Approximate counting in bounded arithmetic

Emil Jeřábek
jerabek@math.cas.cz
University of Toronto

Bounded arithmetic and complexity

There is a correspondence between theories and complexity classes:

- first-order theories (S_{2}^{i}, T_{2}^{i}): levels of polynomial hierarchy
- second-order theories: $A C^{0}, T C^{0}, N C^{1}, L, \ldots$

Meaning of the correspondence:

- witnessing theorems, provably total computable functions
- reasoning about computation in the theories
- translation of open problems: inclusion of classes vs. conservativity of theories

Randomized classes

Theories of BA typically correspond to deterministic classes. What about probabilistic algorithms?

Examples: $Z P P, B P P, A M$
Connections to weak pigeonhole principle:

- [Wilkie] Σ_{1}^{b}-consequences of $S_{2}^{1}+d W P H P(P V)$ are witnessed by TFRP-algorithms
- [J.] we can reason about $F R P$ in $S_{2}^{1}+d W P H P(P V)$

Goal of this talk: generalize to other classes of randomized algorithms

Approximate counting

We need to reason about probabilities, but we do not need exact results:

$$
\operatorname{Pr}_{y<2^{n}}(A(x, y) \text { accepts }) \geq \frac{3}{4} \text { or } \operatorname{Pr}_{y<2^{n}}(A(x, y) \text { accepts }) \leq \frac{1}{4}
$$

Estimate of the probability within a small error suffices.
Equivalently: approximate counting of definable bounded sets

- given $X \subseteq\left[0,2^{n}\right)$ defined by a poly-size circuit and $\varepsilon>1 / \operatorname{poly}(n)$, approximate $|X|$ with accuracy $\varepsilon 2^{n}$

How to express it in bounded arithmetic?

Reminder

First-order bounded arithmetic [Buss 1986]:

- language: $\langle 0, S,+, \cdot, \leq, \#| x,\left|,\left\lfloor\frac{x}{2}\right\rfloor\right\rangle$
- Σ_{i}^{b} and Π_{i}^{b} formulas: count alternations of bounded quantifiers, ignore sharply bounded quantifiers
- $S_{2}^{i}=$ BASIC $+\Sigma_{i}^{b}$-PIND

$$
\varphi(0) \wedge \forall x \leq a\left(\varphi\left(\left\lfloor\frac{x}{2}\right\rfloor\right) \rightarrow \varphi(x)\right) \rightarrow \varphi(a)
$$

Equational theory PV [Cook 1975]:

- function symbols for all poly-time algorithms
- derivation rule simulating open PIND

Theory $P V_{1}$ [KPT 1991]: first-order variant of $P V$

Dual weak pigeonhole principle

- $\operatorname{PHP}_{b}^{a}(f)$: if we put a pigeons in $b<a$ holes, some hole must accommodate two pigeons
- $d P H P_{b}^{a}(f)$: if we put a pigeons in $b>a$ holes, some hole remains vacant

$$
\exists y<b \forall x<a f(x) \neq y
$$

- Weak PHP/dPHP: a and b differ by (much) more than 1

For our purposes: $d W P H P(f)$ means

$$
\forall e \forall a>0 d P H P_{a(|e|+1)}^{a|e|}(f)
$$

Over $S_{2}^{1}, d W P H P(P V)$ is equivalent to $\forall a>1 d P H P_{a^{2}}^{a}(P V)$, but we want $P V_{1}$ as a base theory

Counting functions

Consider $X, Y \subseteq 2^{n}$. We have: $|X| \geq|Y|$ iff there exists a function f which maps X onto Y

$$
f: X \rightarrow Y
$$

We could use it as a definition of counting, but a modification is needed to ensure

- f is computable by a poly-size circuit, if X and Y are,
- $P V_{1}+d W P H P(P V)$ proves the existence of such counting functions

Counting functions (cont'd)

Definition. Let $X, Y \subseteq 2^{n}$ and $\varepsilon \in[0,1]$. We say that the size of Y is approximately less than the size of X with error ε, written as $Y \preceq_{\varepsilon} X$, if there exist

- a number $v>0$, and
- a circuit C which maps v copies of the disjoint union of X and $\left[0, \varepsilon 2^{n}\right)$ onto v copies of Y

$$
C: v \times\left(X \dot{\cup} \varepsilon 2^{n}\right) \rightarrow v \times Y
$$

$X \approx_{\varepsilon} Y$ means $X \preceq_{\varepsilon} Y \wedge Y \preceq_{\varepsilon} X$.
Counting is a special case of comparison:

$$
X \approx_{\varepsilon} s: \Leftrightarrow X \approx_{\varepsilon}[0, s)
$$

Nisan-Wigderson generator

The pseudorandom generator $N W_{f}: 2^{\ell} \rightarrow 2^{n}$

- seed length $\ell=O(\log n)$
- computable in time poly(n)
- "fools" circuits $C: 2^{n} \rightarrow 2$ of size poly (n)
- needs a table of a hard Boolean function f in $\Theta(\log n)$ variables
[NW 1994] $P=B P P$, if there exists $\varepsilon>0$ and a uniform family of Boolean functions $f_{k}: 2^{k} \rightarrow 2$ which cannot be approximated by circuits of size $2^{\varepsilon k}$ with advantage $2^{-\varepsilon k}$.

We use the NW generator to construct counting functions.

- We don't need uniformity. Nonuniformly, Boolean functions with exponential hardness exist, and $P V_{1}+d W P H P(P V)$ proves it.
- The behaviour of the generator can be analyzed constructively: the conclusion

$$
\left|\operatorname{Pr}_{x<2^{n}}(C(x)=1)-\operatorname{Pr}_{u<2^{\ell}}\left(C\left(N W_{f}(u)\right)=1\right)\right| \leq 1 / \operatorname{poly}(n)
$$

is witnessed by counting functions computable by small circuits, which can be extracted from the proof.

Existence of counting functions

Theorem. The following is provable in $P V_{1}+d W P H P(P V)$. Let X be a subset of 2^{n} definable by a Boolean circuit C, and $0<\varepsilon<1$ s.t. $2^{1 / \varepsilon}$ exists. Then there exists $s \leq 2^{n}$ s.t.

$$
X \approx_{\varepsilon} s
$$

More precisely, there exists $v \leq \operatorname{poly}\left(n \varepsilon^{-1}|C|\right)$ and circuits $G_{0}, H_{0}, G_{1}, H_{1}$ of size poly $\left(n \varepsilon^{-1}|C|\right)$ such that

$$
\begin{array}{ll}
G_{0}: v\left(s+\varepsilon 2^{n}\right) \rightarrow v \times X & G_{1}: v \times\left(X \dot{\cup} \varepsilon 2^{n}\right) \rightarrow v s \\
H_{0}: v \times X \hookrightarrow v\left(s+\varepsilon 2^{n}\right) & H_{1}: v s \hookrightarrow v \times\left(X \dot{\cup} \varepsilon 2^{n}\right) \\
G_{0}\left(H_{0}(x)\right)=x & G_{1}\left(H_{1}(y)\right)=y
\end{array}
$$

for every $x \in v \times X$ and $y<v s$.

Applications

The rest is (mostly) easy-we can do in $P V_{1}+d W P H P(P V)$:

- counting trivia: inclusion-exclusion principle, Chernoff bound, ...
- formalize randomized complexity classes: BPP, prBPP, APP, MA, prMA
- basic definitions
- amplify success probability
- simulate randomness by nonuniformity
- place it on the correct level of $P H$

Everything relativizes. We can do $A M$ and $p r A M$ in
$T_{2}^{1}+d W P H P\left(F P^{\Sigma_{1}^{b}}\right)$.

Definability questions

Are all problems from the above mentioned classes
"provably total" in $P V_{1}+d W P H P(P V)$?

- syntactic classes ($p r B P P, p r M A$): trivial/meaningless
- APP: yes, it also turns out to be a syntactic class
- semantic classes (FRP, BPP, MA):
- if true (for whatever theory), relativizing techniques cannot show it [Thapen]
- can be reduced to provability of $\forall \Sigma_{1}^{b}$-sentences

Problems

We cannot count "sparse" sets, which arise in

- combinatorial arguments: Ramsey theorem, tournament principle, ...
- interactive protocols: graph nonisomorphism, $I P[O(1)]=A M$

Q: Does Sipser-style counting via hash functions work in bounded arithmetic?

That's the end. Thank you for attention!

