Rules with parameters in modal logic

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

UNIF 2012 Manchester July 2012

Overview

The plan for this talk:

- General remarks on unification and admissibility
- Known results on unification and admissibility in transitive modal logics
- Unification and admissibility with parameters in transitive modal logics
- Unification and admissibility with parameters in intuitionistic logic

Unification and admissibility in propositional logics

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

Propositional logic *L*:

Language: formulas $Form_L$ built freely from atoms (variables) $\{x_n : n \in \omega\}$ using a fixed set of connectives of finite arity

Consequence relation \vdash_L : finitary structural Tarski-style consequence operator

I.e.: a relation $\Gamma \vdash_L \varphi$ between finite sets of formulas and formulas such that

- $\, \bullet \, \varphi \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ implies $\Gamma, \Gamma' \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ and $\Gamma, \varphi \vdash_L \psi$ imply $\Gamma \vdash_L \psi$
- $\Gamma \vdash_L \varphi$ implies $\sigma(\Gamma) \vdash_L \sigma(\varphi)$ for every substitution σ

Algebraization

L is finitely algebraizable wrt a class *K* of algebras if there is a finite set F(u, v) of formulas and a finite set E(x) of equations such that

- $\Gamma \vdash_L \varphi \Leftrightarrow E(\Gamma) \vDash_K E(\varphi)$
- $\Theta \vDash_K t \approx s \Leftrightarrow F(\Theta) \vdash_L F(t,s)$
- $x \dashv \vdash_L F(E(x))$
- $\bullet \ u \approx v \dashv \vDash_K E(F(u,v))$

We may assume *K* is a quasivariety

In our case we will always have: $E(x) = \{x \approx 1\}, F(u, v) = \{u \leftrightarrow v\}, K \text{ is a variety}$ Let Θ be an equational theory (or a variety of algebras):

- Θ -unifier of a set Γ of equations: a substitution σ s.t. $\vDash_{\Theta} \sigma(t) \approx \sigma(s)$ for all $t \approx s \in \Gamma$
- Γ is Θ -unifiable if it has a Θ -unifier
- $\sigma \equiv_{\Theta} \tau$ iff $\vDash_{\Theta} \sigma(u) \approx \tau(u)$ for every variable u
- $\sigma \preceq_{\Theta} \tau$ (τ is more general than σ) if $\exists \varrho \sigma \equiv_{\Theta} \varrho \circ \tau$
- Complete set of unifiers of Γ : a set X of unifiers of Γ such that every unifier of Γ is less general than some $\tau \in X$

Unification in propositional logics

- If *L* is a logic finitely algebraizable wrt a variety *K*, we can express *K*-unification in terms of *L*:
- An *L*-unifier of a formula φ is σ such that $\vdash_L \sigma(\varphi)$

Then we have:

- L-unifier of $\varphi = K$ -unifier of $E(\varphi)$
- K-unifier of $t \approx s = L$ -unifier of F(t, s)
- $\sigma \equiv_L \tau$ iff $\vdash_L F(\sigma(x), \tau(x))$ for every x(in our case: $\vdash_L \sigma(x) \leftrightarrow \tau(x)$)

Single-conclusion rule: Γ / φ (Γ finite set of formulas) Multiple-conclusion rule: Γ / Δ (Γ, Δ finite sets of formulas)

- Γ / Δ is *L*-derivable (or valid) if $\Gamma \vdash_L \delta$ for some $\delta \in \Delta$
- Γ / Δ is *L*-admissible (written as $\Gamma \vdash_L \Delta$) if every *L*-unifier of Γ also unifies some $\delta \in \Delta$

$$E(\Gamma / \Delta) := \bigwedge_{\gamma \in \Gamma} E(\gamma) \to \bigvee_{\delta \in \Delta} E(\delta):$$

- Γ / Δ is derivable iff $E(\Gamma / \Delta)$ holds in all K-algebras
- Γ / Δ is admissible iff $E(\Gamma / \Delta)$ holds in free K-algebras

Note: Γ is unifiable iff $\Gamma \not\models_L \varnothing$

Multiple-conclusion consequence relations

Single-conc. admissible rules form a consequence relation Multiple-conc. admissible rules form a (finitary structural) multiple-conclusion consequence relation:

- $\varphi \sim \varphi$
- $\Gamma \vdash \Delta$ implies $\Gamma, \Gamma' \vdash \Delta, \Delta'$
- $\Gamma \models \varphi, \Delta \text{ and } \Gamma, \varphi \models \Delta \text{ imply } \Gamma \models \Delta$
- $\Gamma \succ \Delta$ implies $\sigma(\Gamma) \succ \sigma(\Delta)$ for every substitution σ

A set *B* of rules is a basis of *L*-admissible rules if \vdash_L is the smallest m.-c. c. r. containing \vdash_L and *B*

Admissibly saturated approximation

- Γ is admissibly saturated if $\Gamma \vdash_L \Delta$ implies $\Gamma \vdash_L \Delta$ for any Δ
- Assume for simplicity that *L* has a well-behaved conjunction.
- Admissibly saturated approximation of Γ : a finite set of formulas Π_{Γ} such that
 - each $\pi \in \Pi_{\Gamma}$ is admissibly saturated
 - $\Gamma \vdash_L \Pi_{\Gamma}$
 - $\pi \vdash_L \varphi$ for each $\pi \in \Pi_{\Gamma}$ and $\varphi \in \Gamma$

Application of admissible saturation

Assuming every Γ has an a.s. approximation Π_{Γ} :

• Reduction of \vdash_L to \vdash_L :

 $\Gamma \mathrel{{\succ}_L} \Delta \quad \text{iff} \quad \forall \pi \in \Pi_{\Gamma} \exists \psi \in \Delta \ \pi \mathrel{{\vdash}_L} \psi$

- If $\Gamma \mapsto \Pi_{\Gamma}$ is computable and \vdash_L is decidable, then \vdash_L is decidable
- If Γ / Π_{Γ} is derivable in $\vdash_L + a$ set of rules $B \subseteq \vdash_L$, then *B* is a basis of admissible rules
- If each $\pi \in \Pi_{\Gamma}$ has an mgu σ_{π} , then $\{\sigma_{\pi} : \pi \in \Pi_{\Gamma}\}$ is a complete set of unifiers for Γ \Rightarrow finitary unification

Projective formulas

 π is projective if it has a unifier σ such that $\pi \vdash_L x \leftrightarrow \sigma(x)$ (in general: $\pi \vdash_L F(x, \sigma(x))$) for every variable x

- Every projective formula is admissibly saturated
- σ is an mgu of π : if τ is a unifier of π , then $\tau \equiv_L \tau \circ \sigma$

Projective approximation := admissibly saturated approximation consisting of projective formulas

If projective approximations exist: convenient tool for analysis of unification and admissibility

Parameters

In real life, propositional atoms model both "variables" and "constants"

We don't want to allow substitution for constants

- \Rightarrow Generalize the set-up to use two kinds of atoms:
 - variables $\{x_n : n \in \omega\}$
 - parameters {p_n : n ∈ ω}
 (aka metavariables, constants, coefficients)

Unification with parameters

Substitutions only modify variables, we require $\sigma(p_n) = p_n$

Adapt accordingly the definitions of other notions:

• Unifier, $\sigma \preceq_L \tau$, admissible rule, m.-c. consequence relation, basis, a.s. formula and approximation, projective formula

Exception: "Propositional logic" is always assumed to be closed under substitution for parameters

Transitive modal logics

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

Transitive modal logics

Normal modal logics with a single modality \Box , include the transitivity axiom $\Box x \rightarrow \Box \Box x$ (i.e., $L \supseteq \mathbf{K4}$)

Common examples: various combinations of

logic	axiom (on top of ${f K4}$)	finite rooted transitive frames		
$\mathbf{S4}$	$\Box x \to x$	reflexive		
$\mathbf{D4}$	$\diamond \top$	final clusters reflexive		
\mathbf{GL}	$\Box(\Box x \to x) \to \Box x$	irreflexive		
K4Grz	$\Box(\Box(x\to\Box x)\to x)\to\Box x$	no proper clusters		
K4.1	$\Box \diamondsuit x \to \diamondsuit \Box x$	no proper final clusters		
K4.2	$\Diamond \boxdot x \to \Box \diamondsuit x$	unique final cluster		
K4.3	$\Box(\boxdot x \to y) \lor \Box(\Box y \to x)$	linear (chain of clusters)		
K4B	$x \to \Box \diamondsuit x$	lone cluster		
$\mathbf{S5}$	$= \mathbf{S4} \oplus \mathbf{B}$	lone reflexive cluster		

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

Some classes of transitive logics

Cofinal-subframe (csf) logics:

- complete wrt a class of frames closed under the removal of a subset of non-final points
- all combinations of logics from the table are csf

Extensible logics:

- If a frame *F* has a unique root *r* whose reflexivity is compatible with *L*, and $F \setminus \{r\} \models L$, then $F \models L$
- K4, S4, GL, K4Grz, S4Grz, D4, K4.1, ... (not K4.2, ...)

Linear extensible logics:

• K4.3, S4.3, GL.3, ...

Unification in transitive modal logics

A lot is known about admissibility without parameters:

- Admissibility is decidable in a large class of logics (Rybakov)
- Extensible logics have projective approximations (Ghilardi)
 - finitary unification type
 - complete sets of unifiers computable
- Bases of admissible rules for extensible logics (J.)
- Computational complexity of admissibility (J.)
 - Lower bounds for a quite general class of logics
 - Matching upper bounds for csf extensible logics
- ... and more ...

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

Projectivity in modal logics

Fix $L \supseteq K4$ with the finite model property (fmp)

Extension property: if *F* is a finite *L*-model with a unique root *r* and $x \models \varphi$ for every $x \in F \smallsetminus \{r\}$, then we can change valuation of variables in *r* to make $r \models \varphi$

Theorem [Ghilardi]: The following are equivalent:

- φ is projective
- φ has the extension property
- θ_{φ} is a unifier of φ

where θ_{φ} is an explicitly defined composition of substitutions of the form $\sigma(x) = \boxdot \varphi \land x$ or $\sigma(x) = \boxdot \varphi \rightarrow x$

Semantics of admissible rules

If *L* is an extensible logic with fmp, tfae:

- $\Gamma \vdash_L \Delta$
- Γ / Δ holds in every *L*-frame *W* s.t. $\forall X \subseteq W$ finite:
 - If $L \not\supseteq S4$, X has an irreflexive tight predecessor t:

$$t \uparrow = X \uparrow$$

• If $L \not\supseteq \mathbf{GL}$, X has a reflexive tight predecessor t:

$$t\uparrow = \{t\} \cup X\uparrow$$

For linear extensible *L*, take only $|X| \le 1$ Notation: $x\uparrow = \{y : x \ R \ y\}$, $x\uparrow = \{x\} \cup x\uparrow$, $X\uparrow = \bigcup_{x\in X} x\uparrow$

Bases of admissible rules

If *L* is an extensible logic, it has a basis of admissible rules consisting of

$$\frac{\Box y \to \Box x_1 \lor \cdots \lor \Box x_n}{\Box y \to x_1, \dots, \Box y \to x_n} \qquad (n \in \omega)$$

if *L* admits an irreflexive point, and

$$\frac{\boxdot(y\leftrightarrow\square y)\rightarrow\square x_1\vee\cdots\vee\square x_n}{\boxdot y\rightarrow x_1,\ldots,\boxdot y\rightarrow x_n} \qquad (n\in\omega)$$

if L admits a reflexive point For L linear extensible, take only n = 0, 1

Complexity of admissible rules

Lower bound:

Assume $L \supseteq K4$ and every depth-3 tree is a skeleton of an *L*-frame with prescribed final clusters. Then *L*-admissibility is coNEXP-hard.

Upper bounds: Admissibility in

- csf extensible logics is coNEXP-complete
- ${\scriptstyle \bullet} \,$ csf linearly extensible logics is ${\rm coNP}{\mbox{-}complete}$

Unification with parameters in modal logic

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

Known results

Less is known about admissibility in transitive modal logics in the presence of parameters:

- Rybakov's results on decidability of admissibility also apply to admissibility with parameters
- Recently, he expanded the results to effectively construct complete sets of unifiers ⇒ finitary unification type

Terminology: From now on, admissibility and unification always allow parameters

New results

In this talk, we will show:

- Ghilardi-style characterization of projective formulas
- Existence of projective approximations for cluster-extensible (clx) logics [defined on the next slide]
- Semantic description of admissibility in clx logics
- Explicit bases of admissible rules for clx logics
- Computational complexity:
 - Lower bounds on unification in wide classes of transitive logics
 - Matching upper bounds for admissibility in csf clx logics
- Translation of these results to intuitionistic logic

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

Let *L* be a transitive modal logic with fmp, $n \in \omega$, and *C* a finite cluster.

A finite rooted frame *F* is of type $\langle n, C \rangle$ if its root cluster rcl(F) is isomorphic to *C* and has *n* immediate successor clusters.

L is $\langle n, C \rangle$ -extensible if: For every type- $\langle n, C \rangle$ frame *F*, if $F \setminus rcl(F)$ is an *L*-frame, then so is *F*.

L is cluster-extensible (clx), if it is $\langle n, C \rangle$ -extensible whenever there exists a type- $\langle n, C \rangle$ *L*-frame.

Examples: All combinations of K4, S4, GL, D4, K4Grz, K4.1, K4.3, K4B, S5, \pm bounded branching

Nonexamples: K4.2, S4.2, ...

Projective formulas: the extension property

Fix $L \supseteq \mathbf{K4}$ with the fmp, and P and V finite sets of parameters and variables, resp.

- If *F* is a rooted model with valuation of $P \cup V$, its variant is any model *F'* which differs from *F* only by changing the value of some variables $x \in V$ in rcl(F)
- A set M of finite rooted L-models evaluating P ∪ V has the model extension property, if: every L-model F whose all rooted generated proper submodels belong to M has a variant F' ∈ M
- A formula φ in atoms $P \cup V$ has the model extension property if $Mod_L(\varphi) := \{F : \forall x \in F \ (x \vDash \varphi)\}$ does

Projective formulas: Löwenheim substitutions

Let φ be a formula in atoms $P \cup V$

• For every $D = \{\beta_x : x \in V\}$, where each β_x is a Boolean function of the parameters P, define the substitution

$$\theta_D(x) = (\boxdot \varphi \land x) \lor (\neg \boxdot \varphi \land \beta_x)$$

• Let θ_{φ} be the composition of substitutions θ_D for all the $2^{2^{|P|}|V|}$ possible *D*'s, in arbitrary order

Projective formulas: a characterization

Theorem:

Let $L \supseteq \mathbf{K4}$ have the fmp, and φ be a formula in finitely many parameters P and variables V. Tfae:

- φ is projective
- φ has the model extension property

where $N = (|B| + 1)(2^{|P|} + 1)$, $B = \{\psi : \Box \psi \subseteq \varphi\}$

Remark: If $P = \emptyset$, we have $N \le 2|\varphi|$. Ghilardi's original proof gives N nonelementary (tower of exponentials of height $md(\varphi)$)

Theorem:

If *L* is a clx logic, every formula φ has a projective approximation Π_{φ} .

Moreover, every $\pi \in \Pi_{\varphi}$ is a Boolean combination of subformulas of φ .

Corollary:

- $\{\theta_{\pi}^{N} : \pi \in \Pi_{\varphi}\}$ is a complete set of unifiers of φ
- Admissibility in L is decidable (if L r.e.?)
- If $n = |\varphi|$, then $|\Pi_{\varphi}| \le 2^{2^n}$, and $|\pi| = O(n2^n) \ \forall \pi \in \Pi_{\varphi}$
- $|\theta_{\pi}^{N}|$ is doubly exponential in |B| + |V|, and triply exponential in |P|. This is likely improvable.

Size of projective approximations

The bounds $|\Pi_{\varphi}| = 2^{2^{O(n)}}$ and $|\pi| = 2^{O(n)}$ for $\pi \in \Pi_{\varphi}$ are asymptotically optimal, even if $P = \emptyset$:

• If L is $(2, \bullet)$ -extensible (e.g., K4, GL), consider

$$\varphi_n = \bigwedge_{i < n} (\Box x_i \lor \Box \neg x_i) \to \Box y \lor \Box \neg y$$
$$\Pi_{\varphi_n} = \left\{ \bigwedge_{i < n} (\Box x_i \lor \Box \neg x_i) \to (y \leftrightarrow \beta(\vec{x})) \mid \beta \colon \mathbf{2}^n \to \mathbf{2} \right\}$$

• Similar examples work for $\langle 2, \circ \rangle$ -extensible logics (S4)

Irreflexive extension rules

Let $n < \omega$, and P a finite set of parameters. Ext $_{n,\bullet}^{P}$ is the set of rules

$$\frac{P^e \land \Box y \to \Box x_1 \lor \cdots \lor \Box x_n}{\Box y \to x_1, \dots, \Box y \to x_n}$$

for each assignment $e \colon P \to \mathbf{2}$

Notation: $\varphi^1 = \varphi, \ \varphi^0 = \neg \varphi, \ P^e = \bigwedge_{p \in P} p^{e(p)}, \ \mathbf{2}^P = \{e \mid e \colon P \to \mathbf{2}\}$

Reflexive extension rules

Let *C* be a finite reflexive cluster $\operatorname{Ext}_{n,C}^{P}$ is the set of the following rules: Pick $E: C \to 2^{P}$ and $e_{0} \in E(C)$, and consider

$$P^{e_0} \wedge \boxdot \left(y \to \bigvee_{e \in E(C)} \square (P^e \to y) \right) \wedge \bigwedge_{e \in E(C)} \boxdot \left(\square (P^e \to \square y) \to y \right) \\ \to \square x_1 \lor \cdots \lor \square x_n$$

$$\boxdot y \to x_1, \ldots, \boxdot y \to x_n$$

Tight predecessors

P a finite set of parameters, C a finite cluster, $n<\omega$

- A *P*-*L*-frame is a (Kripke or general) *L*-frame *W* together with a fixed valuation of parameters $p \in P$
- If $X = \{w_1, \dots, w_n\} \subseteq W$ and $E \colon C \to \mathbf{2}^P$, a tight *E*-predecessor (*E*-tp) of X is $\{u_c : c \in C\} \subseteq W$ such that

$$u_c \vDash P^{E(c)}, \qquad u_c \uparrow = X \uparrow \cup \{u_d : d \in c \uparrow\}$$

(Note: $c\uparrow = C$ if C is reflexive, $c\uparrow = \emptyset$ if irreflexive)

- W is $\langle n, C \rangle$ -extensible if every $\{w_1, \dots, w_n\} \subseteq W$ has an *E*-tp for every $E: C \to \mathbf{2}^P$
- If *L* is a clx logic, *W* is *L*-extensible if it is $\langle n, C \rangle$ -extensible whenever *L* is

Correspondence and completeness

Theorem: If P is a finite set of parameters and W is a descriptive or Kripke P-K4-frame, tfae:

- $W \models \operatorname{Ext}_{n,C}^P$
- W is $\langle n, C \rangle$ -extensible

Corollary: For a logic $L \supseteq K4$, tfae:

- L is $\langle n, C \rangle$ -extensible
- $\operatorname{Ext}_{n,C}^P$ is *L*-admissible for every *P*

Theorem: If *L* has fmp and is $\langle n, C \rangle$ -extensible for all $\langle n, C \rangle \in X$, then $L + \{ \text{Ext}_{n,C}^{P} : \langle n, C \rangle \in X \}$ is complete wrt locally finite (= all rooted subframes finite) *P*-*L*-frames, $\langle n, C \rangle$ -extensible for each $\langle n, C \rangle \in X$

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

Semantics and bases of admissible rules

Theorem:

Let *L* be a clx logic, and Γ / Δ a rule in a finite set of parameters *P*. Then tfae:

- $\Gamma \mathrel{\sim}_L \Delta$
- Γ / Δ holds in every [locally finite] *L*-extensible *P*-*L*-frame
- Γ / Δ is derivable in \vdash_L extended by the rules $\operatorname{Ext}_{n,C}^P$ such that L is $\langle n, C \rangle$ -extensible

Corollary: If *L* is a clx logic, it has a basis of admissible rules consisting of $\operatorname{Ext}_{n,C}^P$ for all finite *P* and all $\langle n, C \rangle$ such that *L* is $\langle n, C \rangle$ -extensible

Theorem: If $L \supseteq \mathbf{K4}$ has width ≥ 2 , then unification (and thus inadmissiblity) in L is NEXP-hard.

Theorem:

If *L* is a csf clx logic of width ≥ 2 and bounded cluster size, then inadmissibility (and thus unification) in *L* is NEXP-complete.

Examples: GL, K4Grz, S4Grz, ...

Theorem: If $L \supseteq \mathbf{K4}$ has unbounded cluster size, then unification in L is coNEXP-hard.

Theorem:

If *L* is a clx logic of width ≤ 1 and unbounded cluster size, then inadmissibility in *L* is coNEXP-complete.

Examples: S5, K4.3, S4.3, ...

Complexity: wide and fat logics

L is "chubby" if for all n > 0 there is a finite rooted *L*-frame containing an *n*-element cluster *C* and an element incomparable with *C*

Recall: $\Sigma_2^{\text{EXP}} = \text{NEXP}^{\text{NP}}$

Theorem:

If $L \supseteq \mathbf{K4}$ is chubby, then unification in L is Σ_2^{EXP} -hard.

Theorem:

If *L* is a csf clx logic of width ≥ 2 and unbounded cluster size, then inadmissibility in *L* is Σ_2^{EXP} -complete.

Examples: K4, S4, S4.1, ...

Theorem:

If $L \supseteq K4$, then unification in L is PSPACE-hard, unless L is a tabular logic of width 1.

Theorem:

If *L* is a clx logic of width 1, bounded cluster size, and depth > 1, then admissibility in *L* is PSPACE-complete.

Examples: GL.3, K4Grz.3, S4Grz.3, ...

Theorem:

If *L* is a tabular logic of width 1 and depth *d*, then unification and inadmissibility in *L* are Π_{2d}^{P} -complete.

Examples: $S5 + Alt_n$, $K4 + \Box \bot$, ...

Complexity: summary

We get the following classification for csf clx logics:

logic			param'r-free		with param's		ovomolo
cluster size	bran- ching	\nvdash_L	unif'n	$\not\sim_L$	unif'n	$\not\sim_L$	example
$<\infty$	0		Π_2^{P} -C.		$\mathbf{S5} + \mathbf{Alt}_n$		
	1	NP-complete			PSPACE-c.		GL.3
∞	≤ 1				coNEXP-c.		S5 , S4 .3
$<\infty$	≥ 2	PSPACE-C 2		NEXP-complete		GL, Grz	
∞	(∞)	$\begin{bmatrix} 1 \ 5 1 \ \mathbf{A} \mathbf{C} \mathbf{L}^{-} \mathbf{C} \end{bmatrix}$:		Σ_2^{EX}	^Р -С.	K4, S4

Intuitionistic logic

Results for modal logics can be transferred to intermediate logics by means of the Blok–Esakia isomorphism

The following result by Rybakov can be generalized to admissibility with parameters:

Theorem: If $L \supseteq IPC$ and σL is its largest modal companion, then

$$\Gamma \mathrel{{\triangleright_L}} \Delta \Leftrightarrow \mathsf{T}(\Gamma) \mathrel{{\succ_{\sigma L}}} \mathsf{T}(\Delta),$$

where T is the Gödel translation

[However,
$$\bigwedge_{p \in P} \Box(p \to \Box p) \to \mathsf{T}(\varphi)$$
 is often more convenient.]

Corollaries

Note: The only "clx" $L \supseteq IPC$ are IPC itself and the bounded branching logics T_n (incl. $T_1 = LC$, $T_0 = CPC$)

The translation yields:

- Char. of projective formulas in $L \supseteq IPC$ with fmp
- Existence of projective approximations and semantic description of \vdash_L for IPC and \mathbf{T}_n
- Complexity (lower bounds need an extra argument): unification and inadmissibility is
 - $\ensuremath{\,{\rm NEXP}}\xspace$ -complete for $\ensuremath{{\rm IPC}}\xspace$
 - $\ {\bf \ PSPACE}\text{-complete for }\mathbf{LC}$
 - Π^{P}_{2d} -complete for \mathbf{G}_{d+1}
 - NEXP-hard for any other intermediate logic

Intuitionistic extension rules

Bases of admissible rules require a separate construction: A basis for IPC and T_n is given by the rules

$$\frac{\bigwedge P \land \left(\bigvee_{i=1}^{n} x_{i} \lor \bigvee Q \rightarrow y\right) \rightarrow \bigvee_{i=1}^{n} x_{i} \lor \bigvee Q}{\bigwedge P \land y \rightarrow x_{1}, \dots, \bigwedge P \land y \rightarrow x_{n}}$$

where *P*, *Q* are disjoint finite sets of parameters

Questions

- Is there a general reduction of admissibility to nonunifiability (with parameters)?
- What is the complexity of parameter-free unification for non-linear csf clx logics?
 - NP-hard and NEXP-easy
 - If L includes D4 or GL or $\Box x \rightarrow x \lor \Box \bot$: NP-complete (the universal frame of rank 0 is very simple)
 - Otherwise?

Thank you for attention!

Emil Jeřábek Rules with parameters in modal logic UNIF 2012, Manchester

References

S. Ghilardi, *Best solving modal equations*, Ann. Pure Appl. Log. 102 (2000), 183–198.

E. Jeřábek, *Admissible rules of modal logics*, J. Log. Comp. 15 (2005), 411–431.

_____, *Complexity of admissible rules*, Arch. Math. Log. 46 (2007), 73–92.

V. Rybakov, *Admissibility of logical inference rules*, Elsevier, 1997.

_____, Unifiers in transitive modal logics for formulas with coefficients (meta-variables), Log. J. IGPL, accepted.