On monotone sequent calculus

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Barriers in Computational Complexity, Princeton

Monotone sequent calculus

MLK: sequents $\Gamma \vdash \Delta$, where Γ , Δ finite sets of monotone (\wedge , \vee) propositional formulas

$$\mathbf{i} \quad \overline{\Gamma, \varphi \vdash \varphi, \Delta} \qquad \qquad \mathbf{cut} \quad \frac{\Gamma \vdash \varphi, \Delta \qquad \Gamma, \varphi \vdash \Delta}{\Gamma \vdash \Delta} \\ \wedge \mathbf{-I} \quad \frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta} \qquad \wedge \mathbf{-r} \quad \frac{\Gamma \vdash \varphi, \Delta \qquad \Gamma \vdash \psi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta} \\ \vee \mathbf{-I} \quad \frac{\Gamma, \varphi \vdash \Delta \qquad \Gamma, \psi \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta} \qquad \vee \mathbf{-r} \quad \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi \lor \psi, \Delta}$$

Main problem

Problem ("Think Positively Conjecture"): Does *MLK* p-simulate *LK*-proofs of monotone sequents?

Note: there exist monotone Boolean functions computable by poly-size circuits which require exponential size monotone circuits (Razborov '85; Alon, Boppana '87)

Theorem (Atserias, Galesi, Pudlák '02): *MLK* quasipolynomially simulates *LK*.

A monotone sequent $\Gamma \vdash \Delta$ in *n* variables with an *LK*-proof of size *s* has an *MLK*-proof with $s^{O(1)}$ lines and size $s^{O(1)}n^{O(\log n)}$. $\theta_m^n(x_0, \dots, x_{n-1}) = 1 \Leftrightarrow |\{i < n \mid x_i = 1\}| \ge m$

The simulation by AGP uses $n^{O(\log n)}$ -size monotone formulas for θ_m^n . Better formulas give a better result:

Theorem (AGP '02): Assume that there are monotone formulas $T_m^n(p_0, \ldots, p_{n-1})$ such that the formulas

$$T_0^n(p_0, \dots, p_{n-1})$$
 (1)

$$\neg T_{n+1}^n(p_0, \dots, p_{n-1})$$
 (2)

 $T_m^n(p_0, \dots, p_k/\bot, \dots, p_{n-1}) \to T_{m+1}^n(p_0, \dots, p_k/\top, \dots, p_{n-1})$ (3)

have poly-time constructible LK-proofs. Then MLK p-simulates LK on monotone sequents.

Formulas for threshold functions

Threshold functions have uniform poly-size formulas as $TC^0 \subseteq NC^1$. However, we need monotone formulas.

Known constructions of monotone formulas for threshold functions:

- Ajtai, Komlós, Szemerédi '83: Log-depth sorting network.
- Valiant '84: Simple probabilistic argument.

Formula *F*:

- the complete binary tree of depth $c\log n$ with alternating layers of \wedge and \vee
- each leaf: a randomly chosen variable p_i , i < n

If c is a large enough constant, F will whp compute $\theta_{\alpha n}^n$, where $\alpha = (3 - \sqrt{5})/2$. A simple modification will yield any desired θ_m^n .

Unfortunately: Probabilistic construction \Rightarrow no explicit formulas \Rightarrow no hope for short *LK*-proofs of (1)–(3)

Sorting networks

A comparator network is a circuit with *n* inputs and *n* outputs using comparator gates $x \mapsto \lim_{y \to \infty} \{x, y\}$ such that any input or

output of any gate is used exactly once.

It can be evaluated on a sequence of *n* elements of any linearly ordered set, its output is a permutation of the input.

A comparator network is a sorting network if the output is always ordered wrt the given linear order.

Optimal sorting networks

Theorem (Ajtai, Komlós, Szemerédi '83): It is possible to construct sorting networks of depth $O(\log n)$.

Sorting a 0-1 input $\langle x_0, \ldots, x_{n-1} \rangle$ amounts to computing $\langle \theta_n^n, \theta_{n-1}^n, \ldots, \theta_1^n \rangle$. A comparator on a 0-1 input can be

Corollary: We can construct monotone circuits of depth $O(\log n)$ (hence poly-size formulas) for the threshold functions.

One way to prove the Think Positively Conjecture:

- Formalize the AKS sorting network in a suitable theory of bounded arithmetic.
- Use the correspondence of bounded arithmetic to propositional proof systems to get poly-time Frege (= LK) proofs of (1)–(3).

Some issues:

- Which theory to use? It should be roughly an NC¹-theory, but the exact choice is a bit delicate.
- The AKS network relies on explicit expanders, we thus need to formalize an expander construction in bounded arithmetic. We leave this for future work.

VNC^1

*VNC*¹: An extension of the second-order arithmetic V^0 , corresponds to $(U_E$ -)uniform $NC^1 = ALOGTIME$.

Unfortunately, it is too weak for our purposes:

- We need to evaluate the AKS network on 0-1 inputs, i.e., a log-depth monotone circuit.
- In fully uniform NC¹, we can only evaluate log-depth circuits given by their extended connection language (ecl) of Ruzzo.
- There does not seem to be any way of computing the ecl of the AKS network, it looks like a pretty general log-depth monotone circuit.

Second try

An obvious choice: take V^0 + "log-depth circuits can be evaluated on any input".

It does not work either, it is too strong:

- Our theory must correspond to a subclass of nonuniform NC^1 , so that we can translate it to poly-size Frege proofs.
- Somewhat counterintuitively, the evaluator function for log-depth circuits is (apparently) not in nonuniform NC¹.
 It is mutually NC¹-Turing-reducible with log-bounded reachability in directed graphs of constant out-degree.

Solution

We develop a new theory VNC_*^1 :

- Roughly, V^0 + "log-depth circuits described by Δ_1^B -formulas without second-order parameters can be evaluated on any input".
- Contains VNC¹. Can evaluate sufficiently uniform families of log-depth circuits, such as the AKS network.
- Corresponds to a subclass of *L*-uniform *NC*¹. Translates to *L*-constructible Frege proofs.

Formalization

Paterson's variant of the AKS network (sans expanders) can be defined and analyzed in VNC^1_* :

Theorem: If VNC_*^1 proves the existence of suitable expander graphs, it also proves the existence of log-depth sorting networks.

Corollary: Assume that VNC_*^1 proves the existence of suitable expander graphs. Then *MLK* p-simulates *LK* on monotone sequents.

Problem: Formalize expanders in VNC_*^1 .

 Some work on combinatorial analysis of zig-zag-based expander constructions has been done by Koucký, Kabanets and Kolokolova.

Question: What about tree-like *MLK***?**

- The inductive argument by AGP '02 which allows us to make do with LK-proofs of (1)–(3) results in heavily non-tree-like proofs.
- The usual simulation of dag-like Frege proofs by tree-like proofs needs \rightarrow .

Thank you for attention!

Barriers in Computational Complexity, Princeton

References

M. Ajtai, J. Komlós, E. Szemerédi, An $O(n \log n)$ sorting network, Proc. 15th STOC, 1983, 1–9.

N. Alon, R. Boppana, *The monotone circuit complexity of Boolean functions*, Combinatorica 7 (1987), 1–22.

A. Atserias, N. Galesi, P. Pudlák, *Monotone simulations of non-monotone proofs*, J. Comput. System Sci. 65 (2002), 626–638.

S. Cook, P. Nguyen, Logical foundations of proof complexity, book in preparation.

E. Jeřábek, On theories of bounded arithmetic for NC^1 , preprint.

_, A sorting network in bounded arithmetic, preprint.

M. Koucký, V. Kabanets, A. Kolokolova, *Expanders made easy: The combinatorial analysis of an expander construction*, unpublished manuscript, 2007.

M. Paterson, *Improved sorting networks with* $O(\log N)$ *depth*, Algorithmica 5 (1990), 75–92.

A. Razborov, *Lower bounds on the monotone complexity of some Boolean functions*, Soviet Math. Doklady 31 (1985), 354–357.

W. Ruzzo, On uniform circuit complexity, J. Comput. System Sci. 22 (1981), 365–383.

L. Valiant, Short monotone formulae for the majority function, J. Algorithms 5 (1984), 363–366.