear map is Lipschitz, therefore kn is well defined. We
set gji = gi+1

i ◦ . . . ◦ gjj−1. Finally, ~g = {gmn }n<m<ω is an inverse sequence, easily seen

to be equivalent to ~f .

The following fact can be proved easily, using the linear structure of the unit
interval:

Lemma 8.13. Let ~q = {qmn }n<m<ω be an inverse sequence of quotient maps of the
unit interval with K = lim←− ~q in the category of compact spaces. Denote by qn : K → I
the canonical projection onto the nth element of the sequence. Given a quotient map
f : K → I, for every ε > 0 there exist n ∈ ω and a piece-wise linear quotient map
g : I→ I such that

%(g ◦ qn, f) < ε,

where % is the maximum metric on the space of continuous functions.

Let I be the opposite category of non-expansive piece-wise linear quotient map-
pings of the form

f : 〈I, d0〉 → 〈I, d1〉,

where I is the unit interval and di(s, t) = mi|s− t| for some integer constant mi > 0.
Let I0 = I, that is, we shall really work in a single category I and all arrows,
including approximate arrows of sequences are 0-arrows. In other words, the objects
of I are pairs of the form 〈I, d〉, where d is the usual metric multiplied by a positive
integer constant, needed only for making the maps 1-Lipschitz. In particular, there
are only countably many objects.

We could have defined I equivalently by saying that its objects are intervals of
the form [0, n] with n ∈ N endowed with the usual metric, and arrows are 1-Lipschitz
quotient maps.
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It is clear that I is a metric-enriched category, with the same metric % as in
the case of all nonempty compact metric spaces. It is also clear that I is directed.
The almost amalgamation property follows from the following well known result,
sometimes called the uniformization principle:

Theorem 8.14 (Mountain Climbing Theorem). Let f, g : I → I be quotient maps
that are piece-wise monotone and satisfy f(i) = i = g(i) for i = 0, 1. Then there
exist quotient maps f ′, g′ : I→ I such that f ◦ f ′ = g ◦ g′.

The result above goes back to Homma [14]; the formulation (actually involv-
ing finitely many piece-wise monotone quotient maps) is due to to Sikorski &
Zarankiewicz [41]. Another version, involving two functions that are constant on
no open subintervals of I is due to Huneke [15].

The Mountain Climbing Theorem is usually stated for functions f, g satisfying
f(0) = 0 = g(0) and f(1) = 1 = g(1), whose graphs can therefore be interpreted
as two slopes of the same mountain. The functions f ′, g′ can be interpreted as the
existence of two “mountain climbings” on these slopes with the property that at
each moment of time the travelers have the same altitude (sometimes one of the
travelers has to go backwards). This justifies the name of the theorem. It is rather
clear that given a quotient map f : I → I, there exists a piece-wise linear quotient
map f1 : I→ I such that f1(f(i)) = i for i = 0, 1. As a corollary, we get:

Proposition 8.15. The category I has the strict amalgamation property.

Let us note that the Mountain Climbing Theorem fails for arbitrary quotient
maps of the unit interval; an example was first found by Minagawa (quoted in
Homma [14]) and independently by Sikorski & Zarankiewicz [41].

As one can easily guess, I is separable. A natural countable dominating subcat-
egory is described below.

We say that a quotient map f : I→ I is rational if f(0) = 0, f(1) = 1, and there
is a decomposition 0 = t0 < t1 < · · · < tn = 1 such that {ti}i<n ⊆ Q, f � [ti, ti+1] is
linear for each i < n and {f(ti)}i<n ⊆ Q. Finally, define F ⊆ I to be the category
of all rational quotient maps. The following fact is rather obvious.

Proposition 8.16. The category F is countable and dominating in I.

It is clear that the category I has a canonical “limiting” functor, which assigns
the inverse limit to a sequence. From now on, let ~u be a Fräıssé sequence in σI and
let

P = lim←− ~u

in the category of compact spaces. It turns out that P is the pseudo-arc. We explain
the details below.

First of all, recall that formally the pseudo-arc is defined to be a hereditarily
indecomposable chainable continuum, which by a result of Bing [5] is known to be
unique. Recall that K is indecomposable if it cannot be written as A ∪ B where
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A,B are proper subcontinua. A continuum K is hereditarily indecomposable if every
subcontinuum of K is indecomposable.

Lemma 8.17. Let ~v = {vmn }n<m<ω be an inverse sequence of quotient maps of the
unit interval. Then lim←−~v is homeomorphic to P if and only if ~v satisfies the following
condition:

(¶) Given n ∈ ω, ε > 0, given a quotient map f : I → I, there exist m > n and a
quotient map g : I→ I such that %(f ◦ g, vmn ) < ε.

Note that in fact condition (¶) does not depend on the metric on I, since all
metrics on a compact space are uniformly equivalent.

Proof. First, by Proposition 8.12, we may assume that all maps vmn are piece-wise
linear. Next, by an easy induction, we can “convert” ~v to a sequence in I. It is clear
that (¶) is preserved under the equivalence of sequences, therefore the “corrected”
sequence still satisfies (¶). Now it is obvious that (¶) is equivalent to condition (A)
of the Fräıssé sequence, since the map f can be approximated by a piece-wise linear
quotient map which in turn can be made 1-Lipschitz by multiplying the metric of I
by a large enough constant.

Thus, if ~v satisfies (¶) then it is equivalent to a Fräıssé sequence which is uniquely
determined, showing that lim←−~v ≈ P . Finally, if lim←−~v ≈ P , then ~v is equivalent to ~u,
therefore it satisfies (¶).

Lemma 8.17 allows us to work in the monoidal category of quotient maps of
the unit interval, endowed with the standard metric. This is formally not a metric-
enriched category, because the composition operator is not 1-Lipschitz, but in prac-
tice this does not cause any trouble.

Lemma 8.18. Every non-degenerate subcontinuum of P is homeomorphic to P .

Proof. Let K be a subcontinuum of P and let Kn = un[K], where un : P → I is
the canonical n-th projection. From some point on, Kn is a non-degenerate interval.
Without loss of generality, we may assume that this is the case for all n ∈ ω. Given
n < m, let vmn : Km → Kn be the restriction of umn . Then ~v = {vmn }n<m<ω is
a sequence in I, an inverse sequence of piece-wise linear quotient maps of closed
intervals. Furthermore, K = lim←−~v. It suffices to check that ~v is a Fräıssé sequence
in I.

Fix n ∈ ω, ε > 0 and fix a piece-wise linear quotient map f : I → Fn. Assume
Fn = [a, b], where 0 6 a < b 6 1. Composing f with a suitable quotient map,
we may assume that f(0) = a and f(1) = b. Extend f to a piece-wise linear map
f ′ : [−1, 2] → I in such a way that f ′[[−1, 0]] = [0, a] and f ′[[1, 2]] = [b, 1]. We can
treat [−1, 2] as the unit interval with multiplied metric. Thus, using the fact that ~u
is Fräıssé, we find m > n and a piece-wise linear quotient map g : I → [−1, 2] such
that %(f ′ ◦ g, umn ) < ε. Note that g[Fm] is ε-close to [a, b], therefore we can “correct”
g so that g[Fm] = [a, b], replacing ε by 3ε. Finally, g � Fm witnesses that ~v satisfies
condition (A) of the definition of a Fräıssé sequence.
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Lemma 8.19. P is hereditarily indecomposable.

Proof. In view of Lemma 8.18, it suffices to show that P is indecomposable. For this
aim, suppose P = A∪B, where A,B are proper subcontinua of P . Let An = un[A],
Bn = un[B], where as before, un is the canonical nth projection. Fix n ∈ ω such that
both An and Bn are non-degenerate proper intervals. Without loss of generality, we
may assume that An = [0, a], Bn = [b, 1], where 0 < b 6 a < 1. Let f : I → I be
the tent map, that is, f(t) = 2t for t ∈ [0, 1

2
] and f(t) = 1

2
− 2t for t ∈ [1

2
, 1]. Then

f−1[An] = [0, s]∪ [t, 1], where s = a
2

and t = 1− a
2
> s. Furthermore, f is 2-Lipschitz

with respect to the standard metric, therefore multiplying the metric in the domain
of f by 2 we obtain a 1-Lipschitz piece-wise linear quotient map. Fix a small enough
ε > 0. Using property (A) of the Fräıssé sequence, we find m > n and a quotient
map g : I→ I such that %(f ◦ g, umn ) < ε.

Notice that J = g[Am] is an interval, therefore if ε is small enough then either
J ∩ [0, s] = ∅ or J ∩ [t, 1] = ∅. This means that either [0, s] ⊆ g[Bm] or [t, 1] ⊆
g[Bm]. In particular, there is r ∈ Bm such that g(r) ∈ {0, 1}. On the other hand,
d(f(g(r)), umn (r)) = d(0, umn (r)) < ε, where d is the metric in the nth interval of the
sequence ~u. Notice that umn (r) ∈ umn [Bm] = Bn. Thus, if ε < d(0, b) then we get a
contradiction.

The two lemmas above together with Bing’s uniqueness result [5] give

Corollary 8.20. P is the pseudo-arc.

Applying Theorem 7.4, we obtain another proof of the result of Mioduszewski [34]:

Theorem 8.21. Every chainable continuum is a continuous image of the pseudo-
arc.

Almost homogeneity can be easily strengthened, obtaining the result of Irwin
& Solecki [16] which in turn improves a result of Lewis (sketched after Thm. 4.2
in [30]):

Theorem 8.22. Let K be a chainable continuum with some fixed metric and let
p, q : P → K be quotient maps. Then for each ε > 0 there exists a homeomorphism
h : P → P such that %(q ◦ h, p) < ε.

Proof. Using the fact that K is the inverse limit of unit intervals, there is a quotient
map f : K → I such that all f -fibers have diameter < ε. A standard compactness
argument shows that f satisfies the following condition:

(?) (∀ s, t ∈ K) |f(s)− f(t)| < δ =⇒ d(s, t) < ε.

Now let p′ = f ◦p and q′ = f ◦q. By Lemma 8.13, both p′, q′ come from approximate
arrows, therefore by Theorem 7.3, there is a homeomorphism h : P → P such that
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%(q′ ◦ h, p′) < δ. We have the following diagram, in which the upper triangle is
δ-commutative and the side-triangles are commutative.

P
h //

p

��

p′

��1
111111111111 P

q

��

q′

��

K
f
// I K

f
oo

Finally, condition (?) gives %(q ◦ h, p) < ε.

As one can guess, the property in Theorem 8.22 characterizes the pseudo-arc
among chainable continua. This has already been proved by Irwin & Solecki [16].
Our results actually provide a new, even simpler, characterization of the pseudo-arc:

Theorem 8.23. A chainable continuum K is homeomorphic to P if and only if it
satisfies the following condition:

(P) Given ε > 0, given quotient maps q : K → I, f : I→ I, there exists a quotient
map g : K → I such that %(f ◦ g, q) < ε.

Proof. By Theorem 8.22, P satisfies condition (P). Now suppose that K satisfies
(P) and choose a sequence ~v in I whose inverse limit is K. We shall check that ~v is
a Fräıssé sequence. In fact, only condition (A) requires a proof.

Fix n ∈ ω, ε > 0 and fix a piece-wise linear quotient map f : I → I. Let, as
usual, vn : K → I be the nth canonical projection. Using (P), we find a quotient
map p : K → I such that %(f ◦ p, vn) < ε/2. By Lemma 8.13, there exist m > n and
a piece-wise linear quotient map g : I→ I such that %(g ◦ vm, p) < ε/2. Thus we get

%(f ◦ g ◦ vm, vmn ◦ vm) 6 %(f ◦ g ◦ vm, f ◦ p) + %(f ◦ p, vn) < ε

and so %(f ◦g, vmn ) < ε, because vm is a quotient map. This shows (A) and completes
the proof.

As noticed at the beginning of the proof above, condition (P) easily follows
from Theorem 8.22. A direct proof of the converse implication would require the
approximate back-and-forth argument, which is hidden in the proof of Lemma 7.1
above.
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in Israel J. Math. 8.4, 8.4

[29] Kunen, K., Set theory , vol. 102 of Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Co., Amsterdam, 1983.

[30] W. Lewis, Most maps of the pseudo-arc are homeomorphisms , Proc. Amer.
Math. Soc. 91 (1984) 147–154 8.5

41



[31] W. Lusky, The Gurarij spaces are unique, Arch. Math. (Basel) 27 (1976)
627–635.q 8.4

[32] Mac Lane, S., Categories for the working mathematician. Second edition.
Graduate Texts in Mathematics, 5. Springer-Verlag, New York, 1998. 1

[33] Macpherson, D., A survey of homogeneous structures , Discrete Math. 311
(2011) 1599–1634. (document)

[34] J. Mioduszewski, A functional conception of snake-like continua, Fund.
Math. 51 (1962/1963) 179–189. 8.5

[35] Morley, M.; Vaught, R., Homogeneous universal models , Math. Scand. 11
(1962) 37–57. (document)

[36] Negrepontis, S., The Stone space of the saturated Boolean algebras , Trans.
Amer. Math. Soc. 141 (1969) 515–527.
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morphism of sequences, 7

norm, 11
normed category, 11

– directed, 18
– separable, 18

proper amalgamation, 29
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