Disjunction properties in modal proof complexity

Emil Jeřábek

jerabek@math.cas.cz

http://math.cas.cz/~jerabek/

Institute of Mathematics, Czech Academy of Sciences, Prague

The Utrecht Logic in Progress Series 9 February 2021

Classical proof complexity

proof system (pps) P: poly-time predicate P(x, φ) "x is a P-proof of φ" sound and complete:

 φ has a $P\operatorname{-proof}\iff$ it is a classical tautology

- examples: Resolution, Hilbert-Frege systems, sequent calculi, polynomial calculus, ...
- length of proofs: s_P(φ) = min{|x| : P(x,φ)} polynomial in |φ|? exponential in |φ|?
- ▶ *P* polynomially bounded $\iff \forall \varphi \in \text{TAUT } s_P(\varphi) \leq |\varphi|^c$
- ▶ NP \neq coNP \iff no pps is polynomially bounded

▶ *P* p-simulates *Q* (
$$Q \leq_p P$$
): \exists poly-time $t(x, \varphi)$ s.t.
 $Q(x, \varphi) \implies P(t(x, \varphi), \varphi)$

The textbook proof system

Frege system (F)

finitely many schematic rules

$$\frac{\alpha_1 \ \alpha_2 \ \dots \ \alpha_d}{\alpha_0}$$

- proof of φ: sequence of formulas θ₀,..., θ_z = φ
 each derived from previous ones by a substitution instance
 of one of the rules
- the choice of rules does not matter (up to p-equivalence)
- ▶ typical example: axiom schemata + modus ponens (MP) $\varphi, \varphi \rightarrow \psi / \psi$
- p-equivalent to sequent calculus (with cut), natural deduction

Variants of Frege

Substitution Frege (SF)

+ substitution as a derivation rule

Extended Frege (EF)

- + extension axioms q ↔ ψ to abbreviate formulas
 equivalently: Frege with circuits instead of formulas
- equivalently: count only the number of lines, ignore the size of the formulas

Proof complexity:

- $EF \equiv_p SF$ expected to have exponential speedup over F
- unconditional lower bounds on F or EF: only $\Omega(n^2)$

Good unconditional lower bounds: only very weak pps

Resolution, constant-depth Frege

Feasible interpolation

Interpolation problem for a pps *P*: given a *P*-proof of $\varphi_0(\vec{p}, \vec{q}^0) \lor \varphi_1(\vec{p}, \vec{q}^1)$ and an assignment \vec{a} , pinpoint $i \in \{0, 1\}$ s.t. $\varphi_i(\vec{a}, \vec{q}^i)$ is a tautology

If solvable in polynomial time: *P* has feasible interpolation Example: Resolution has f.i.

Feasible interpolation \implies conditional lower bounds:

let ⟨A₀, A₁⟩ disjoint NP-pair not separable in P/poly
 sequence of formulas φ_{n,0}, φ_{n,1} s.t. for w ∈ {0,1}ⁿ, w ∈ A_i ⇐⇒ ∃qⁱ φ_{n,i}(w, qⁱ)

► then: $\neg \varphi_{n,0}(\vec{p}, \vec{q}^0) \lor \neg \varphi_{n,1}(\vec{p}, \vec{q}^1)$ tautologies, have no polynomial-size *P*-proofs

Variant: monotone feasible interpolation \implies unconditional exponential lower bounds Emil Jerábek | Disjunction properties in modal proof complexity | TULIPS 9 Feb 2021

Normal modal logics

- ▶ language of **CPC** + unary connective □
- ▶ rules of **CPC**, necessitation (Nec) $\varphi / \Box \varphi$, the schema

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \tag{K}$$

+ additional axiom schemata

this talk: mostly transitive logics, i.e., including

$$\Box \varphi \to \Box \Box \varphi \tag{4}$$

Modal proof systems

L finitely axiomatizable normal modal logic Frege system *L*-*F*

- ▶ finite set *R* of schematic rules s.t. $\Gamma \vdash_R \varphi \iff \Gamma \vdash_L \varphi$
- the choice of R does not matter (up to p-equivalence) canonical choice: MP, Nec, axiom schemata
- p-equivalent to sequent calculi (for logics that have them)

Extended Frege L-EF, substitution Frege L-SF

L-EF ≤_p L-SF, but in general not equivalent:
 L unbounded branching ⇒
 L-SF exponential speedup over L-EF (unconditionally!)

[more later]

Feasible disjunction property

L has the disjunction property (DP) if

$$\vdash_{L} \Box \varphi_{0} \lor \Box \varphi_{1} \implies \vdash_{L} \varphi_{0} \text{ or } \vdash_{L} \varphi_{1}$$

DP as a computational task (P proof system for L): given a *P*-proof of $\Box \varphi_0 \vee \Box \varphi_1$, pinpoint $i \in \{0, 1\}$ s.t. $\vdash_I \varphi_i$ If computable in polynomial time: P has feasible DP If we can compute a *P*-proof of φ_i : constructive feasible DP NB: I has DP \implies I-TAUT is PSPACE-hard (K, K4, S4, GL, Grz, ...: PSPACE-complete) $PSPACE \neq NP \implies$ superpolynomial lower bounds on all proof systems for L

Prototypical example

Theorem

K-F has constructive feasible DP

Proof: Given a proof
$$\pi = \{\theta_0, \dots, \theta_z\}$$
 of $\bigvee_{i < k} \Box \varphi_i$, let Π be the closure of π under MP.

Define a Boolean assignment to modal formulas s.t.

$$v(\Box \varphi) = 1 \iff \varphi \in \Pi.$$

By induction on $j \leq z$, prove $v(\theta_j) = 1$ (easy).

Thus, $v(\bigvee_{i < k} \Box \varphi_i) = 1$, which means $\varphi_i \in \Pi$ for some i < k. Π is a valid proof.

Feasible DP and lower bounds

Lemma

If there exists a disjoint NP-pair not separable in P/poly, and if L-F or L-EF has feasible DP, then it is not polynomially bounded

lf

$$\varphi(\vec{p},\vec{q}) \lor \psi(\vec{p},\vec{r})$$

is a classical tautology without a small interpolant, then

$$\bigwedge_{i} (\Box p_{i} \lor \Box \neg p_{i}) \to \Box \varphi(\vec{p}, \vec{q}) \lor \Box \psi(\vec{p}, \vec{r})$$

is an L-tautology without a short proof

Hrubeš monotone interpolation

lf

$$\alpha(\vec{p}, \vec{q}) \to \beta(\vec{p}, \vec{r}) \tag{1}$$

is a classical tautology with α monotone in $\vec{\textbf{p}}\text{,}$ then

$$\alpha(\Box\vec{p},\vec{q}) \to \Box\beta(\vec{p},\vec{r})$$
(2)

is a $\mathbf{K}\text{-tautology}$

Common proofs of feasible DP generalize to: if (2) has a short proof, then (1) has a small monotone interpolant $C(\vec{p})$

$$\alpha(\vec{p}, \vec{q}) \rightarrow C(\vec{p}), \qquad C(\vec{p}) \rightarrow \beta(\vec{p}, \vec{r})$$

 \implies unconditional exponential lower bounds

EF versus SF

- ▶ *L*-*EF* \leq_p *L*-*SF*; in fact, *L*-*EF* \equiv_p tree-like *L*-*SF*
- L- $EF \equiv_p L$ -SF if $L \supseteq \mathbf{KB}$ or if L tabular

For transitive *L*, a partial dichotomy:

- ▶ *L*-*EF* \equiv_p *L*-*SF* \equiv_p **CPC**-*EF* for many *L* of bounded width:
 - L bounded depth and width, or
 - $\blacktriangleright L = K4BW_k, S4BW_k, GLBW_k, K4GrzBW_k, S4GrzBW_k$
 - L cofinal subframe logic (restricted class of tautologies)

proof-theoretic analogues of poly-size model property

- L-SF exponential speedup over L-EF for L of unbounded branching
 - based on Hrubeš-style monotone interpolation

Invariants of (Kripke or general) transitive frames:

- depth = maximal length of strict chains
- width = maximal size of antichains in rooted subframes
- branching = maximal number of immediate successor clusters of any point

A logic *L* has depth (width) $\leq k$ \iff all descriptive *L*-frames have depth (width) $\leq k$ $\iff L \supseteq \mathbf{K4BD}_k$ (**K4BW**_k)

L has branching $\leq k \iff L \supseteq \mathbf{K4BB}_k$ The expected semantics only for finite frames:

If *L* has the finite model property, then *L* branching $\leq k \iff$ all finite *L*-frames have branching $\leq k$ Emil Jefábek | Disjunction properties in modal proof complexity | TULIPS 9 Feb 2021

EF versus SF (cont'd)

Examples:

55, **S4**.3, **K4**.3, **GL**.3 have width 1

•
$$L$$
- $EF \equiv_p L$ - SF

Iower bounds on L-EF as hard to get as for CPC-EF

▶ K4, S4, GL, S4.2, S4BD₂ have unbounded branching

exponential separation of L-EF from L-SF

Question

What about logics of bounded branching but unbounded width?

Basic logics of bounded branching

Consider $L = K4BB_k$ ($k \ge 2$) \pm S4, GL, Grz

$$\Box \left[\bigvee_{i=0}^{k} \Box \left(\boxdot \varphi_{i} \to \bigvee_{j \neq i} \boxdot \varphi_{j} \right) \to \bigvee_{i=0}^{k} \boxdot \varphi_{i} \right] \to \bigvee_{i=0}^{k} \Box \bigvee_{j \neq i} \boxdot \varphi_{j} \quad (BB_{k})$$

have DP

PSPACE-complete, need exponential-size models

► the above strategies for proving L-EF ≡_p L-SF ≡_p CPC-EF are out of question

Does L-EF have feasible DP?

- Can we prove unconditional lower bounds on L-EF?
- Does L-SF have exponential speedup over L-EF?

Proof complexity of K4BB_k and friends

Not as clear-cut as before:

- L-EF likely does not have feasible DP
 - the DP problem for L-EF equivalent to a special case of interpolation for CPC-EF
 - in particular: reduces to a disjoint NP-pair (trivial upper bound: PSPACE)
- L-SF has conditionally speedup over L-EF (likely exponential)
 - ▶ assuming PSPACE \neq NP, or
 - assuming the CPC-EF interpolation pair is not a complete disjoint NP-pair

More generally, applies to $L = L_0 \oplus \mathbf{BB}_k$, L_0 an extensible logic

▶ key tool: feasibility of extension rules in L₀-EF

Common way to show that $L \supseteq \mathbf{K4}$ has DP:

- if $\nvdash_L \varphi_i$ for i < n, fix rooted *L*-frames F_i that invalidate φ_i
- ► combine them to a single L-frame whose root then invalidates \vee_{i < n} □ \varphi_i</p>
- ▶ specifically: take the disjoint union $\sum_{i < n} F_i$, attach a new root (reflexive \circ or irreflexive \bullet) notation: $(\sum_{i < n} F_i)^{\circ}$, $(\sum_{i < n} F_i)^{\bullet}$

L is *-extensible (* $\in \{\circ, \bullet\}$) if the class of descriptive *L*-frames closed under the formation of $(\sum_{i < n} F_i)^*$

Examples:

- ► K4, GL, K4Grz are •-extensible
- ► K4, S4, K4Grz, S4Grz are o-extensible

Extension rules

The $(\sum_{i < n} F_i)^*$ construction implies not just DP, but admissibility of more general extension rules

$$\frac{\bigwedge_{j < m} B^*(\chi_j) \to \bigvee_{i < n} \Box \varphi_i}{\bigwedge_{j < m} \Box \chi_j \to \varphi_0, \dots, \bigwedge_{j < m} \Box \chi_j \to \varphi_{n-1}}$$
(Ext^{*})

where $B^{\bullet}(\varphi) = \Box \varphi$, $B^{\circ}(\varphi) = (\varphi \leftrightarrow \Box \varphi)$

Lemma

$$L$$
 is *-extensible \iff Ext* is L -admissible

Feasibility of extension rules

Theorem

L is *-extensible (*
$$\in \{\bullet, \circ\}$$
) \Longrightarrow
Ext^{*} is constructibly feasible for *L*-*EF*

- L can be axiomatized by axioms of a special form
- adapt the "Boolean assignment" argument for feasible DP

DP for BB_k (basic idea)

$$\begin{split} L &= L_0 \oplus \mathbf{BB}_k, \ L_0 \text{ *-extensible} \\ L\text{-}EF \vdash \bigvee_{u < k} \Box \varphi_u \implies L_0\text{-}EF \vdash \bigwedge_{l < m} \boxdot A_l \to \bigvee_{u < k} \Box \varphi_u: \\ A_l &= \Box \Big[\bigvee_{i \le k} \Box \Big(\Box \psi_{l,i} \to \bigvee_{j \neq i} \Box \psi_{l,j} \Big) \to \bigvee_{i \le k} \Box \psi_{l,i} \Big] \to \bigvee_{i \le k} \Box \bigvee_{j \neq i} \Box \psi_{l,j} \\ \text{For all } \sigma \in [k+1]^m, \text{ get } L_0\text{-}EF \text{ proofs of} \\ & \bigwedge_{l < m} B^* \Big(\bigvee_{i \le k} \Box \psi_{l,i} \to \bigvee_{j \neq \sigma(l)} \Box \psi_{l,j} \Big) \to \bigvee_{u < k} \Box \varphi_u \\ \text{Feasible Ext}^* \implies L_0\text{-}EF \text{ proofs of} \\ & \bigwedge_{l < m} \Box \Big(\bigvee_{i \le k} \Box \psi_{l,i} \to \bigvee_{j \neq \sigma(l)} \Box \psi_{l,j} \Big) \to \varphi_u \\ \text{for some } u \in [k] \end{split}$$

DP for BB_k (basic idea, cont'd)

Combinatorial principle

$$\forall \sigma \in [k+1]^m \exists u \in [k] R(\sigma, u) \implies$$

$$\exists u \in [k] \forall \tau \in [k+1]^m \exists \sigma \in [k+1]^m (\sigma \# \tau \land R(\sigma, u)),$$

where $\sigma \# \tau$ denotes $\forall l < m \sigma(l) \neq \tau(l)$

 \implies there is u < k s.t. $\forall au \in [k+1]^m$, have L_0 -EF proofs of

$$\bigwedge_{I} \boxdot \left(\bigvee_{i} \boxdot \psi_{I,i} \to \boxdot \psi_{I,\tau(I)}\right) \to \varphi_{u}$$

Better argument \implies *L*-*EF* proofs of

$$\bigwedge_{I} \left(\bigvee_{i} \boxdot \psi_{I,i} \to \boxdot \psi_{I,\tau(I)} \right) \to \varphi_{u}$$

 $\implies \varphi_u$ is an *L*-tautology

References

- S. Buss, P. Pudlák: On the computational content of intuitionistic propositional proofs, Ann. Pure Appl. Logic 109 (2001), 49–64
- P. Hrubeš: Lower bounds for modal logics, J. Symb. Logic 72 (2007), 941–958
- P. Hrubeš: On lengths of proofs in non-classical logics, Ann. Pure Appl. Logic 157 (2009), 194–205
- E. J.: Frege systems for extensible modal logics, Ann. Pure Appl. Logic 142 (2006), 366–379
- E. J.: Substitution Frege and extended Frege proof systems in non-classical logics, Ann. Pure Appl. Logic 159 (2009), 1–48
- E. J.: On the proof complexity of logics of bounded branching, 2020, arXiv:2004.11282 [cs.LO]
- J. Krajíček: Proof complexity, Cambridge University Press, 2019