Recursive functions vs. classification theory

Emil Jeřábek

jerabek@math.cas.cz

http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Utrecht Workshop on Proof Theory, April 2015

Recursive functions and *R*

1 Recursive functions and R

2 Model completions

3 Classification theory

Robinson's theory *R*

NOT Robinson's arithmetic (Q), but equally illustrious Simple presentation: language $(0, S, +, \cdot, <)$, axioms

$$S^{n}(0) + S^{m}(0) = S^{n+m}(0)$$

 $S^{n}(0) \cdot S^{m}(0) = S^{nm}(0)$
 $orall x (x < S^{n}(0) \leftrightarrow x = 0 \lor \dots \lor x = S^{n-1}(0))$

- Axiomatizes true Σ₁ sentences
- Essentially undecidable, no r.e. completion
- Locally finitely satisfiable
- Visser '12: Strongest locally finitely satisfiable r.e. theory up to interpretation

Representability of recursive functions

Representation of a (partial) function $f : \mathbb{N}^k \rightarrow \mathbb{N}$ in T: Formula $\varphi(x_1, \ldots, x_k, y)$, constant terms \underline{n} for $n \in \mathbb{N}$ s.t. T proves

- $\underline{n} \neq \underline{m}$ whenever $n \neq m$
- $\varphi(\underline{n_1}, \ldots, \underline{n_k}, z) \leftrightarrow z = \underline{m}$ whenever $f(n_1, \ldots, n_k) = m$

Essential undecidability of R follows from:

- Theories representing all recursive functions are essentially undecidable
- ▶ *R* represents all recursive functions (even partial)

Converse?

R was designed to represent recursive functions, while being as weak as possible

This suggests the following question:

Problem

If a theory represents recursive functions, does it interpret *R*?

Representability revisited

Representation of $f \stackrel{\text{almost}}{\iff}$ interpretation of a certain theory

The extra requirements are pointless \implies better definition:

Definition

```
A representation of f: \mathbb{N}^k \rightarrow \mathbb{N} in T is an interpretation
of the following theory Rep_f in T:

• Language:

• constants \underline{n} for n \in \mathbb{N}

• function symbol \underline{f}

• Axioms:

• \underline{n} \neq \underline{m} for n \neq m

• f(n_1, \dots, n_k) = m for f(n_1, \dots, n_k) = m
```

New statement of the problem

Definition

$$PRF = \bigcup \{ Rep_f : f \text{ partial recursive function} \}$$

PRF can be equivalently expressed in a finite language:

$$0, S(x), \langle x, y \rangle, \phi_x(y)$$

Our question reduces to:

Problem

Does PRF interpret R?

Model completions

1 Recursive functions and *R*

2 Model completions

3 Classification theory

Basic idea

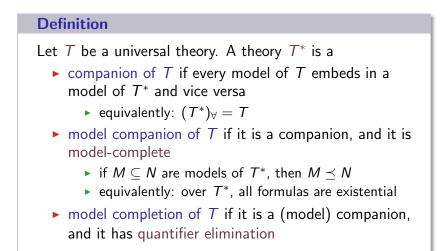
- PRF has quantifier-free axioms
- \implies shouldn't interpret much of anything

Trouble: interpretations may use formulas of arbitrary quantifier complexity \implies not easy to analyze directly

Strategy: extend PRF to a theory with quantifier elimination

- get a handle on possible interpretations
- embed the standard model of *PRF* in a randomly looking structure so that any combinatorial features are dissolved

Model completion



Properties of model companions

- The model companion T^* of T is unique if it exists
- ▶ Models of *T*^{*} are the existentially closed models of *T*
 - $M \models T$
 - ▶ if an existential formula holds in an extension $M \subseteq N \models T$, it already holds in M
- T has a model companion

 \iff the class of e.c. models of T is elementary

Т	T *
linear orders	dense linear orders
integral domains	algebraically closed fields
Boolean algebras	atomless Boolean algebras
groups	N/A

Intended application

If the empty *L*-theory \emptyset_L had a model completion \emptyset_L^* :

- every *L*-structure extends to a model of \mathscr{D}_L^*
- every consistent existential *L*-theory is consistent with \mathscr{D}_L^*
- ► a theory interpretable in a consistent existential L-theory is weakly interpretable in Ø^{*}_L
- (weak) interpretations in \mathscr{D}_L^* are quantifier-free

PRF is existential, so what we'll do:

- show that indeed, \emptyset_L has a model completion
- ► exhibit theories interpretable in R (~ locally finitely satisfiable) and not weakly interpretable in Ø^{*}_L

Random structure

 \mathscr{D}_L^* is well known for relational languages *L*: the theory of random structure(s)

- ► sentences that hold with asymptotic probability 1 in *n*-element random *L*-structures, n → ∞
- or: the countable random L-structure
- ► Fraïssé limit of the class of all finite *L*-structures
- ω -categorical, quantifier elimination, ...
- axiomatized by extension axioms:
 - ▶ for any distinct a₁,..., a_k, there is another element b that bears any prescribed relations to a₁,..., a_k

The general case

If *L* includes function symbols:

- \blacktriangleright no 0–1 or limit law; no uniform distribution on ω
- 2^{ω} quantifier-free types \implies no hope for ω -categoricity
- cannot assign values of terms willy-nilly: f(a) = f(b) → g(f(a)) = g(f(b))

Luckily, it all works out in the end:

Theorem

For every language L, \mathscr{D}_L has a model completion \mathscr{D}_L^* .

Warning: \mathscr{Q}_{L}^{*} may be incomplete (quantifier-free sentences)

\varnothing_L^* and existential theories

Corollary

If T is interpretable in a consistent existential theory, it is weakly quantifier-free interpretable in \varnothing_L^* for some L.

A partial converse \implies we are on the right track:

Proposition

Let T be an $\exists \forall$ theory in a relational language (?). If T is weakly interpretable in some \mathscr{D}_{L}^{*} , it is interpretable in a consistent existential theory.

NB: \emptyset_L^* is $\forall \exists$

Emil Jeřábek | Recursive functions vs. classification theory | Utrecht Workshop on Proof Theory 2015

Classification theory

1 Recursive functions and *R*

2 Model completions

Classification theory

- Various criteria to separate tame and wild theories ("dividing lines")
- Structure theory for models of tame theories
 - geometry of definable sets and types
 - models with special properties (prime, saturated, ...)
 - ▶ interpretable algebraic structures (groups, ...)
- Uncountable categoricity, stability, o-minimality, simplicity . . .
- Shelah
- Why is it relevant here?
 - ► Many dividing lines amount to weak interpretability of ∃∀ locally finitely satisfiable theories!

Metaterminology

Let T be a theory:

- A formula φ has the xghg xiljxa property (XXP) in T if there are
 - a model $M \models T$
 - tuples $\overline{a}_i \in M \ (i \in I)$

such that hflijesai ff jai l jklf ajlifa $\varphi(\overline{a}_i, \overline{x})$ kah f h ahfdj k

- T has XXP if some formula has it in T
- T has the no xghg xiljxa property (NXXP) if it doesn't have XXP
- NXXP is good, XXP is bad

picture

missing

see http://forkinganddividing.com

Order and independence properties

- order property (OP) $M \vDash T, \varphi(\overline{x}, \overline{y}), (\overline{a}_i)_{i \in \mathbb{N}}$ s.t.
 - $M \vDash \varphi(\overline{a}_i, \overline{a}_j) \iff i < j$

NOP = stable = NIP & NSOP

- strict order property (SOP)
 - $\varphi(\overline{x}, \overline{y})$ defines a strict partial order
 - $M \vDash \varphi(\overline{a}_i, \overline{a}_j)$ for i < j
- *k*-strong order property (SOP_k), $k \ge 3$
 - $\{\varphi(\overline{x}_1, \overline{x}_2), \varphi(\overline{x}_2, \overline{x}_3), \dots, \varphi(\overline{x}_k, \overline{x}_1)\}$ is inconsistent
 - $M \vDash \varphi(\overline{a}_i, \overline{a}_j)$ for i < j
- ▶ independence property (IP) $\varphi(\overline{x}, \overline{y}), (\overline{a}_i)_{i \in \mathbb{N}}, (\overline{b}_X)_{X \subseteq \mathbb{N}}$ s.t.
 - $M \vDash \varphi(\overline{a}_i, \overline{b}_X) \iff i \in X$

Tree properties

 $\mathbb{N}^{<\omega}=\text{tree}$ of finite sequences over a countable alphabet

- tree property (TP) *M*, φ(x̄, ȳ), (ā_s)_{s∈N^{<ω}} s.t.
 {φ(x̄, ā_{σ↑n}) : n ∈ ω} is consistent for each path σ ∈ N^ω ↓ {φ(x̄, ā_{s→i}), φ(x̄, ā_{s→j})} is inconsistent for s ∈ N^{<ω}, i < j NTP = simple = NTP₁&NTP₂
- ► TP₁ (= "SOP₂")
 - $\{\varphi(\overline{x}, \overline{a}_{\sigma \restriction n}) : n \in \omega\}$ is consistent for $\sigma \in \mathbb{N}^{\omega}$
 - $\{\varphi(\overline{x}, \overline{a}_s), \varphi(\overline{x}, \overline{a}_t)\}$ is inconsistent for s, t incomparable
- ► TP₂
 - M, $\varphi(\overline{x},\overline{y})$, $(\overline{a}_{n,i})_{n,i\in\omega}$
 - {φ(x̄, ā_{n,σ(n)}) : n ∈ ω} is consistent for σ ∈ N^ω
 {φ(x̄, ā_{n,i}), φ(x̄, ā_{n,i})} is inconsistent for n ∈ ω, i < j
- Emil Jeřábek | Recursive functions vs. classification theory | Utrecht Workshop on Proof Theory 2015

\varnothing_L^* not quite domesticated

NB: random relational structures are supersimple

```
Observation
Any consistent extension of
PRF, or
∅<sup>*</sup><sub>L</sub> if L contains a binary function is TP<sub>2</sub> (hence IP and non-simple).
```

Proof: Take $\overline{a}_{n,i} = (\underline{n}, \underline{i})$, and

$$(x)_{y_1}=y_2$$

for the formula $\varphi(x, y_1, y_2)$

Emil Jeřábek | Recursive functions vs. classification theory | Utrecht Workshop on Proof Theory 2015

Elimination of infinity

Definition

T has elimination of infinity if for every formula $\varphi(\overline{z}, x)$, there is a bound *n* such that

$$|\varphi(\overline{a}, M)| > n \implies |\varphi(\overline{a}, M)| \ge \aleph_0$$

for every
$$M \vDash T$$
 and $\overline{a} \in M$

Elimination of infinity \iff FO formulas are closed under \exists^{∞} :

$$M \vDash \exists^{\infty} x \varphi(\overline{a}, x)$$
 iff $\varphi(\overline{a}, M)$ is infinite

Tameness of \varnothing_L^*

Main theorem

For any language L:

- \emptyset_L^* has NSOP₃ (hence NSOP)
- $(\mathscr{O}_L^*)^{eq}$ eliminates infinity

Consequences

Corollary

The following theories are interpretable in R, but not in PRF:

- (partial) orders with arbitrarily long chains
- "for each standard n, there is a set with n elements"
- directed graphs with arbitrarily long transitive chains, and no directed 3-cycle

Problems

- ▶ Does *PRF* interpret all consistent r.e. existential theories?
- Is the random graph interpretable in a consistent existential theory?
- Does \mathscr{Q}_L^* have NTP₁, or even NSOP₁?
- ► Does Ø^{*}_L have weak elimination of imaginaries?

Thank you for attention!

References

- G. Conant: Map of the Universe, http://forkinganddividing.com
- S. Shelah: Classification theory and the number of nonisomorphic models, 2nd ed., Elsevier, 1990
- A. Tarski, A. Mostowski, R. M. Robinson: Undecidable theories, North-Holland, 1953
- ▶ K. Tent, M. Ziegler: A course in model theory, CUP, 2012
- A. Visser: Why the theory R is special, in: Foundational Adventures: Essays in Honor of Harvey M. Friedman (N. Tennant, ed.), College Publications, 2014. Online by Templeton Press, http://foundationaladventures.com, 2012