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Abstract

A new entropy criterion (maximal dissipation condition) for the quasilinear wave
equation with generally non-monotone nonlinearity is introduced and tested on self-
similar solutions of the corresponding Riemann problem. It is shown that the maxi-
mally dissipating solution exists and it is uniquely determined. The relation between
the maximal dissipation principle and other entropy criteria is discussed.
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Introduction

Introducing hysteresis into hyperbolic equations makes the problem easier. This fact
has already been recognized recently [Kre-1989, 1993]. The present paper is based on
another point of view: we do not assume any a priori hysteretic structure in a quasilinear
wave equation and we show that nevertheless, convex hysteresis appears as a natural
consequence of the maximal dissipation principle.
It is well known that systems of hyperbolic conservation laws of the type

(i) ut + f(u)x = 0, x ∈ R1, t > 0,

where u(x, t) is the vector (u1(x, t), . . . , un(x, t)), n ∈ N, and f : Rn → Rn is a given
function, do not admit in general global regular solutions satisfying a given initial condi-
tion u(x, 0) = u0(x) even if the data are smooth, and that weak solutions may be multiple
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if f is nonlinear, unless additional criteria are fulfilled [Lax-1957]. These criteria (usu-
ally called entropy conditions) have been tested on the well-known Riemann problem for
equation (i) which consists in choosing initial data

(ii) u(x, 0) :=

{
u− for x < 0,
u+ for x ≥ 0,

where u−, u+ ∈ Rn are given constant vectors.
When listing the existing entropy conditions, we must remind at least the following ones:

(iii) Lax’ shock condition [Lax-1957],

(iv) condition η(u)t + q(u)x ≤ 0 with a given entropy pair (η, q) [Kru-1970, Lax-1971],

(v) viscosity admissibility criterion [Liu-1976],

(vi) Liu’s shock admissibility criterion [Liu-1981],

(vii) maximal entropy rate criterion [Daf-1973].

(viii) viscosity-capillarity criterion [She-1986].

Under various assumptions on f and/or u−, u+, existence and uniqueness for the problem
(i), (ii) has been established. For a survey of the results see e.g. [Chang] and the references
cited there. While for n = 1 the theory is fairly complete, starting from n = 2 considerable
difficulties can appear. This has been many times demonstrated on the so-called p-system
(e.g. [Smo])

(ix)

{
wt + p(v)x = 0,
vt − wx = 0.

Here, the hyperbolicity is implied by p′(v) < 0 and the complication begins when p is not
convex (concave) or even monotone in the whole range of v. The Riemann problem for
(ix) in the case of nonconvex p has been treated under various entropy conditions and
various assumptions on p [Lei-1974, Liu-1974, Wen-1972, Zum-1993 etc.].
In this paper we concentrate our attention to the equation

(x) utt − g(ux)x = 0

arising from (ix) for g = −p by a formal elimination of v and w. In fact, all what is
assumed about g is that it is locally Lipschitz continuous.

We find a general uniqueness condition based on the maximal dissipation principle which
yields a unique solution of the Riemann problem for (x) in the class of regulated self-
similar solutions. Our approach is close to that of Dafermos [Daf-1973] and Leibovich
[Lei-1974]. We apply the maximal dissipation principle locally in space, while Dafermos
requires that the admissible solution maximizes the total entropy rate. It appears that
maximally dissipating solutions are those which minimize the L2-norm. Geometrically,
shocks are allowed only along the boundary of the convex hull of the graph of g similarly
as in [Lei-1974]. Maximal dissipation principle thus imposes a convex hysteretic behavior
to the equation (x). This also explains, why equation (x), where a single-valued function
g is replaced by a convex hysteresis operator, admits regular solutions [Kre-1989, 1993].
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An important feature of the technique developed below is that it fits also to the case where
g is not monotone, which corresponds to the non-strictly hyperbolic case studied e.g. in
[Fan-1992], [Hat-1986], [Key-1986], [She-1982], [She-1986]. Keyfitz [Key-1986] replaces the
one-valued constitutive relation by a hysteretic one, while Shearer [She-1982] applies Liu’s
criterion or a so-called viscosity-capillarity criterion [She-1986]. The viscosity-capillarity
approach is also applied in [Fan-1992] to obtain a unique solution of the Riemann problem
with g non-monotone. Dafermos maximal entropy rate criterion is applied in [Hat-1986] to
a special class of solutions. In what follows we enlarge results of this kind by constructing
a unique minimal solution of the Riemann problem according to our minimality condition
(see Definition 4.3 below).
Our paper is organized as follows. In Sect. 1 we present general well-known facts about
self-similar solutions in order to preserve the self-consistency. In Sect. 2 we show how to
construct a continuum of piecewise constant self-similar solutions of the Riemann problem
for equation (x). Sect. 3 is then devoted to the correspondence between intervals of
monotonicity of self-similar solutions and convex (concave) trajectories along the graph
of the constitutive function g. In Sect. 4 the maximal dissipation principle is applied to
the set of self-similar solutions to derive the L2-minimality condition. The aim of Sect.
5 is to show that our minimality condition ensures existence and uniqueness of solutions
to the Riemann problem and provide an explicit construction of the minimal solution. In
Sect. 6 it is shown that this minimal solution always satisfies the entropy condition (iv)
above. In the convex (concave) case, both criteria are equivalent. In Sect. 7 we prove
that the minimal solution is a pointwise limit of viscous solutions. Finally in Sect. 8, the
L2-minimality criterion is compared with entropy conditions (iii), (vi), (vii). The question
of relationship between the minimality and viscosity-capillarity criteria is open.

Acknowledgement. A large part of this work was done during the first author’s stay at
the University of Kaiserslautern under the support of the Alexander von Humboldt Foun-
dation in Bonn. The authors are indebted to Martin Brokate for stimulating discussions
and encouragement.

1. Self-similar solutions.

In this section we introduce the problem, reformulate it for self-similar solutions and
derive some well-known facts related to the Riemann problem.

Assumption 1.1. We are given a function g : (U−, U+)→ R1 which is locally Lipschitz
continuous and such that G− := g(U−+) < g(u) < g(U+−) =: G+ for all u ∈ (U−, U+)
where U−, G− ∈ R1 ∪ {−∞}, U+, G+ ∈ R1 ∪ {∞}. For an arbitrary compact set K ⊂
(U−, U+) we define
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LK := sup

{
g(u)− g(v)

u− v
; u, v ∈ K, u = v

}
. (1)

Throughout the paper, this will be the only assumption concerning g (except for some
technical auxiliary lemmas and part of Sect. 6).

Definition 1.2. A function u : R1× [0, T ]→ R1 is called a weak solution to the equation

utt − g(ux)x = 0, (2)

if u is continuous in R1 × [0, T ], ut, ux ∈ L∞(R1 × (0, T )) ∩ C([0, T ];L2
loc(R

1)), ux(x, t)

belongs to a compact subset of (U−, U+) for a.e. (x, t) ∈ (0, T )×R1 and the identity

∫ T

0

∫ ∞

−∞
(utϕt − g(ux)ϕx)dxdt = 0 (3)

holds for every ϕ ∈ D(R1 × (0, T )), where D(Ω) denotes the set of C∞ functions with a
compact support in Ω.

Definition 1.3. A weak solution u to equation (2) is called self-similar, if there exists a
function f : R1 → R1 such that

u(x, t) = tf
(
x

t

)
(4)

for every (x, t) ∈ R1 × (0, T ).
Proposition 1.4. Let u be a weak self-similar solution to (2). Then f is absolutely
continuous, v(z) = f ′(z) belongs to a compact subset of (U−, U+), the function z �−→
z2v(z)− g(v(z)) is equal to an absolutely continuous function almost everywhere and the
equation

(
z2v(z)− g(v(z))

)′
= 2zv(z) (5)

is satisfied almost everywhere.

Proof. The function f is absolutely continuous, since u(·, t) is absolutely continuous for
almost all t. On the other hand, we have f ′(z) = ux(zt, t), hence v = f ′ belongs to
L∞(R1), and ut(zt, t) = f(z)− zf ′(z). We can rewrite identity (3) in the form∫ T

0

∫ ∞

−∞
[(f(z)− zf ′(z))tϕt(zt, t)− g(f ′(z))tϕx(zt, t)] dzdt = 0

for all ϕ ∈ D(R1 × (0, T )). The function ψ(z, t) := ϕ(zt, t) belongs also to D(R1 × (0, T )),
hence the identity

∫ ∞

−∞

[ (
zf(z)− z2f ′(z) + g(f ′(z))

) ( ∫ T

0
ψz(z, t)dt

)

− (f(z)− zf ′(z))
( ∫ T

0
tψt(z, t)dt

)]
dz = 0
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holds for any ψ ∈ D(R1 × (0, T )).
Putting η(z) =

∫ T
0 ψ(z, t)dt we obtain∫ ∞

−∞

[(
zf(z)− z2f ′(z) + g(f ′(z))

)
η′(z) + (f(z)− zf ′(z)) η(z)

]
dz = 0 (6)

for any η ∈ D(R1).
Identity (6) entails that the function z �−→ zf(z) − z2f ′(z) + g(f ′(z)) is equal to an
absolutely continuous function almost everywhere and its derivative is equal to f(z) −
zf ′(z) a.e. Since f is absolutely continuous, we obtain easily the assertion. ✷

Lemma 1.5. (Rankine-Hugoniot condition) Let v satisfy equation (5) and let us assume

that there exist z0 ∈ R1 and sequences z
(n)
1 → z0, z

(n)
2 → z0 such that v(z

(n)
i → vi, i = 1, 2,

v1 = v2. Then we have

z2
0 =

g(v2)− g(v1)

v2 − v1

. (7)

Proof. We just notice that (7) is a necessary and sufficient condition for the continuity
of the function z �−→ z2v(z)− g(v(z)) at the point z = z2. ✷

Remark 1.6. We always assume that the values of v(z) are chosen in such a way that
the function z �→ z2v(z)− g(v(z)) is absolutely continuous.

Proposition 1.7. Let K ⊂ (U−, U+) be a compact interval and let v be a solution of
equation (5) such that v(z) ∈ K a.e. Then there exist constants V+, V− ∈ K, b > 0, G0 ∈
(G−, G+) such that g(v(0+)) = g(v(0−)) = g(v(0)) = G0 and

v(z) =

{
V− for z < −√

b,

V+ for z >
√
b.

(8)

Proof. Put b : = LK , where LK is given by (1). Assume that ε > 0 is arbitrarily chosen
and put z0 =

√
b+ ε. For every z > z0 (5) entails

z2 (v(z)− v(z0))− (g(v(z))− g(v(z0))) =
∫ z

z0
2ξ (v(ξ)− v(z0)) dξ.

The assumption | g(v(z))− g(v(z0)) |≤ b | v(z)− v(z0) | implies

ε | v(z)− v(z0) |≤
∫ z

z0
2ξ | v(ξ)− v(z0) | dξ

and Gronwall’s lemma yields v(z) = v(z0), hence v is constant in (
√
b,∞). The same

argument works in (−∞,−√
b). The continuity at 0 follows from Lemma 1.5 and Remark

1.6. ✷

Identity (5) is a necessary condition for u given by (4) to be a weak self-similar solution
to (2). We will see that this condition is also sufficient.
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Theorem 1.8. Let v satisfy the hypotheses of Proposition 1.7. Put V̄ :=
∫ ∞
−∞(v(z) −

P0(z))dz, where P0 is the function

P0(z) :=

{
V+, z ≥ 0,
V−, z < 0,

(9)

and V−, V+ are as in (8). Then the function u(x, t) given by (4), where f is defined by
the formula

f(z) :=
∫ z

0
v(ξ)dξ +

∫ 0

−∞
(v(ξ)− P0(ξ)) dξ +K

with an arbitrary constant K ∈ R1, is a weak solution to equation (2) in R1 × (0,∞) and
satisfies the initial conditions

u(x, 0) =

{
V+x for x ≥ 0
V−x for x < 0

, ut(x, 0) =

{
D+ for x ≥ 0
D− for x < 0

, (10)

where D+ = K + V̄ , D− = K.

Proof. We only have to verify that the integrals∫ ∞

−∞
| ut(x, t)− ut(x, 0) |2 dx,

∫ ∞

−∞
| ux(x, t)− ux(x, 0) |2 dx

tend to 0 as t→ 0+. Then u(·, t)→ u(·, 0) locally uniformly as t→ 0+, since

| u(x, t)− u(x, 0) | ≤ | u(0, t)− u(0, 0) | +
∫ x

0
| ux(ξ, t)− ux(ξ, 0) | dξ

= t | f(0) | + | x |1/2
(∫ x

0
| ux(ξ, t)− ux(ξ, 0) |2 dξ

)1/2

.

By Proposition 1.7, we have ux(x, t) = ux(x, 0) = V+ for x > t
√
b and ux(x, t) = ux(x, 0) =

V− for x < −t√b, hence
∫ ∞

−∞
| ux(x, t) − ux(x, 0) |2 dx =

∫ t
√
b

−t
√
b
| ux(x, t)− ux(x, 0) |2 dx

= t

[∫ √
b

0
| v(z)− V+ |2 dz +

∫ 0

−√
b
| v(z)− V− |2 dz

]
→ 0

and similarly for ut. ✷

Conclusion 1.9. The problem of finding weak self-similar solutions to equation (2) satis-
fying initial conditions (10) (the so-called Riemann problem) is equivalent to the problem
of solving equation (5) with conditions

v(z) =

{
V+ for z → +∞
V− for z → −∞ ,

∫ ∞

−∞
(v(z)− P0(z)) dz = V̄ , (11)

where V̄ = D+ −D− and P0 is given by (9).
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2. Piecewise constant solutions.

We devote this section to an important class of piecewise constant solutions. We start
with a well-known result.

Proposition 2.1. Let z1 < . . . < zN be a given sequence and let v0, v1, . . . , vN ∈ (U−, U+)
be given. Then the piecewise constant function

v(z) =



v0 for z < z1,
vk for z ∈ (zk, zk+1), k = 1, . . . , N − 1,
vN for z > zN

(12)

can be extended to a solution of equation (5) if and only if z2
k =

g(vk)−g(vk−1)
vk−vk−1

for all

k ∈ {1, . . . , N} such that vk = vk−1.

Proof. The assertion is an immediate consequence of Lemma 1.5, since any constant
function satisfies equation (5). ✷

The following statements show that piecewise constant solutions always exist and that
they are not uniquely determined by the Cauchy data.

Theorem 2.2. Let g be a nonlinear function satisfying Assumption 1.1 and let V+ =
V− ∈ (U−, U+) and D+ = D− ∈ R1 be given. Then there exist infinitely many distinct
piecewise constant solutions to (5), (11).

For proving Theorem 2.2 we need some auxiliary results. Let us first mention the following
elementary identity.

Lemma 2.3. For all distinct real numbers p, q, r we have

g(p)− g(q)

p− q
− g(q)− g(r)

q − r
=
p− r

q − r

(
g(p)− g(q)

p− q
− g(p)− g(r)

p− r

)
. (13)

We prove the following lemma.

Lemma 2.4. Let (Û−, Û+), (Ĝ−, Ĝ+) be given open intervals such that 0 ∈ (Û−, Û+)∩
(Ĝ−, Ĝ+). Let ĝ : (Û−, Û+) → (Ĝ−, Ĝ+) be a nonlinear function such that ĝ(r)r > 0 for
all r = 0. Then we have either

(i) ∃q < 0 < p; ∀r ∈ (q, 0] ĝ(p)−ĝ(q)
p−q

> ĝ(p)−ĝ(r)
p−r

,

or

(ii) ∃q < 0 < p; ∀r ∈ [0, p) ĝ(p)−ĝ(q)
p−q

> ĝ(r)−ĝ(q)
r−q

.

(14)

Proof of Lemma 2.4. Suppose that for every q < 0 < p there exist r1 ∈ (q, 0] and
r2 ∈ [0, p) such that

ĝ(p)− ĝ(q)

p− q
≤ ĝ(p)− ĝ(r1)

p− r1
,

ĝ(p)− ĝ(q)

p− q
≤ ĝ(r2)− ĝ(q)

r2 − q
.

For a fixed pair (p,q) put
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r̄1 := sup

{
r1 ∈ (q, 0]; ĝ(p)− ĝ(q)

p− q
≤ ĝ(p)− ĝ(r1)

p− r1

}

and

r̄2 := inf

{
r2 ∈ [0, p); ĝ(p)− ĝ(q)

p− q
≤ ĝ(r2)− ĝ(q)

r2 − q

}
.

We obviously have r̄1 = r̄2 = 0, hence

ĝ(p)− ĝ(q)

p− q
− ĝ(p)

p
≤ 0,

ĝ(p)− ĝ(q)

p− q
− ĝ(q)

q
≤ 0.

Identity (13) for r = 0 then entails

ĝ(p)− ĝ(q)

p− q
=
ĝ(p)

p
=
ĝ(q)

q
for all q < 0 < p

which contradicts the assumption that ĝ is nonlinear. ✷

Remark 2.5. If g is nonlinear, then there exist in fact infinitely many pairs (p,q) satisfy-
ing (i) or (ii) of Lemma 2.4. Let us assume for instance that (i) holds for some q < 0 < p.

Then the function γ(r) := g(p)−g(r)
p−r

is continuous for r ∈ [q, 0] and satisfies γ(r) < γ(q)

∀r ∈ (q, 0].
For each c ∈ (γ(0), γ(q)) we can put qc := max{r ∈ (q, 0); γ(r) = c}. Then (i) holds for
all pairs (p, qc).

Proof of Theorem 2.2. First, by Proposition 2.1 it is clear that the function (12) is a
solution of the problem (5), (11) if and only if the following conditions are fulfilled

(i) v1 = V−, vN = V+;

(ii) z2
k =

g(vk)−g(vk−1)
vk−vk−1

;

(iii)
∑N−1

k=1 zk(vk − vk+1) = D+ −D−.
(15)

Put V := V+ = V−, ĝ(r) := g(r + V ) − g(V ) for r ∈ (α, β) := (U− − V, U+ − V ). We
distinguish four cases (see Fig. 1).
A. ĝ(r)r > 0 for r ∈ (α, β) \ {0} and (14)(i) holds for some α < q < 0 < p < β.
For some r ∈ (q, 0) which will be specified later we define

z1 : = −
√
ĝ(q)

q
, z2 : = −

√
ĝ(p)− ĝ(q)

p− q
, z3 : = −

√
ĝ(p)− ĝ(r)

p− r
, z4 : =

√
ĝ(r)

r
, (16)

and

v(z) : =




V for z < z1,
V + q for z ∈ (z1, z2),
V + p for z ∈ (z2, z3),
V + r for z ∈ (z3, z4),
V for z > z4.

(17)
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Lemma 2.4 ensures that we have z1 < z2 < z3 < z4 and v defined by (17) is a solution
to (5),(11) provided that the condition (15)(iii) holds. Here it reads

−
√
ĝ(q)q +

√
(ĝ(p)− ĝ(q))(p− q)−

√
(ĝ(p)− ĝ(r))(p− r)−

√
ĝ(r)r = 0. (18)

Let us denote by h(r) the left-hand side of equation (18). We have h(0) > 0, h(q) < 0,
hence (18) is satisfied for a suitable r ∈ (q, 0).

B. ĝ(r)r > 0 for r ∈ (α, β) \ {0} and (14)(ii) holds for some α < q < 0 < p < β.
Analogously as above we define for s ∈ (0, p)

z1 : = −
√
ĝ(p)

p
, z2 : = −

√
ĝ(p)− ĝ(q)

p− q
, z3 : = −

√
ĝ(s)− ĝ(q)

s− q
, z4 : =

√
ĝ(s)

s
(19)

and

v(z) : =




V for z < z1,
V + p for z ∈ (z1, z2),
V + q for z ∈ (z2, z3),
V + s for z ∈ (z3, z4),
V for z > z4.

(20)

Similarly as in the case A we check that v solves (5),(11) provided s ∈ (0, p) is a
solution of the equation√

pĝ(p)−
√
(ĝ(p)− ĝ(q))(p− q) +

√
(ĝ(s)− ĝ(q))(s− q) +

√
sĝ(s) = 0. (21)

Denoting by h̃(s) the left-hand side of equation (21) we easily obtain h̃(0) < 0, h̃(p) > 0,
hence (21) holds for some s ∈ (0, p).

C. There exists p > 0 such that ĝ(p) = 0. We then put r0 : = min{r ≤ 0; ĝ(r) ≥ 0}
and fix some q0 ∈ (α, r0).

For an arbitrary γ ∈
(
0, ĝ(q0)

q0−p

)
put q : = max{r ∈ [q0, r0]; ĝ(r)r−p

= γ}. By Proposition
2.1, the function v defined by (16), (17) for some r ∈ (q, r0) is a solution to (5),(11)
provided that the condition (18) holds. For the auxiliary function h(r) as above we
have h(r0) > 0, h(q) < 0 with the same conclusion as above.
D. There exists q < 0 such that ĝ(q) = 0. We put s0 : = max{r ≥ 0; ĝ(r) ≤ 0} and fix

some p0 ∈ (s0, β). For an arbitrary γ ∈ (0, ĝ(p0)
p0−q

) put p : = min{s ∈ [s0, p0];
ĝ(s)
s−q

= γ}.
For s ∈ (s0, p) we define the function v by formulas (19),(20). Similarly as in the
previous cases we choose s such that the equation (21) is satisfied.
It remains to check that there exist in fact infinitely many solutions of the form above.
This is obvious in the cases C and D, where for each γ we obtain a different solution;
cases A,B follow from Remark 2.5. ✷

Remark 2.6. The situation is simple if g is linear. Then g(u) = bu and there is a unique
solution of Problem (5),(11) with V̄ =

√
b(2V0 − V+ − V−).
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3. Locally monotone solutions.

In this section we identify locally monotone solutions to equation (5) with their trajecto-
ries along the graph of the constitutive function g. We introduce the concept of convex
(concave) path along g which corresponds to intervals where the solution increases (de-
creases, respectively).
Taking into account Proposition 1.7, it is convenient to investigate the equation (5) sep-
arately for z > 0 and z < 0. In fact, putting for s > 0

w+(s) := v(
√
s), w−(s) := v(−√

s), (22)

we see that both w+ and w− satisfy the equation

(sw(s)− g(w(s)))′ = w(s) for a.e. s > 0 (23)

with boundary conditions

g(w(0)) = Q, w(s) = V for s large, (24)

where Q = g(v(0)) and V = V+ or V− respectively.
Let us start with an auxiliary lemma.

Lemma 3.1. Let w : [s1, s2] be a monotone function, w(s1) = v1, w(s2) = v2 and let
its inverse w−1 be defined by the formula

w−1(u) : =

{
supΓ−(u) for u ∈ [v2, v1] if w is nonincreasing,
supΓ+(u) for u ∈ [v1, v2] if w is non-decreasing,

(25)

where Γ± : = {s ∈ [s1, s2];±w(s) ≤ ±u}. Then we have

(i)
∫ s2
s1
w(s)ds +

∫ v2
v1
w−1(u)du = s2v2 − s1v1,

(ii)
∫ s2
s1
w2(s)ds+ 2

∫ v2
v1
uw−1(u)du = s2v

2
2 − s1v

2
1.

(26)

Proof. Both assertions follow from Fubini’s theorem. We consider just the case of w
non-decreasing (otherwise we pass from w to −w).
Let K be the rectangle [s1, s2] × [v1, v2]. We define the maximal monotone graph
Γ1 : = {(s, u) ∈ K; w(s−) ≤ u ≤ w(s+)}, where we put w(s1−) : = w(s1), w(s2+) : =
w(s2), and the sets A1 : = {(s, u) ∈ K; v1 ≤ u < w(s−)}, B1 : = {(s, u) ∈ K;w(s+) <
u ≤ v2}. The function w−1 is non-decreasing in [v1, v2] and we have B1 = {(s, u) ∈
K; s1 ≤ s < w−1(u−)}, K = Γ1 ∪ A1 ∪B1, A1 ∩B1 = ∅, meas Γ1 = 0, hence

(s2 − s1)(v2 − v1) =
∫
A1

du ds+
∫
B1

ds du =
∫ s2

s1
(w(s)− v1)ds+

∫ v2

v1
(w−1(u)− s1)du

and (26) (i) follows easily.
To prove (26) (ii) we consider the cylinder in cylindrical coordinates

C : = {(r, ϕ, s); r ∈ [0, v2 − v1], ϕ ∈ [0, 2π], s ∈ [s1, s2]},
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we define the sets

Γ2 := {(r, ϕ, s) ∈ C; (s, r + v1) ∈ Γ1}
A2 := {(r, ϕ, s) ∈ C; (s, r + v1) ∈ A1}
B2 := {(r, ϕ, s) ∈ C; (s, r + v1) ∈ B1}

and argue as above. ✷

Formulas (26) enable us to identify monotone solutions of (23) with their trajectories in
the phase plane. This will be done in the next three lemmas.

Lemma 3.2. Let V ∈ (U−, U+) and Q ∈ (G−, G+) be given and let w be a
solution of (23), (24) which is monotone in (0,∞), w(0+) =: V0 ∈ g−1(Q), w(+∞) =
V . Let w−1 be the inverse of w according to formula (25). For v ∈ [min{V0, V },
max{V0, V }] put

g∗(v) : = Q+
∫ v

V0

w−1(u)du. (27)

Then g(w(s)) = g∗(w(s)) for all s > 0.

Proof. By Lemma 3.1 and equation (23) we have for each s > 0∫ w(s)

V0

w−1(u)du = sw(s)−
∫ s

0
w(σ)dσ − g(w(s))−Q,

hence g∗(w(s)) = g(w(s)) by definition of g∗. ✷

The function y = g∗(v) describes the trajectory of the solution w along the strain-
stress diagram y = g(v) (see Fig. 2). From Lemma 3.2 we immediately derive two
important properties, namely

(i) g∗ is convex and increasing in [V0, V ] if w is non-decreasing
and concave and increasing in [V0, V ] if w is nonincreasing,

(ii) if g∗(v) = g(v) for some v ∈ (min{V0, V },max{V0, V }),
then g∗ is affine in a neighborhood of v.

(28)

ononononononon
V0 V

y = g(u)

y = g∗(u)

u

Fig. 2

�onononononononon
V V0

y = g(u)

y = g∗(u)

u
�

The proof of the converse of Lemma 3.2 is slightly more complicated.
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Lemma 3.3. (i) Let V0, V ∈ (U−, U+) be given such that V0 < V, g(V0) < g(V ),
and let g∗ : [V0, V ] → (G−, G+) be a convex increasing function such that g∗(V0) =
g(V0), g

∗(V ) = g(V ) and the implication (28)(ii) holds. Put s̄ : = g∗
′
(V−), w∗(s) : =

inf{w ∈ [V0, V ]; g
∗′(v) ≥ s} for s ∈ (0, s̄), w∗(s) : = V for s ≥ s̄. Then w∗ is a

non-decreasing solution of (23) with Q = g(V0), w
∗(0+) = V0 and its trajectory g∗∗

defined according to Lemma 3.2 by the formula

g∗∗(v) : = g(V0) +
∫ v

V0

w∗−1

(u)du for v ∈ [V0, V ] (29)

coincides with g∗.
(ii) Let V0, V ∈ (U−, U+) be given such that V0 > V, g(V0) > g(V ), and let g∗ : [V, V0]→
(G−, G+) be a concave increasing function such that g∗(V0) = g(V0), g

∗(V ) = g(V ) and
the implication (28)(ii) holds. Put s̄ : = g∗

′
(V+), w∗(s) : = sup{v ∈ [V, V0]; g

∗′(v) ≥ s}
for s ∈ (0, s̄), w∗(s) : = V for s ≥ s̄. Then w∗ is a non-increasing solution of (23)
with Q = g(V0), w

∗(0+) = V0 and its trajectory g∗∗ defined by formula (29) coincides
with g∗.

Proof. It suffices to prove the first part. The statement concerning the concave case is
then obtained by passing from g(v) to −g(−v).
The definition of w∗ ensures that w∗ is non-decreasing and

g∗(w∗(s))− g∗(v) ≤ s(w∗(s)− v) for all s > 0 and v ∈ [V0, V ], (30)

hence

s1(w
∗(s2)− w∗(s1)) ≤ g∗(w∗(s2))− g∗(w∗(s1)) ≤ s2(w

∗(s2)− w∗(s1))

for all s2 > s1 > 0. This yields

w∗(s1)(s2 − s1) ≤ s2w
∗(s2)− g∗(w∗(s2))− s1w

∗(s1) + g∗(w∗(s1)) ≤ w∗(s2)(s2 − s1),

therefore the function W ∗(s) : = sw∗(s) − g∗(w∗(s)) is Lipschitz in (0,∞), W ∗′(s) =
w∗(s) a.e. To prove that w∗ solves (23) it suffices to check that g∗(w∗(s)) = g(w∗(s))
for all s > 0. Assume on the contrary g∗(w∗(s)) = g(w∗(s)) for some s > 0. Then g∗

is affine in a neighborhood of w∗(s), say g∗
′
(w∗(s) − δ) = g∗

′
(w∗(s) + δ) = s, which

contradicts the definition of w∗. It remains to verify that g∗∗ = g∗. In fact, we prove more,
namely g∗

′
(u+) = w∗−1

(u) for all u ∈ (V0, V ). Indeed, for an arbitrary s > w∗−1
(u)

we have by (25) u < w∗(s) and the definition of w∗(s) entails g∗
′
(u+) < s, hence

g∗
′
(u+) ≤ w∗−1

(u) for all u ∈ (V0, V ). Conversely, for s > g∗
′
(u+) there exists δ > 0

such that w∗(s) ≥ u + δ, hence s ≥ w∗−1
(u). Consequently, w∗−1

(u) = g∗
′
(u+) and

Lemma 3.3 is proved. ✷

For (s, v) ∈ [0,∞)×R1 we next define the function

E(s, v) :=
1

2
sv2 +G(v)− vg(v), (31)

where G(v) :=
∫ v
v0
g(u)du for a fixed v0 ∈ (U−, U+).
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Proposition 3.4. Let w be a solution to (23) in (s1, s2)(0 ≤ s1 < s2) with w(s1) =
v1, w(s2) = v2. If w is monotone and g∗ given by (27) then we have

1

2

∫ s2

s1
w2(s)ds = E(s2, v2)− E(s1, v1) +

∫ v2

v1
(g∗(u)− g(u))du. (32)

Proof. We infer from Lemma 3.2∫ v2

v1
uw−1(u)du = v2g(v2)− v1g(v1)−

∫ v2

v1
g∗(u)du.

Combining this last identity with Lemma 3.1(ii) we obtain the assertion. ✷

4. Energy.

It is well known ([Smo]) and we will see in the sequel that weak solutions of equation (2)
do not necessarily satisfy the formal Energy Conservation Law(

1

2
u2
t (x, t) +G(ux(x, t))

)
t
− (utg(ux))x = 0

in the sense of distributions.
The Second Principle of Thermodynamics requires the dissipation rate to be nonnegative.
This leads to the entropy condition ([Lax-1971])

(
1

2
u2
t (x, t) +G(ux(x, t))

)
t
− (utg(ux))x ≤ 0 (33)

in the sense of distributions. Rewriting condition (33) in terms of self-similar solutions
we obtain the following statement.

Proposition 4.1. Let u be a weak self-similar solution to equation (2) and let v be the
corresponding solution of (5) defined in Proposition 1.4. Let us define functions w+, w−
by the relations (22). Then u satisfies the entropy condition (33) if and only if the function
(cf. (31))

D(w)(s) := E(s, w(s))− 1

2

∫ s

0
w2(σ)dσ (34)

is non-decreasing in [0,∞) for both w = w+ and w = w−.

Before proving Proposition 4.1 we start with an easy lemma.

Lemma 4.2. Let [α, β] ⊂ R1 be a closed interval and let h ∈ L1(α, β) be a given function.
Then h is non-decreasing in (α, β) if and only if

∫ β

α
h(s)ρ′(s)ds ≤ 0 ∀ρ ∈ D(α, β), ρ ≥ 0. (35)
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Proof of Lemma 4.2. a) Let h be non-decreasing and let ρ ∈ D(α, β) be given, suppρ =
[ᾱ, β̄] ⊂ (α, β). For each integer n we define hn : [ᾱ, β) as the solution of the equation
1
n
h′n + hn = h, hn(ᾱ) = h(ᾱ−). Then hn is absolutely continuous and non-decreasing,
hn ≤ h in (ᾱ, β) and hn → h in L1(ᾱ, β̄) as n → ∞. Inequality (35) holds for each hn,
n = 1, 2, . . . and it suffices to pass to the limit.
b) Let (35) hold, and let s1, s2 ∈ (α, β) be Lebesgue points of h, s1 < s2. By continuity,
(35) holds for Lipschitz continuous functions ρ = ρε, where for ε > 0 sufficiently small we
put

ρ′ε(s) =




1
2ε

for s ∈ (s1 − ε, s1 + ε),
− 1

2ε
for s ∈ (s2 − ε, s2 + ε),

0 otherwise.

This yields 1
2ε

∫ s1+ε
s1−ε h(s) ds ≤ 1

2ε

∫ s2+ε
s2−ε h(s) ds, hence h(s1) ≤ h(s2) and Lemma 4.2 is

proved. ✷

Proof of Proposition 4.1. Using the representation (4) with v = f ′ we rewrite the
condition (33) in the form

∫ ∞

−∞

∫ T

0

[(
1

2
(f − zv)2 +G(v)

)
ϕt(x, t)− ((f − zv)g(v))ϕx(x, t)

]
dtdx ≥ 0

∀ϕ ∈ D(R1 × (0, T )), ϕ ≥ 0, where z =
x

t
.

A computation analogous to the proof of Proposition 1.4 gives

∫ ∞

−∞

{[
z

2
(f − zv)2 + zG(v) + (f − zv)g(v)

]
η′(z) +

(
1

2
(f − zv)2 +G(v)

)
η(z)

}
dz ≤ 0

(36)
for every η ∈ D(R1), η ≥ 0.
The identities ∫ ∞

−∞
−f(z2v − g(v))η′dz =

∫ ∞

−∞

[
v(z2v − g(v)) + 2zfv

]
ηdz,

∫ ∞

−∞

(
1

2
f 2η +

z

2
f 2η′

)
dz = −

∫ ∞

−∞
zvfηdz

enable us to rewrite (36) in the form

∫ ∞

−∞

[(
G(v)− vg(v) +

z2

2
v2

)
(zη(z))′ + z2v2η(z)

]
dz ≤ 0 (37)

∀η ∈ D(R1), η ≥ 0.

Inequality (37) is equivalent to the system




∫ ∞
0

[(
G(v)− vg(v) + z2

2
v2

)
ξ′+(z) + zv2ξ+(z)

]
dz ≤ 0,∫ 0

−∞
[(
G(v)− vg(v) + z2

2
v2

)
ξ′−(z) + zv2ξ−(z)

]
dz ≥ 0

(38)
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∀ξ+ ∈ D(0,∞), ∀ξ− ∈ D(−∞, 0) ξ+ ≥ 0, ξ− ≥ 0.

Substituting in (38) z =
√
s in (0,∞) and z = −√

s in (−∞, 0) for s ∈ (0,∞), we infer
that system (38) has the form

∫ ∞

0

[
E(s, w(s)) ρ′(s) +

1

2
w2(s)ρ(s)

]
ds ≤ 0 (39)

∀ρ ∈ D(0,∞), ρ ≥ 0

for each of the functions w = w+, w = w−, and Proposition 4.1 follows from Lemma 4.2.
✷

Function D(w) introduced in (34) can be interpreted as the total energy density of the
system. Notice that the entropy condition (33) requires D(w) to decrease at each space
point x ∈ R1 when t increases (i.e. positive dissipation). It enables us to exclude ”non-
physical” solutions of the Riemann problem. Nevertheless, in the general case it does not
ensure the uniqueness of solutions unless g is globally convex or concave (see Section 6
below). Therefore, we propose a stronger ”entropy” condition which covers the general
case of Assumption 1.1 (the fact that it is stronger will also be proved in Section 6).
We first observe that solutions w = w+, w = w− of (23), (24) are independent of each
other for every choice of boundary conditions V−, VQ, V+. We therefore formulate our
condition separately for w+ and w−.

Definition 4.3. A solution w to (23) with boundary conditions (24) is called minimal, if∫ ∞

0

(
w2(s)− ŵ2(s)

)
ds ≤ 0 (40)

for each solution ŵ to (23), (24).

Note that integral (40) is meaningful, since by (24), w = ŵ in a neighborhood of ∞, so
we integrate bounded functions over a finite interval.
Condition (40) can be interpreted as a maximal dissipation principle. Indeed, the total
dissipation difference of two solutions w and ŵ with the same initial value w(0) = ŵ(0) ∈
g−1(Q) is

∆(w, ŵ) := D(w)(∞)−D(ŵ)(∞). (41)

So w dissipates maximally if ∆(w, ŵ) is nonnegative for any solution ŵ. Theorem 5.1
below shows that the minimal solution is unique independently of the concrete choice of
the initial condition w(0) ∈ g−1(Q).
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5. Minimal solutions.

The aim of this section is to show that our minimality condition (40) ensures existence
and uniqueness to the Riemann problem (5), (11) and to provide an explicit construction
of the minimal solution. This is concentrated in the following two theorems.

Theorem 5.1. For every V ∈ (U−, U+) and Q ∈ (G−, G+) there exists a unique
minimal solution w∗ of (23) with boundary conditions (24).

Theorem 5.2. Let V−, V+ ∈ (U−, U+) be given. Then there exists an interval (A,B) ⊂
R1 such that for every D ∈ (A,B) there exists a unique Q ∈ (G−, G+) and a
unique solution to (5),(11) for D+ −D− = D such that each of the functions w+, w−
defined by formula (22) is a minimal solution of (23) with boundary conditions g(w+(0)) =
g(w−(0)) = Q, w+(+∞) = V+, w−(+∞) = V−. Moreover, if G− = −∞, then A = −∞
and if G+ = +∞, then B = +∞.

Lemma 3.1 enables us to express the value of the integral
∫ ∞
0 (w

2
1(s)− w2

2(s))ds for two
monotone solutions w1, w2 of (23) in terms of their convex (concave) trajectories g∗1, g

∗
2.

We first observe that integrating equation (23) we obtain

g(V )−Q =
∫ ∞

0
(V − w(s))ds (42)

for each solution w of (23). If moreover we assume that w is monotone, then w is
non-decreasing if Q < g(V ), non-increasing if Q > g(V ) and constant if Q = g(V ).
Let now w1, w2 be two monotone solutions of (23) for given conditions V ∈ (U−, U+)
and Q ∈ (G−, G+). We distinguish two cases.

A. Q < g(V ). Then both w1 and w2 are non-decreasing.
Assume for instance w1(0+) = : V1 ≤ V2 : = w2(0+) < V, g(V1) = g(V2) = Q. The
convex trajectories g∗1, g

∗
2 corresponding to w1, w2 are given by a formula analogous to

(27) and satisfy g∗
′

i (u) = w−1
i (u) for a.e. u ∈ (Vi, V ), i = 1, 2. Identity (26)(ii) yields

∫ ∞

0
(w2

i (s)− V 2)ds+ 2
∫ V

Vi

ug∗
′

i (u)du = 0, i = 1, 2,

and integrating by parts we obtain

1

2

∫ ∞

0
(w2

1(s)− w2
2(s))ds =

∫ V2

V1

(g∗1(u)−Q)du+
∫ V

V2

(g∗1(u)− g∗2(u))du. (43)

B. Q > g(V ). Then both w1 and w2 are non-increasing.
Assume w1(0+) =: V1 ≥ V2 : = w2(0+) > V, g(V1) = g(V2) = Q. For the corresponding
concave trajectories g∗1, g

∗
2 we have analogously as above

1

2

∫ ∞

0
(w2

1(s)− w2
2(s))ds =

∫ V1

V2

(Q− g∗1(u))du+
∫ V2

V
(g∗2(u)− g∗1(u))du. (44)
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We see that the minimization problem (40) in the class of monotone solutions consists in
finding the minimal convex trajectory in the case A and the maximal concave trajectory
in the case B. This suggests the following definition (cf. Fig. 3)

Definition 5.3. Let V ∈ (U−, U+) and Q ∈ (G−, G+) be given. Put

VQ :=



max(g−1(Q) ∩ (U−, V )) if Q < g(V ),
min(g−1(Q) ∩ (V, U+)) if Q > g(V ),

V if Q = g(V ),

Ω(Q, V ) : = Conv {(u, y) ∈ [VQ, V ]×(G−, G+); y = g(u)} with the convention [VQ, V ] =
[V, VQ], where Conv denotes the convex hull. Then the function g∗ : [VQ, V ]→ (G−, G+)
defined for u ∈ [VQ, V ] by the formula

g∗(u) : =



min{y ∈ (G−, G+); (u, y) ∈ Ω(Q, V )} if Q < g(V ),
max{y ∈ (G−, G+); (u, y) ∈ Ω(Q, V )} if Q > g(V ),
g(u) if Q = g(V ),

(45)

is called the minimal trajectory from Q to V .

ononononononononon u

y

VQ V

Q

g(V )

y = g(u)

Ω(Q, V )

	onononononononononon u

y

V VQ

Q

g(V )

y = g(u)

Ω(Q, V )

We immediately see that the minimal trajectory satisfies the hypotheses of Lemma 3.3.
From the identities (43), (44) we easily conclude that the solution w∗ of (23),(24)
associated to g∗ by Lemma 3.3 is minimal with respect to all monotone solutions. We
now prove that it is minimal in the sense of Definition 4.3.

Proof of Theorem 5.1
Theorem 5.1 will be proved in the following form.
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Proposition 5.4. Let V ∈ (U−, U+) and Q ∈ (G−, G+) be given and let g∗ be
the minimal trajectory from Q to V . Let w∗ be the solution associated to g∗ by
Lemma 3.3 in the case Q = g(V ), w∗ ≡ V if Q = g(V ). Then for every solution
w = w∗ of (23),(24) we have ∫ ∞

0
(w∗2

(s)− w2(s))ds < 0. (46)

This fact is less obvious. Its original proof in [KrStr-1993] is relatively complicated. We
present here a simple and elegant proof which has been communicated us by V. Lovicar
in private discussion. It consists of two steps (Lemmas 5.5 - 5.6).
We first observe that the case Q = g(V ) follows trivially from identity (42) which entails
for every solution w ≡ V of (23),(24)

∫ ∞

0
(w2(s)− V 2)ds =

∫ ∞

0
(w(s)− V )2ds+ 2V

∫ ∞

0
(w(s)− V )ds

=
∫ ∞

0
(w(s)− V )2ds > 0.

On the other hand, passing from w∗ to −w∗ and from g(v) to −g(−v) we see
that the cases Q > g(V ) and Q < g(V ) are equivalent. For the sake of definiteness
we assume in the sequel Q < g(V ).
Let us suppose now that there exists a solution w = w∗ of (23),(24). We introduce the
functions

{
W ∗(s) : = sw∗(s)− g(w∗(s))
W (s) : = sw(s)− g(w(s))

for s > 0 (47)

Both W and W ∗ are Lipschitz, W ′ = w, W ∗′ = w∗ a.e., W ∗ is convex and there
exists L > 0 such that W (s) = W ∗(s) = sV − g(V ) for s ≥ L, W (0+) =W ∗(0+) =
−Q. We define the sets



M0 : = {s > 0;W ∗(s) = W (s)},
M+ : = {s > 0;W ∗(s) > W (s)},
M− : = {s > 0;W ∗(s) < W (s)}.

(48)

We have [L,+∞) ⊂ M0, hence both M+ and M− are open bounded sets. They
have the form M+ =

⋃∞
k=1(α

+
k , β

+
k ), M− =

⋃∞
k=1(α

−
k , β

−
k ), with α±

k , β
±
k ∈ M0, provided

we include the case α±
k = 0.

For almost all s ∈M0 we have w∗(s) = w(s), hence∫
M0

(w∗2

(s)− w2(s))ds = 0. (49)

Lemma 5.5. For all k ∈ N we have

∫ β+
k

α+
k

(w∗2

(s)− w2(s))ds < 0. (50)
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Proof. We have W ∗(s) > W (s) for all s ∈ (α+
k , β

+
k ), W

∗(α+
k ) = W (α+

k ), W
∗(β+

k ) =
W (β+

k ), hence ∫ β+
k

α+
k

r(s)(w(s)− w∗(s))ds ≥ 0

for each bounded non-decreasing function r : (α+
k , β

+
k ) → R1. Indeed, this follows

trivially from the integration by parts provided r is smooth. In the general case we
approximate r by a pointwise convergent sequence rn → r of smooth non-decreasing
functions and pass to the limit.
This yields

0 <
∫ β+

k

α+
k

(w∗(s)− w(s))2ds =
∫ β+

k

α+
k

(w2(s)− w∗2

(s))ds− 2
∫ β+

k

α+
k

w∗(s)(w(s)− w∗(s))ds

≤
∫ β+

k

α+
k

(w2(s)− w∗2

(s))ds

and Lemma 5.5 is proved. ✷

Lemma 5.6. For all k ∈ N we have∫ β−
k

α−
k

(w∗2

(s)− w2(s))ds < 0. (51)

Proof. Lemmas 3.3, 3.2 and inequality (30) yield

sw∗(s)− g(w∗(s)) ≥ sv − g∗(v) ≥ sv − g(v) (52)

for all s > 0 and v ∈ [VQ, V ]. On the other hand, for s ∈ (α−
k , β

−
k ) we have by

hypothesis sw∗(s)−g(w∗(s)) < sw(s)−g(w(s)), hence w(s) /∈ [VQ, V ] for s ∈ (α−
k , β

−
k ).

Put A+ : = {s ∈ (α−
k , β

−
k );w(s) > V }, A− : = {s ∈ (α−

k , β
−
k );w(s) < VQ}. We have

(α−
k , β

−
k ) = A+ ∪ A− and

∫
A−
(w2(s)− w∗2

(s))ds > (VQ + V )
∫
A−
(w(s)− w∗(s))ds,∫

A+

(w2(s)− w∗2

(s))ds > (VQ + V )
∫
A+

(w(s)− w∗(s))ds,

therefore∫ β−
k

α−
k

(w2(s)− w∗2

(s))ds > (VQ + V )(W (β−
k )−W ∗(β−

k )−W (α−
k ) +W ∗(α−

k )) = 0,

and inequality (51) is proved. ✷

To finish the proof of Proposition 5.4 which in turn implies Theorem 5.1, it suffices to
combine Lemmas 5.5, 5.6 and identity (49).

Let us state now two easy lemmas which enable us to prove Theorem 5.2.
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Lemma 5.7. Let Q1, Q2 ∈ (G−, G+) and V ∈ (U−, U+) be given such that Q1 <
Q2 < g(V ). According to Definition 5.3 put Vi : = VQi

and g∗i (u) : = min{y ∈
(G−, G+); (u, y) ∈ Ω(Qi, V )} for u ∈ [Vi, V ], i = 1, 2. Then g∗1(u) ≤ g∗2(u) for all
u ∈ [V2, V ] and g∗

′
1 (u) ≥ g∗

′
2 (u) for a.e. u ∈ (V2, V ).

Proof. We obviously have Ω(Q2, V ) ⊂ Ω(Q1, V ) and V > V2 > V1, hence g
∗
1 ≤ g∗2

in [V2, V ]. Let us assume now g∗
′

1 (u) < g∗
′

2 (u) for some Lebesgue point u ∈ (V2, V ) of
both g∗

′
1 and g∗

′
2 . Then g∗1(u) < g∗2(u) ≤ g(u), hence g∗1 is affine in a neighborhood

of u. Put ū : = min{v ∈ (u, V ); g(v) = g∗1(v)}. The points (ū, g(ū)) and (u, g∗2(u))
belong to Ω(Q2, V ), hence for all α ∈ (0, 1) we have

g∗2(αū+ (1− α)u) ≤ αg(ū) + (1− α)g∗2(u),

or equivalently
g∗2(u+ α(ū− u))− g∗2(u)

α(ū− u)
≤ g(ū)− g∗2(u)

ū− u
.

Passing to the limit as α → 0+ we obtain

g∗
′

2 (u) ≤
g(ū)− g∗2(u)

ū− u
<
g(ū)− g∗1(u)

ū− u
= g∗

′
1 (u).

which is a contradiction. ✷

Lemma 5.8. Let V ∈ (U−, U+) and G− < Q1 < Q2 < G+ be given. Let w∗
1, w

∗
2 be the

minimal solutions of (23),(24) for Q = Q1, Q = Q2, respectively. Then w1(s) ≤ w2(s) for
all s > 0.

Proof. The cases Q1 ≤ g(V ) < Q2 or Q1 < g(V ) ≤ Q2 are obvious. We may
therefore assume Q1 < Q2 < g(V ) (the opposite situation g(V ) < Q1 < Q2 is again
covered by the usual transformation g(v) �→ −g(−v)). By Lemma 3.3 we have for all
s > 0

w∗
i (s) = inf{u ∈ [Vi, V ]; g∗′i (u) ≥ s}, i = 1, 2,

where Vi, g
∗
i are as in Lemma 5.7. For all s > 0 and u ∈ [V2, V ] such that u < w∗

1(s) we
have by Lemma 5.7 g∗

′
2 (u+) ≤ g∗

′
1 (u+) < s. This entails u < w∗

2(s), hence w
∗
1(s) ≤ w∗

2(s).
✷

Proof of Theorem 5.2. For an arbitrary Q ∈ (G−, G+) we denote by wQ
+, w

Q
− the min-

imal solutions of (23) with boundary conditions g(wQ
+(0)) = g(wQ

−(0)) = Q,wQ
+(+∞) =

V+, w
Q
−(+∞) = V−, and put

vQ(z) : =

{
wQ

+(z
2) for z ≥ 0,

wQ
−(z2) for z < 0.

By Lemma 1.5, vQ(z) solves (5) together with the condition vQ(±∞) = V± for all
Q ∈ (G−, G+) (cf.(11)). To handle the second condition in (11) we introduce the function

ϕ(Q) : =
∫ ∞

−∞
(vQ(z)− P0(z))dz (53)
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with the intention to put
A : = ϕ(G−), B : = ϕ(G+). (54)

The proof of Theorem 5.2 will be complete as soon as we prove that the function ϕ
defined by (53) is continuous and increasing and the implications

G− = −∞ ⇒ A = −∞, G+ = +∞ ⇒ B = +∞ (55)

hold.
The fact that ϕ is increasing follows immediately from Lemma 5.8. To prove the conti-
nuity, we fix an arbitrary compact interval [c, d] ⊂ (G−, G+) such that g(V+), g(V−) ∈
(c, d). Put a : = min{v ∈ (U−, U+); g(v) ≥ c}, b : = max{v ∈ (U−, U+); g(v) ≤ d},
L′ : = sup {|g(u)−g(v)

u−v
|; a ≤ v < u ≤ b} < +∞.

From Proposition 1.7 we infer that vQ(z) = P0(z) for all |z| > √
L′ and all Q ∈ [c, d].

Integrating equation (5)
∫ √

L′
0 dz and

∫ 0
−√

L′ dz we obtain for all Q ∈ [c, d]

L′V+ − g(V+) +Q = 2
∫ √

L′
0 zvQ(z)dz,

−L′V− + g(V−)−Q = 2
∫ 0
−√

L′ zvQ(z)dz,

}
(56)

hence

∫ √
L′

−√
L′
|z|(vQ1(z)− vQ2(z))dz =

∫ ∞

−∞
|z|(vQ1(z)− vQ2(z))dz = Q1 −Q2

for all Q1, Q2 ∈ [c, d], Q1 > Q2. Note that by Lemma 5.8 we have vQ1(z) ≥ vQ2(z) for
a.e. z ∈ R1. Using the estimates

ϕ(Q1)− ϕ(Q2) =
∫ ∞

−∞
(vQ1(z)− vQ2(z))dz

≤
∫ √

Q1−Q2

−√
Q1−Q2

(vQ1(z)− vQ2(z))dz +
1√

Q1 −Q2

∫ ∞

−∞
|z|(vQ1(z)− vQ2(z))dz

≤ (2(b− a) + 1)
√
Q1 −Q2

we conclude that ϕ is locally 1
2
-Hölder continuous in (G−, G+).

It is now clear that for every D ∈ (A,B) the Riemann problem (5),(11) with D+ −
D− = D has a unique solution satisfying the requirements of Theorem 5.2. It remains
to prove one of the implications (55), the other is analogous. Assume for instance
G+ = +∞, V+ ≥ V−, and put

L : = sup {g(v)− g(V+)

v − V+

; v ∈ (V+, U+)} > 0.

We distinguish two cases.
A. L < +∞. Then for every Q > g(V+) the slope of the minimal trajectory (45) from
Q to V+ does not exceed the value of L, and therefore vQ(z) = V+ for z >

√
L.

Using formula (56) for L′ = L we obtain
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ϕ(Q) ≥
∫ √

L

0
(vQ(z)− V+)dz ≥ 1√

L

∫ √
L

0
z(vQ(z)− V+)dz ≥ 1

2
√
L
(Q− g(V+)). (57)

B. L = +∞. Put L̂ : = lim sup
v→V+

g(v)−g(V+)
v−V+

< +∞. For λ > L̂ we define

Vλ : = min{v ∈ (V+, U+);
g(v)− g(V+)

v − V+

= λ}, Qλ : = g(Vλ).

The minimal trajectory g∗ from Qλ to V+ is then affine, namely g∗(u) = g(V+) +
λ(u− V+) for u ∈ [V+, Vλ]. This yields

vQλ
(z) =



V+ for z >

√
λ.

Vλ for z ∈ (0,
√
λ),

wQλ− (z2) ≥ V− for z < 0,

therefore

ϕ(Qλ) ≥
∫ √

λ

0
(vQλ

(z)− V+)dz =
√
(Qλ − g(V+))(Vλ − V+). (58)

In both cases (57), (58) we obtain ϕ(Q) → +∞ as Q → +∞. Theorem 5.2 is proved.
✷

Remark 5.9. We observe an interesting phenomenon if the condition limu→±∞ ϕ(u) =
±∞ is not satisfied. For g(u) = eu − 1, V+ = V− = 0 we have for instance A = −4,
B = +∞, so for V̄ < −4 no minimal solution exists. Since g is convex, we see from
Theorem 6.2 below, Proposition 1.7 and Theorem 2.2 that this problem admits only
solutions which violate the entropy condition (34)!

6. Entropy condition.

We first show that the entropy condition (34) for solutions of (23), (24) is a consequence
of the minimality condition.

Proposition 6.1. For every V ∈ (U−, U+) and Q ∈ (G−, G+) the minimal solution
w∗ of (23),(24) fulfils the dissipation condition (34).

Proof. By Lemmas 3.1, 3.3 we have for all s > 0, (cf. Definition 5.3)

1

2

∫ s

0
w∗2

(σ)dσ =
1

2
sw∗(s)−

∫ w∗(s)

VQ

uw∗−1

(u)du

=
1

2
sw∗(s)− w∗(s)g∗(w∗(s)) + VQg

∗(VQ) +
∫ w∗(s)

VQ

g∗(u)du.
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The function D(w∗) in (34) has therefore the form

D(w∗)(s) =
∫ w∗(s)

VQ

(g(u)− g∗(u))du+G(VQ)−QVQ.

For Q < g(V ) we have g(u) ≥ g∗(u) for all u ∈ [VQ, V ] and w∗ is non-decreasing,
for Q > g(V ) we have g(u) ≤ g∗(u) for all u ∈ [V, VQ] and w∗ is non-increasing,
for Q = g(V ) the solution w∗ is constant, hence in all cases condition (34) holds. ✷

Theorem 6.2. Let g be convex and let V ∈ (U−, U+), Q ∈ (G−, G+) be given. Let
w be a solution of (23),(24) satisfying the dissipation condition (34) and let w∗ be the
minimal solution of (23),(24). Then w = w∗ a.e.

In the proof we make use of an auxiliary lemma. Notice that a convex function satisfying
Assumption 1.1 is increasing, hence every solution w of (23),(24) can be continuously
extended to s = 0.

Lemma 6.3. Let the hypotheses of Theorem 6.2 hold. Assume that there exist Lebesgue
points s1, s2 of w such that 0 ≤ s1 < s2 and w(s1) = : v1 < v2 : = w(s2).
Then s2 ≥ g′(v2−), s1 ≤ g′(v1+), w(s) = inf{u ∈ [v1, v2]; g

′(u) ≥ s} for a.e. s ∈
[s1, g

′(v2−)), w(s) = v2 for s ∈ (g′(v2−), s2].

Proof of Lemma 6.3. The function w0 : [0,∞)→ (U−, U+) defined as w0(s) : = w(s)
for s ∈ (s1, s2), w0(s) : = v1 for s ∈ [0, s1], w0(s) : = v2 for s ∈ [s2,+∞) solves
(23),(24) with V = v2, Q = g(v1). The minimal convex trajectory g∗0 from g(v1) to v2

coincides with g and the corresponding minimal solution w∗
0 is given by the formula

(cf. Lemma 3.3) w∗
0(s) = inf{u ∈ [v1, v2], g

′(u) ≥ s} for s ∈ [0, g′(v2−)), w∗
0(s) = v2

for s > g′(v2−), w∗−1

0 (u) = g′(u) for a.e. u ∈ (v1, v2). By (34) we have D(w)(s2) ≥
D(w)(s1), hence

1

2

∫ s2

s1
w2(s)ds ≤ −

∫ v2

v1
ug′(u)du+

1

2
s2v

2
2 −

1

2
s1v

2
1.

Lemma 3.1 yields − ∫ v2
v1
ug′(u)du = 1

2

∫ ∞
0 (w

∗2

0 (s)−v2
2)ds, therefore

1
2

∫ ∞
0 (w

2
0(s)−w∗2

0 (s))ds
≤ 0.
By Proposition 5.4, the last inequality implies w0 = w∗

0 a.e. and Lemma 6.3 follows.
✷

Proof of Theorem 6.2. The assertion is an immediate consequence of Lemma 6.3 if
Q < g(V ) (we simply put s1 = 0 and let s2 tend to +∞). The case Q ≥ g(V )
is slightly more complicated. In fact, it suffices to prove that w is non-increasing in
[0,+∞), since the only concave trajectory from Q to V in this case is the minimal
one which is affine.
Let us suppose on the contrary that there exist Lebesgue points s1, s2 of w such that
0 ≤ s1 < s2 and w(s1) : = v1 < v2 : = w(s2). We distinguish 2 cases.
A. g(v1) < Q. Put v̄ : = sup ess{w(s); s ∈ [0, s1]}. Then v̄ ≥ g−1(Q) > v1 and
there exists a sequence {σn} ⊂ [0, s1] of Lebesgue points of w such that σn →
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s̄ < s1, w(σn) → v̄. Passing to the limit as n → ∞ in the identity
∫ s1
σn
w(s)ds =

s1v1−g(v1)−σnw(σn)+g(w(σn)) we obtain 0 >
∫ s1
s̄ (w(s)−v̄)ds = g(v̄)−g(v1)−s1(v̄−v1),

hence s1 >
g(v̄)−g(v1)

v̄−v1
≥ g′(v1+), which is in contradiction with Lemma 6.3.

B. g(v1) ≥ Q. Then v2 > V and analogously as above we put v : = inf ess{w(s);
s ∈ [s2,+∞)}. We have v ≤ V and w(s) = V for sufficiently large, therefore
there exists a convergent sequence {σn} ⊂ [s2,+∞) of Lebesgue points of w such that
σn → s > s2, w(σn) → v as n → ∞. Passing to the limit in the identity ∫ σn

s2
w(s)ds =

σnw(σn)− s2v2 − g(w(σn))+ g(v2) yields 0 <
∫ s
s2
(w(s)− v)ds = g(v2)− g(v)− s2(v2 − v)

hence s2 <
g(v2)−g(v)

v2−v
≤ g′(v2−) which again contradicts Lemma 6.3. ✷

We now present another negative result showing that the dissipation condition (34) does
not guarantee the uniqueness of solutions of (5),(11) even in the “regular” case when g
is increasing and smooth.

Proposition 6.4. Let g : (U−, U+) → (G−, G+) be an increasing smooth function
which has an inflection point q0 ∈ (U−, U+). Then there exist V+, V− ∈ (U−, U+),
D+, D− ∈ R1 such that problem (5),(11) has infinitely many distinct solutions.

Proof. We choose an interval (q0 − k1, q0 + k2) ⊂ (U−, U+) such that one of the
situations

(i) g′′ > 0 in (q0 − k1, q0), g
′′ < 0 in (q0, q0 + k2),

(ii) g′′ < 0 in (q0 − k1, q0), g
′′ > 0 in (q0, q0 + k2),

occurs. The construction will be different in each case (see Fig. 4)

ononononon
V− uq0 p0 r0 V+

y = g(u)

Fig. 4

�onononononon
V− uq0 p0r0 V+

y = g(u)�
(i) We fix some numbers q0 − k1 < V− < q0 < p0 < r0 < V+ < q0 + k2 such that

∫ r0

V−
g(v)dv <

1

2
(r0 − V−)(g(r0) + g(V−)), (59)
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g(r0)− g(p0)

r0 − p0

<
g(r0)− g(V−)

r0 − V−
(60)

and we define v(z) by the formula

v(z) : =



V− for z < z1,
r for z ∈ (z1, z2),
p for z ∈ (z2, z3),
V+ for z > z3,

(61)

z1 : = −
√√√√g(r)− g(V−)

r − V−
, z2 : = −

√
g(r)− g(p)

r − p
, z3 : =

√√√√g(V+)− g(p)

V+ − p
(62)

for each (r, p) in a small neighborhood of (r0, p0) such that (59), (60) hold for (r, p).
We put D− : = 0, D+ : = h(p0, r0), and

h(p, r) :=
√
(g(r)− g(V−))(r − V−)−

√
(g(r)− g(p))(r − p)−

√
(g(V+)− g(p))(V+ − p).

By Proposition 2.1, v is a solution of (5),(11) if and only if h(p, r) = h(p0, r0). We
obviously have ∂

∂p
h(p, r) > 0 and by the Implicit Function Theorem there exists a

function p(r) defined in a neighborhood of r0 such that h(p(r), r) = h(p0, r0) which
determines a one-parametric family of solutions of (5),(11) satisfying condition (34).

(ii) Similarly as above, we fix some numbers q0−k1 < r0 < V− < q0 < V+ < p0 < q0+k2

such that the inequalities (60) and

∫ p0

r0
g(v)dv <

1

2
(p0 − r0)(g(p0) + g(r0)) (63)

hold. We put here D− : = h(p0, r0), D+ : = 0. We easily check that the argument of (i)
remains valid for the function v defined by (61), (62). ✷

7. Vanishing viscosity.

We show here that the maximal dissipation selection rule described above gives the same
result as the vanishing viscosity method (see e.g. [Liu-1976]) which consists in considering
the equation

utt − g(ux)x − ν

2
tuxxt = 0 for ν > 0 (64)

with the intention to pass to the limit as ν → 0+ as in [Daf - 1973 A]. It is also convenient
to regularize the function g in (64) by means of the parameter ν. So we replace (64) by
the equation

uνtt − gν,K(u
ν
x)x −

ν

2
tuνxxt = 0, (65)

26



where gν,K ∈ C1((U−, U+)) is a regularization of the function g that we briefly describe
here.
Let g satisfy Assumption 1.1. For a fixed compact set K ⊂ (U−, U+) and a number
ν > 0 put

gν,K(u) : = e
1
ν
(u−uK)g(uK) +

∫ u

uK

1

ν
e

1
ν
(v−u)g(v)dv for u ∈ (U−, U+), (66)

where uK : = minK. The identity

νg′ν,K(u) = g(u)− gν,K(u) ∀u ∈ (U−, U+) (67)

has the following immediate consequences (the proof is left to the reader).

Lemma 7.1. Let K ⊂ (U−, U+) be a compact set and let LK be given by (1). Then
for every ν > 0 the function gν,K is continuously differentiable in (U−, U+) and for
every u ∈ K we have

(i) |g(u)− gν,K(u)| ≤ νLK ,
(ii) |g′ν,K(u)| ≤ LK .

In terms of self-similar solutions, approximating equation (2) by (65) corresponds to the
approximation of problem (23),(24) by the equation

ν(sw′
ν(s))

′ = wν(s)− (swν(s)− gν,K(wν(s)))
′ (68)

for a suitable choice of boundary conditions and of the compact set K. This can be done
in the following way.

Let Q, V be given data in (24) and let us define VQ as in Definition 5.3. We can
assume for the sake of definiteness that Q < g(V ) leaving the other cases to the reader.
We fix an open bounded interval J ⊃ [VQ, V ], J̄ ⊂ (U−, U+) and put K : = J̄ . For an
arbitrary β > LK we prescribe boundary conditions

wν(ν) = VQ, wν(β) = V. (69)

We first verify that problem (68), (69) cannot have multiple solutions.

Lemma 7.2. Let 0 < δ < s1 < s2 be given and let w, w̃ be two solutions of (68) in
the interval (s1 − δ, s2 + δ). Assume w(si) = w̃(si) for i = 1, 2. Then w(s) = w̃(s)
for all s ∈ (s1 − δ, s2 + δ).

Proof. If the set B : = {s ∈ [s1, s2];w(s) = w̃(s)} is infinite, then it contains a
convergent sequence and its limit point s̄ satisfies w(s̄) = w̃(s̄), w′(s̄) = w̃′(s̄). The
general theory of ordinary differential equations then yields w ≡ w̃.
Assume that B is finite. We choose two consecutive points σ1, σ2 ∈ B, so that for
instance w(σi) = w̃(σi) for i = 1, 2, w(s) > w̃(s) for s ∈ (σ1, σ2). Integrating

∫ σ2
σ1
ds

the identity
(νs(w′ − w̃′))′ = (w − w̃)− (s(w − w̃)− g(w) + g(w̃))′
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we obtain

ν[σ2(w
′(σ2)− w̃′(σ2))− σ1(w

′(σ1)− w̃′(σ1))] =
∫ σ2

σ1

(w − w̃)ds > 0,

hence either w′(σ2) > w̃′(σ2) or w′(σ1) < w̃′(σ1), which is a contradiction. ✷

For a fixed ν > 0 we have the following existence result.

Theorem 7.3. Problem (68), (69) has a unique classical solution wν. Moreover, there
exists ν0 > 0 such that for ν < ν0 the solution wν can be extended to an interval
(αν ,+∞) for some αν ∈ (0, ν), it is twice continuously differentiable and increasing in
its domain of definition.

Proof. We define recursively for s ∈ [ν, β] a sequence {w(n)(s);n ∈ N ∪ {0}} by the
formula

w(0)(s) : = VQ + (V − VQ)
s− ν

β − ν
,

w(n)(s) : = VQ + c(n−1)
∫ s

ν

1

τ
e

1
ν

∫ τ

ν
(

g′
ν,K

(w(n−1)(σ))

σ
−1)dσdτ,

where

c(n−1) : = (V − VQ)
[ ∫ β

ν

1

τ
e

1
ν

∫ τ

ν
(

g′
ν,K

(w(n−1)(σ))

σ
−1)dσdτ

]−1

.

We immediately see that {w(n)} ⊂ C2([ν, β]) is a sequence of increasing functions
satisfying boundary conditions (69) and that there exists a constant Mν independent of
n such that 0 < c(n) ≤Mν , |w(n)′(s)| ≤Mν for all s ∈ (ν, β).
From the Arzelà-Ascoli theorem it follows that there exist convergent subsequences of
{c(n)} and {w(n)} such that the limits cν : = lim

n→∞ c(n), wν : = lim
n→∞w(n) satisfy

wν(s) = VQ + cν

∫ s

ν

1

τ
e

1
ν

∫ τ

ν
(

g′
ν,K

(wν (σ))

σ
−1)dσdτ, (70)

hence wν is a solution of (68), (69).
The function wν can be extended to a maximal solution of (68) wν : (αν , βν)→ (U−, U+)
for some αν < ν, βν > β. Identity (70) remains valid for s ∈ (αν , βν), hence wν is twice
continuously differentiable and increasing in its maximal domain of definition. Lemma
7.2 then entails that this solution is unique.
It remains to prove that βν = +∞ for ν sufficiently small. Put

γν : = sup{s ∈ (αν , βν);wν(s) ∈ K},
δ : =

1

4
(β − LK).
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We have γν > β and the identity

(sw′
ν(s))

′ =
1

ν
(
g′ν,K(wν(s))

s
− 1)(sw′

ν(s)) (71)

combined with Lemma 7.1 (ii) entails for s ∈ (LK + δ, γν)

(sw′
ν(s))

′ ≤ − δ

ν(LK + δ)
sw′

ν(s). (72)

Integrating the last equation we obtain

e
p
ν
ssw′

ν(s) ≤ e
p
ν
ttw′

ν(t) for LK + δ < t < s < γν ,

where we denote p : = δ
LK+δ

> 0.

We now integrate
∫ LK+2δ
LK+δ dt the inequality e

p
ν
sw′

ν(s) ≤ e
p
ν
tw′

ν(t) and for s ∈ (LK +
2δ, γν) this yields

δe
p
ν
sw′

ν(s) ≤ e
p
ν
(Lk+2δ)(V − VQ),

hence

wν(s) ≤ wν(LK + 3δ) +
ν(V − VQ)

δp
e−

δp
ν for s ∈ (LK + 3δ, γν). (73)

For ν > 0 sufficiently small, say ν < ν0, we thus have wν(s) ∈ K for all s ∈ (αν , βν),
hence βν = +∞. This completes the proof of Theorem 7.3. ✷

We now pass to the limit as ν → 0+. The following Theorem states that the solution
obtained by the vanishing viscosity selection rule coincides with the minimal solution
defined in Sect. 5.

Theorem 7.4. Let Q ∈ (G−, G+) and V ∈ (U−, U+) be given and let wν be the
solution of (68), (69) for ν ∈ (0, ν0). Let w∗ be the minimal solution of (23),(24). Then
wν(s)→ w∗(s) as ν → 0+ for all s > 0.

Proof. For ν < ν0 we define auxiliary functions

ŵν(s) : =

{
wν(s), s ∈ [ν,+∞),
VQ, s ∈ [0, ν). (74)

It suffices to assume Q < g(V ) (Q > g(V ) is analogous and Q = g(V ) is trivial). By
(73), the system {wν ; ν < ν0} converges uniformly to the constant V on [β − δ,+∞)
as ν → 0+. On [0, β], {ŵν ; ν > 0} is an equibounded system of continuous non-
decreasing functions, and from Helly’s Selection Principle ([Kol]) we deduce the existence
of a non-decreasing function w̄ : [0, β] → [VQ, V ] and of a sequence νk → 0+ as
k → ∞ such that

ŵνk
(s)→ w̄(s) ∀s ∈ [0, β] as k → ∞. (75)

Let ϕ ∈ D(0,∞) be arbitrarily chosen. For k sufficiently large we have
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∫ ∞

0
[(sŵνk

(s) − gνk,K(ŵνk
(s)))ϕ′(s) + ŵνk

(s)ϕ(s)]ds =

= νk

∫ ∞

0
ŵνk

(s)(ϕ′(s) + sϕ′′(s))ds

and passing to the limit as k → ∞ we obtain∫ ∞

0
[(sw̄(s)− g(w̄(s)))ϕ′(s) + w̄(s)ϕ(s)]ds = 0.

Consequently, w̄ is a non-decreasing solution of (23),(24) with w̄(s) = V for s ≥ β
and w̄(0+) = V̄ ∈ [VQ, V ].
For each ν > 0 and s > ν we have

ν2w′
ν(ν) = νsw′

ν(s) + swν(s)− νVQ − gν,K(wν(s)) + gν,K(VQ)−
∫ s

ν
wν(σ)dσ (76)

and integrating the last identity
∫ β
ν ds we obtain

(β − ν)ν2w′
ν(ν) = ν[βV − νVQ −

∫ β

ν
wν(s)ds] +

+
∫ β

0
(sŵν(s)− gν,K(ŵν(s)) + gν,K(VQ)−

∫ s

0
ŵν(σ)dσ)ds.

For ν = νk we pass to the limit as k → ∞. This yields

β lim
k→∞

ν2
kw

′
νk
(νk) =

∫ β
0 (sw̄(s)− g(w̄(s)) + g(VQ)− ∫ s

0 w̄(σ)dσ)ds

=
∫ β
0 g(VQ)− g(V̄ )ds = β(g(VQ)− g(V̄ )) ≤ 0.

We conclude
V̄ = VQ, lim

k→∞
ν2
kw

′
νk
(νk) = 0. (77)

According to Lemma 3.2, we define the convex trajectory g∗ of the solution w̄ by the
formula

g∗(u) : = Q+
∫ u

VQ

w̄−1(v)dv

analogous to (27). We are done if we prove

g(u) ≥ g∗(u) ∀u ∈ [VQ, V ]. (78)

Indeed, then g∗ is the minimal trajectory from Q to V and by Proposition 5.4, w̄
is the minimal solution of (23),(24). The limit function w̄ is then independent of the
choice of the sequence {νk}, so the assertion of Theorem 7.4 holds.
To prove (78), we choose an arbitrary u ∈ (VQ, V ) and find s > 0 such that u ∈
[w̄(s−), w̄(s+)]. Following Lemma 3.2 we have g∗(w̄(s±)) = g(w̄(s±)), hence it remains
to consider the case.

w̄(s−) < u < w̄(s+). (79)
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Let {sk} be the sequence such that wνk
(sk) = u for all k ∈ N and let us assume

that a subsequence (denoted again by sk) converges to some s̄ = s. For s̄ > s and
σ ∈ (s, s̄) we have w̄(s+) ≤ w̄(σ) = lim

k→∞
wνk

(σ) ≤ u, which is a contradiction. The case

s̄ < s is analogous, so sk → s as k → ∞.
Put ∆ = g(u)− g∗(u). Lemma 3.1 entails

∆ = g(u)− g(V0)− su+
∫ sk

0
w̄(σ)dσ

= gνk,K(wνk
(sk))− gνk,K(V0)− skwνk

(sk) + νkV0 +

+
∫ sk

νk

wνk
(σ)dσ + Ik, where

Ik : = (g(u)− gνk,K(u))− (g(V0)− gνk,K(V0)) + (sk − s)u+

+
∫ s
0 (w̄(σ)− ŵνk

(σ))dσ +
∫ sk
s wνk

(σ)dσ.

We have lim
k→∞

Ik = 0 and identity (76) yields ∆ = νkskw
′
νk
(sk)− ν2

kw
′
νk
(νk) + Ik.

From (77) we conclude
∆ = lim

k→∞
νkskw

′
νk
(sk) ≥ 0

which is nothing but inequality (78). Theorem 7.4 is proved. ✷

8. Other admissibility conditions.

In this section we compare our minimality criterion with other entropy conditions, namely
with those of Lax [Lax - 1957], Liu [Liu - 1981] and Dafermos [Daf - 1973]. We consider
only solutions to equation (5) which belong to the space R of regulated functions (cf.
[Aum]), i.e. functions v : R1 → R1 such that for every z ∈ R1 there exist both limits
v(z−), v(z+) and the limits V± : = lim

z→±∞ v(z) exist and are finite.

A. Lax’ condition. [Lax -1957] The following definition is the classical Lax’ shock
condition for systems of conservation laws adapted to our special situation.

Definition 8.1. Let us assume g′ ∈ R. A solution v ∈ R to (5) is said to satisfy Lax’
entropy condition at a point z ∈ R1, if one of the following situations occurs:

(i) v(z−) = v(z+),

(ii) v(z−) < v(z+), zg′(v(z−)+) ≥ z3 ≥ zg′(v(z+)−),
(iii) v(z−) > v(z+), zg′(v(z−)−) ≥ z3 ≥ zg′(v(z+)+).

The fact that the minimal solution defined in Lemma 3.3 (i) follows the minimal convex
(maximal concave) trajectory along g implies immediately the following result:
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Proposition 8.2. Let v be the minimal solution to the Riemann problem (5), (11) and
assume g′ ∈ R. Then v satisfies Lax’ entropy condition at each point z ∈ R1.

Example 8.3 below shows that in general, the converse is not true.

Example 8.3. Let g : (U−, U+)→ (G−, G+) be an increasing smooth function and let
there exist numbers a < V− < q < V+ < s < b such that

(i) g′′ > 0 in (V−, q) ∪ (V+, s), g
′′ < 0 in (q, V+),

(ii) there exists t ∈ (q, V+) such that g(t)−g(V−)
t−V−

= g(s)−g(V−)
s−V−

= max {g(u)−g(V−)
u−V−

;u ∈
(V−, s]} (see Fig. 5)

Fig. 5 ononononononononononon
V− t V+

rps u
�

We fix some r ∈ (V+, s) such that
∫ r
V− g(u)du <

1
2
(r − V−)(g(r) + g(V−)) and put

v(z) : =




V− for z < −
√

g(r)−g(V−)
r−V−

,

r for z ∈
(
−

√
g(r)−g(V−)

r−V−
,
√

g(r)−g(V+)
r−V+

)
,

V+ for z >
√

g(r)−g(V+)
r−V+

.

(80)

Then v is a solution of (5),(11) with

D+ −D− =
√
(g(r)− g(V−))(r − V−) +

√
(g(r)− g(V+))(r − V+). (81)

For p ∈ [r, s) we further define

vp(z) : =




w∗
p(z

2) for z < 0,

p for z ∈
[
0,

√
g(p)−g(V+)

p−V+

)
,

V+ for z >
√

g(p)−g(V+)
p−V+

,

(82)
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where w∗
p is the minimal solution of (23),(24) with V = V−, Q = g(p) and we check

that the value of p can be chosen in such a way that vp satisfies (5),(11) with D+−D−
given by (81). Using Lemmas 3.1, 3.3 we obtain

∫ ∞

−∞
(vp(z)− P0(z))dz =

∫ ∞
−∞ (w

∗
p(z

2)− V−)dz +
√
(g(p)− g(V+))(p− V+) =

=
∫ p
V−

√
g∗′p (u)du+

√
(g(p)− g(V+))(p− V+),

where g∗p is the minimal (concave) trajectory from g(p) to V−. Put

h(p) : =
∫ p
V−

√
g∗′p (u)du+

√
(g(p)− g(V+))(p− V+)−

−
√
(g(r)− g(V−))(r − V−)−

√
(g(r)− g(V+))(r − V+).

We claim that p ∈ [r, s) can be chosen in such a way that h(p) = 0. Indeed, we have

h(s) =
√
(g(s)− g(V−))(s− V−) +

√
(g(s)− g(V+))(s− V+)−

−
√
(g(r)− g(V−))(r − V−)−

√
(g(r)− g(V+))(r − V+) > 0,

and Hölder’s inequality yields∫ r

V−

√
g∗′r (u)du ≤

√
(g(r)− g(V−))(r − V−),

hence h(r) ≤ 0. The function h is continuous in [r, s), hence h(p) = 0 for
some p ∈ [r, s). We thus dispose of two solutions v, vp of problem (5),(11) with
D+ − D− given by formula (81). Both v and vp satisfy the Lax condition and
the dissipation condition. To check that v = vp we notice that g∗p(t) = g(t), hence
g∗p(p)−g∗p(t)

p−t
= g(p)−g(t)

p−t
< g(s)−g(t)

s−t
= g(t)−g(V−)

t−V−
=

g∗p(t)−g∗p(V−)

t−V−
. This implies that g∗p is not

affine, consequently the solutions v, vp are distinct.

We can mention a positive result, namely

Proposition 8.4. Let g′ be monotone and let v be a piecewise constant solution to equa-
tion (5) satisfying Lax’ entropy condition at each point z ∈ R1. Then v is monotone in
each interval (−∞, 0), (0,+∞).

Proof. Let v be given by (12) and let us fix for instance 0 < zk < zk+1 ≤ √
b. Assume

that vk > max {vk−1, vk+1}. Then Definition 8.1 yields

g′(vk−1+) ≥ z2
k ≥ g′(vk−) ≥ z2

k+1 ≥ g′(vk+1+),

which is a contradiction. The cases zk < zk+1 < 0 and vk < min {vk−1, vk+1} are quite
analogous. ✷
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B. Liu’s condition [Liu - 1981, §3]

Definition 8.5. A solution v to (15) is said to satisfy Liu’s shock admissibility criterion
at a point z ∈ R1 if v(z+) = v(z−) and the inequality

z

(
g(v)− g(v(z−))

v − v(z−) − g(v(z+))− g(v(z−))
v(z+)− v(z−)

)
≥ 0 (83)

holds for all v between v(z−) and v(z+).

It is obvious that the minimal solution of (5), (11) defined in Theorem 5.2 satisfies con-
dition (83) at each point of discontinuity. The converse is true in the class of regulated
functions.

Proposition 8.6. Let the problem (5),(11) admit a solution v ∈ R such that condition
(83) holds at each point z ∈ R1 of discontinuity of v. Then v is minimal in the
sense of Theorem 5.2.

Proof. Let us first assume for instance that v is non-decreasing in (0,∞). Let
w+(s) : = v(

√
s) be the corresponding solution of (23),(24) and let g∗ be its trajectory

according to Lemma 3.2. If for some u ∈ (v(0+), V+) we have g(u) = g∗(u), then by
Lemma 3.2 there exists s > 0 such that u ∈ (w(s−), w(s+)) and g∗(u) = g(w(s−))+
(u− w(s−))g(w(s+))−g(w(s−))

w(s+)−w(s−)
, and condition (83) entails g(u) ≥ g∗(u). Consequently, g∗

is the minimal trajectory. The same argument works for v non-increasing and for the
interval (−∞, 0).
On the other hand, condition (83) excludes non-monotonicities of v in (−∞, 0) and
(0,∞). This can be seen again by considering just the interval (0,∞) only. Let us
assume for instance that there exist z3 > z1 > 0 and z2 ∈ [z1, z3] such that the values
v1 : = v(z1−), v3 : = v(z3+), v2 : = inf{v(z); z ∈ [z1, z3]} satisfy v2 < v1 < v3, v2 =
v(z2+) or v2 = v(z2−), v(z) ∈ [v2, v1] for z ∈ [z1, z2], v(z) ∈ [v2, v3] for z ∈ [z2, z3]
(the other cases, namely v2 < v3 < v1, v2 > v1 > v3, v2 > v3 > v1 are analogous).
It is more convenient to work with the solution w of (23),(24) defined by the formula
w(s) : = v(

√
s) for s > 0. Put si : = z2

i for i = 1, 2, 3 , A : = {s ∈ (s2, s3);w(s+) = v1

or w(s−) = v1} and

sA : =

{
inf A if A = ∅,
s2 if A = ∅.

Integrating equation (23) we obtain

s2(v2 − v1)− g(v2) + g(v1) =
∫ s2

s1
(w(s)− v1)ds ≤ 0, (84)

s2(v1 − v2)− g(v1) + g(v2) =
∫ s1

s2
(w(s)− v1)ds. (85)

Put s̄ : = inf{s ∈ [s2, s3];w(s+) > v1}. We have either s̄ = s2 or s̄ > s2. In the
latter case it follows from (84), (85) that [s2, s̄] ∩ A = ∅, hence in both cases we obtain
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w(s̄−) < v1 < w(s̄+). Put v̄ : = w(s̄−) ∈ [v2, v1). The hypotheses (83) and Lemma 1.5
then entail

g(v1)− g(v̄)

v1 − v̄
≥ s̄. (86)

This yields ∫ s̄

s1
(w(s)− v1)ds = s̄(v̄ − v1)− g(v̄) + g(v1) ≥ 0. (87)

By construction, we have
∫ s̄
s1
(w(s)− v1)ds < 0, which is a contradiction. Proposition 8.6

is proved. ✷

C. Dafermos’ condition

Definition 8.7. A weak solution to (2), (10) is said to satisfy Dafermos maximal entropy
rate criterion, if for every weak solution ũ to (2), (10) we have

d

dt

∫ ∞

−∞

[
1

2
u2
t +G(ux)− 1

2
ũ2
t −G(ũx)

]
(x, t)dx ≤ 0 (88)

in the sense of distributions.

Introducing the expression

E(v) := G(v)− vg(v) +
3

2
z2v2 (89)

for v ∈ L∞(R1) we can rewrite condition (88) in the following form.

Proposition 8.8. A self-similar solution u to (2), (10) satisfies condition (88) with re-
spect to all self-similar solutions ũ to (2), (10) if and only if∫ ∞

−∞
(E(v)− E(ṽ))dz ≤ 0 (90)

where v, ṽ are solutions to (5), (11) associated to u, ũ, respectively, according to Proposi-
tion 1.4.

The proof of Proposition 8.8 is a simple exercise based on integration-by-parts formulae

∫ ∞

−∞
1

2

(
f 2 − f̃ 2

)
dz = −

∫ ∞

−∞
z

(
vf − ṽf̃

)
dz,

∫ ∞

−∞
2z

(
vf − ṽf̃

)
dz = −

∫ ∞

−∞

[
v

(
z2v − g(v)

)
− ṽ

(
z2ṽ − g(ṽ)

)]
dz.

✷
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Comparison of the maximum principles (90) and (40).

Let us first consider the case of piecewise constant solutions given by (12). We have seen
(as a consequence of formula (32)) that condition (40) consists in maximizing separately
the expressions

(i)
∑

zi>0

[
G(vi)−G(vi−1)− 1

2
(g(vi−1) + g(vi)) (vi − vi−1)

]
,

(ii) − ∑
zi<0

[
G(vi)−G(vi−1)− 1

2
(g(vi−1) + g(vi)) (vi − vi−1)

] (91)

with an unknown intermediate condition g(v(0)) = Q. On the other hand, a straight-
forward computation shows that E(v) in (90) is minimal if we maximize an expression
different from (91), namely the sum

∑
zi

zi

[
G(vi)−G(vi−1)− 1

2
(g(vi−1) + g(vi)) (vi − vi−1)

]

over all discontinuities zi ∈ (−∞,∞).
Open problem. Let g be monotone. Prove or disprove: A solution v to (5), (11) satisfies
minimality criterion (40) if and only if it satisfies Dafermos’ maximal entropy rate criterion
(90)! On the other hand, one can construct examples of non-monotone functions g such
that these criteria are not equivalent (see [Kre]).
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