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Bounded arithmetic and complexity

There is a correspondence between theories and
complexity classes:

first-order theories (Si
2, T i

2): levels of polynomial
hierarchy

second-order theories: AC0, TC 0, NC 1, L, . . .

Meaning of the correspondence:

witnessing theorems, provably total computable
functions

reasoning about computation in the theories

translation of open problems: inclusion of classes vs.
conservativity of theories
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Randomized classes

Theories of BA typically correspond to deterministic
classes. What about probabilistic algorithms?

Examples: ZPP , BPP , AM

Connections to weak pigeonhole principle:

[Wilkie] Σb
1-consequences of S1

2 + dWPHP(PV ) are
witnessed by TFRP-algorithms

[J.] we can reason about FRP in S1
2 + dWPHP(PV )

Goal of this talk: generalize to other classes of randomized
algorithms
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Approximate counting

We need to reason about probabilities, but we do not need
exact results:

Pry<2n(A(x, y) accepts) ≥
3

4
or Pry<2n(A(x, y) accepts) ≤

1

4

Estimate of the probability within a small error suffices.

Equivalently: approximate counting of definable bounded
sets

given X ⊆ [0, 2n) defined by a poly-size circuit and
ε > 1/poly(n), approximate |X| with accuracy ε2n

How to express it in bounded arithmetic?
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Reminder

First-order bounded arithmetic [Buss 1986]:

language: 〈0, S,+, ·,≤,#, |x|,
⌊

x
2

⌋

〉

Σb
i and Πb

i formulas: count alternations of bounded
quantifiers, ignore sharply bounded quantifiers

Si
2 = BASIC + Σb

i -PIND

ϕ(0) ∧ ∀x ≤ a (ϕ(
⌊

x
2

⌋

) → ϕ(x)) → ϕ(a)

Equational theory PV [Cook 1975]:

function symbols for all poly-time algorithms

derivation rule simulating open PIND

Theory PV1 [KPT 1991]: first-order variant of PV
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Dual weak pigeonhole principle

PHPa
b (f): if we put a pigeons in b < a holes, some hole

must accommodate two pigeons

dPHPa
b (f): if we put a pigeons in b > a holes, some hole

remains vacant

∃y < b∀x < a f(x) 6= y 

Weak PHP/dPHP : a and b differ by (much) more than 1

For our purposes: dWPHP(f) means

∀e∀a > 0 dPHP
a |e|
a(|e|+1)

(f)  
Over S1

2 , dWPHP(PV ) is equivalent to ∀a > 1 dPHP a
a2(PV ),

but we want PV1 as a base theory
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Counting functions

Consider X,Y ⊆ 2n. We have: |X| ≥ |Y | iff there exists a
function f which maps X onto Y

f : X � Y

We could use it as a definition of counting, but a
modification is needed to ensure

f is computable by a poly-size circuit, if X and Y are,

PV1 + dWPHP(PV ) proves the existence of such
counting functions
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Counting functions (cont’d)

Definition. Let X,Y ⊆ 2n and ε ∈ [0, 1]. We say that the size
of Y is approximately less than the size of X with error ε,
written as Y �ε X, if there exist

a number v > 0, and

a circuit C which maps v copies of the disjoint union of
X and [0, ε2n) onto v copies of Y

C : v × (X
·
∪ ε2n) � v × Y

X ≈ε Y means X �ε Y ∧ Y �ε X.

Counting is a special case of comparison:

X ≈ε s :⇔ X ≈ε [0, s) 2
Approximate counting in bounded arithmetic – p.8/15



Nisan-Wigderson generator

The pseudorandom generator NWf : 2` → 2n

seed length ` = O(log n)

computable in time poly(n)

“fools” circuits C : 2n → 2 of size poly(n)

needs a table of a hard Boolean function f in Θ(log n)
variables

[NW 1994] P = BPP , if there exists ε > 0 and a uniform
family of Boolean functions fk : 2k → 2 which cannot be
approximated by circuits of size 2εk with advantage 2−εk.

Approximate counting in bounded arithmetic – p.9/15



Nisan-Wigderson generator (cont’d)

We use the NW generator to construct counting functions.

We don’t need uniformity. Nonuniformly, Boolean
functions with exponential hardness exist, and
PV1 + dWPHP(PV ) proves it.

The behaviour of the generator can be analyzed
constructively: the conclusion
∣

∣Prx<2n(C(x) = 1) − Pru<2`(C(NWf (u)) = 1)
∣

∣ ≤ 1/poly(n)

is witnessed by counting functions computable by small
circuits, which can be extracted from the proof.
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Existence of counting functions

Theorem. The following is provable in PV1 + dWPHP(PV ).

Let X be a subset of 2n definable by a Boolean circuit C,
and 0 < ε < 1 s.t. 21/ε exists. Then there exists s ≤ 2n s.t.

X ≈ε s.

More precisely, there exists v ≤ poly(nε−1|C|) and circuits
G0, H0, G1, H1 of size poly(nε−1|C|) such that

G0 : v(s + ε2n) � v × X G1 : v × (X
·
∪ ε2n) � vs

H0 : v × X ↪→ v(s + ε2n) H1 : vs ↪→ v × (X
·
∪ ε2n)

G0(H0(x)) = x G1(H1(y)) = y

for every x ∈ v × X and y < vs.  
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Applications

The rest is (mostly) easy—we can do in PV1 + dWPHP(PV ):

counting trivia: inclusion-exclusion principle, Chernoff
bound, . . .

formalize randomized complexity classes: BPP , prBPP ,
APP , MA, prMA

basic definitions
amplify success probability
simulate randomness by nonuniformity
place it on the correct level of PH

Everything relativizes. We can do AM and prAM in

T 1
2 + dWPHP(FPΣb

1).
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Definability questions

Are all problems from the above mentioned classes
“provably total” in PV1 + dWPHP(PV )?

syntactic classes (prBPP , prMA): trivial/meaningless

APP : yes, it also turns out to be a syntactic class

semantic classes (FRP , BPP , MA):
if true (for whatever theory), relativizing techniques
cannot show it [Thapen]

can be reduced to provability of ∀Σb
1-sentences
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Problems

We cannot count “sparse” sets, which arise in

combinatorial arguments: Ramsey theorem,
tournament principle, . . .

interactive protocols: graph nonisomorphism,
IP [O(1)] = AM

. . .

Q: Does Sipser-style counting via hash functions work in
bounded arithmetic?

2
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That’s the end.
Thank you for attention!
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