Iterated multiplication in $V T C^{0}$

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/
Institute of Mathematics, Czech Academy of Sciences, Prague

Logic seminar, Institute of Mathematics, 26 October 2020

Outline

(1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
(3) Minutiae
(4) Working with CRR
(5) Polylogarithmic cut
(6) Modular exponentiation
(7) The grand scheme

$T C^{0}, V T C^{0}$, and IMUL

(1) $T C^{0}, V T C^{0}$, and $I M U L$
(2) Hesse-Allender-Barrington algorithm

3 Minutiae
n Working with CRR
(5) Polylogarithmic cut

6 Modular exponentiation
7 The grand scheme

Correspondence

The "big picture" in proof complexity:

Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and computational complexity classes C :

- Provably total computable functions of T are C-functions
- T can do reasoning using C-predicates (comprehension, induction, ...)

Feasible reasoning:

- Given a natural concept $X \in C$, what can we prove about X using only concepts from C ?
- That is: what does T prove about X ?

This talk:
$X=$ elementary integer arithmetic operations $+, \cdot, \leq$

The class TC^{0}

$\mathbf{A C}^{0} \subseteq \mathbf{A C C}^{0} \subseteq \mathbf{T C}^{0} \subseteq \mathbf{N C}^{1} \subseteq \mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{A C}^{1} \subseteq \cdots \subseteq \mathbf{P}$

TC ${ }^{0}=$ dlogtime-uniform $O(1)$-depth $n^{O(1)}$-size unbounded fan-in circuits with threshold gates
$=$ FOM-definable on finite structures representing strings
(first-order logic with majority quantifiers)
$=O(\log n)$ time, $O(1)$ thresholds on a threshold Turing machine

TC ${ }^{0}$ and arithmetic operations

For integers given in binary:
-+ and \leq are in $\mathbf{A C}^{0} \subseteq \mathbf{T C}^{0}$
$-\times$ is in TC 0 (CC 0-complete under $\mathbf{A C}^{0}$ reductions)
TC ${ }^{0}$ can also do:

- iterated addition $\sum_{i<n} X_{i}$
- integer division and iterated multiplication [BCH'86,CDL'01,HAB'02]
- the corresponding operations on $\mathbb{Q}, \mathbb{Q}(i)$
- approximate functions given by nice power series:
- $\sin X, \log X, \sqrt[k]{X}, \ldots$
- sorting, ...
\Longrightarrow TC 0 is the right class for basic arithmetic operations

Zambella-style bounded arithmetic

Two-sorted arithmetic:

- unary (auxiliary) integers with $0,1,+, \cdot, \leq$
- finite sets $=$ binary integers $=$ binary strings
$x \in X,|X|=\sup \{x+1: x \in X\}$
- bounded quantifiers: $\exists x \leq t, \forall x \leq t, \exists X \leq t, \forall X \leq t$ where $X \leq t$ is short for $|X| \leq t$
- \sum_{0}^{B} formulas: bounded FO, no SO quantifiers
- \sum_{i}^{B} formulas: i alternating blocks of bounded quantifiers (first block \exists) followed by a Σ_{0}^{B} formula
- Σ_{1}^{1} formulas: $\exists X \theta(X, \ldots), \theta \in \Sigma_{0}^{B}$
- $V^{i}=2-B A S I C+\sum_{i}^{B}-C O M P\left(\right.$ implies $\left.\sum_{i}^{B}-I N D\right)$

The theory VTC ${ }^{0}$

The theory corresponding to $\mathbf{T C}^{0}$ is $V T C^{0}$:

- $V^{0}+$ every set has a counting function
- provably total computable (i.e., Σ_{1}^{1}-definable) functions are exactly the $\mathbf{T C}^{0}$-functions
- has induction, comprehension, minimization, ... for $\mathbf{T C}^{0}$-predicates
Binary arithmetic in $V T C^{0}$:
- can define $+, \cdot, \leq$ on binary integers
- proves integers form a discretely ordered ring

Basic question

What other properties of $+, \cdot, \leq$ are provable in $V T C^{0}$?

The iterated multiplication axiom

Iterated multiplication algorithm [HAB'02] challenging to formalize \Longrightarrow divide and conquer: make it an axiom!

IMUL

$$
\forall X, n \exists Y \forall i \leq j<n\left(Y_{i, i}=1 \wedge Y_{i, j+1}=Y_{i, j} \cdot X_{j}\right)
$$

think $Y_{i, j}=\prod_{k=i}^{j-1} X_{k}$

Basic questions

- What properties of $+, \cdot, \leq$ are provable in

$$
V T C^{0}+I M U L ?
$$

- Does $V T C^{0}$ prove IMUL?

Arithmetic in $V T C^{0}+I M U L$

Theorem [J'15]

$V T C^{0}+I M U L$ can do:

- Division: $\forall X \forall Y>0 \exists Q \exists R<Y(X=Y \cdot Q+R)$
- Root approximation: $p(X)=\sum_{i \leq d} A_{i} X^{i}, d$ constant

$$
\begin{aligned}
X< & Y \wedge p(X) \leq 0<p(Y) \rightarrow \\
& \exists Z(X \leq Z<Y \wedge p(Z) \leq 0<p(Z+1))
\end{aligned}
$$

- Open induction (IOpen): second-order induction

$$
\varphi(0) \wedge \forall X(\varphi(X) \rightarrow \varphi(X+1)) \rightarrow \forall X \varphi(X)
$$

for quantifier-free $\langle+, \cdot, \leq\rangle$-formulas $\varphi(X, \vec{Y})$

Buss-style bounded arithmetic

One-sorted theories of bounded arithmetic:

- (binary) integers, language $\langle 0,1,+, \cdot, \leq,\lfloor x / 2\rfloor| x,|, \#\rangle$
- \sum_{0}^{b} formulas: sharply bounded q'fiers $\exists x \leq|t|, \forall x \leq|t|$
- $\hat{\Sigma}_{i}^{b}$ formulas: i alternating blocks of bounded quantifiers (first block \exists) followed by a \sum_{0}^{b} formula
- $T_{2}^{i}=B A S I C+\hat{\Sigma}_{i}^{b}-I N D, S_{2}^{i}=B A S I C+\hat{\Sigma}_{i}^{b}-P I N D$

Johannsen and Pollett's theories for $\mathbf{T C}^{0}$:

- language with,$-\left\lfloor x / 2^{y}\right\rfloor$
- all theories include open LIND
- $C_{2}^{0}: B B \Sigma_{0}^{b}$ [JP'98]
- $C_{2}^{0}[\mathrm{div}]$: language incl. $\lfloor x / y\rfloor$ [Joh'99]
$-\Delta_{1}^{b}$-CR: Δ_{1}^{b} bit-comprehension rule [JP'00]

RSUV isomorphism

two-sorted arithmetic	one-sorted arithmetic
sets	numbers
numbers	logarithmic numbers
bounded SO quantifiers	bounded quantifiers
bounded FO quantifiers	sharply bounded quantifiers
Σ_{i}^{B}	$\hat{\Sigma}_{i}^{b}$
V^{i}	S_{2}^{i}
$T V^{i}$	T_{2}^{i}
$V T C^{0}$	$\Delta_{1}^{b}-C R$
$V T C^{0}+\Sigma_{0}^{B}-A C$	C_{2}^{0}
$V T C^{0}+I M U L+\Sigma_{0}^{B}-A C$	$C_{2}^{0}[$ div $]$

$$
(i \geq 1)
$$

Sharply bounded minimization

The result above, more precisely:

- $V T C^{0}+I M U L$ proves the RSUV-translation of IOpen
$\rightarrow \quad C_{2}^{0}$ [div] proves IOpen
Structural description of \sum_{0}^{b} formulas [Man'91]
\Longrightarrow generalization:

Theorem [J'15]

- $V T C^{0}+I M U L$ proves the RSUV-translations of $\Sigma_{0}^{b}-I N D\left(T_{2}^{0}\right)$ and $\Sigma_{0}^{b}-M I N$
- $C_{2}^{0}[$ div $]$ proves $\Sigma_{0}^{b}-I N D, \Sigma_{0}^{b}-M I N$

What remains

Question

Does $V T C^{0}$ prove IMUL?

NB: Using results of [Joh'99], the following are equivalent:

- $V T C^{0} \vdash I M U L$
- $V T C^{0} \vdash D I V$

Iterated multiplication and division are $\mathbf{T C}^{0}$-computable:

Question

Can $V T C^{0}$ formalize the algorithms from [HAB'02]?

Hesse-Allender-Barrington algorithm

1) TC ${ }^{0}$, VTC ${ }^{0}$, and IMUL
2) Hesse-Allender-Barrington algorithm
3) Minutiae
4. Working with CRR

5 Polylogarithmic cut
6 Modular exponentiation
7 The grand scheme

History

[BCH'86]
$-\prod_{i<n} X_{i},\lfloor Y / X\rfloor, X^{n}$ are $\mathbf{T C}^{0}$-reducible to each other

- they are in P -uniform $\mathbf{T C}^{0}$
- compute the product in Chinese remainder representation:

$$
\operatorname{CRR}_{\vec{m}}(X)=\left\langle X \bmod m_{i}: i<k\right\rangle
$$

where $\vec{m}=\left\langle m_{i}: i<k\right\rangle$ small primes

- (NB: predates TC ${ }^{0}$)

Improved CRR reconstruction procedures \Longrightarrow

- [CDL'01]: logspace-uniform $\mathbf{T C}^{0}$ (hence \mathbf{L})
- [HAB'02]: dlogtime-uniform TC 0

Structure of the algorithm

(1) $\prod_{u<t} X_{u}$ is in $\mathrm{TC}^{0}[$ pow]

- pick sufficiently long list of primes \vec{m}
- convert each X_{u} to $\mathrm{CRR}_{\vec{m}}$
- multiply the residues modulo each m_{i}
- reconstruct the result from $\mathrm{CRR}_{\vec{m}}$ to binary
(2) $\prod_{u<t} X_{u}$ is in $\mathbf{A C}^{0}$ if $\sum_{u<t}\left|X_{u}\right|=(\log n)^{O(1)}$
- scale (1) down
(3) pow is in AC^{0}
- express exponents in $\mathrm{CRR}_{\vec{d}}$
pow: $a^{r} \bmod m \quad$ (a, r unary, m unary prime)

Structure of the algorithm

(0) imul is in TC^{0} [pow]

- sum discrete logarithms modulo m
(1) $\prod_{u<t} X_{u}$ is in $\mathrm{TC}^{0}[\mathrm{imul}]$
- pick sufficiently long list of primes \vec{m}
- convert each X_{u} to $\mathrm{CRR}_{\vec{m}}$
- multiply the residues modulo each m_{i}
- reconstruct the result from $\mathrm{CRR}_{\vec{m}}$ to binary
(2) $\prod_{u<t} X_{u}$ is in $\mathbf{A C}^{0}$ if $\sum_{u<t}\left|X_{u}\right|=(\log n)^{O(1)}$
- scale (1) down
(3) pow is in $\mathbf{A C}^{0}$
- express exponents in $\mathrm{CRR}_{\vec{d}}$
imul: $\prod_{i<n} a_{i} \bmod m \quad\left(n, a_{i}\right.$ unary, m unary prime $)$

Obstacles to formalization

Complex structure with interdependent parts
Which came first: the chicken or the egg?
$-\mathrm{CRR}_{\vec{m}}$ reconstruction:

- analysis heavily uses iterated products and divisions: $\prod_{i<k} m_{i}, \ldots$
- need $\mathrm{CRR}_{\vec{m}}$ reconstruction to define iterated products and divisions in the first place
- computation of pow:
- analysis of the pow algorithm heavily uses pow
- relies on Fermat's little theorem
- cyclicity of $(\mathbb{Z} / p \mathbb{Z})^{\times}$:
- needed to compute imul in TC 0 [pow]
- notoriously difficult in bounded arithmetic
- provable in $V T C^{0}+I M U L$, but what good is that?

Results

Theorem

$$
V T C^{0} \vdash I M U L
$$

Corollary

- VTC ${ }^{0} \vdash R S U V$-translation of Σ_{0}^{b} - $M I N$
- $C_{2}^{0} \equiv C_{2}^{0}[\mathrm{div}]$, proves $\sum_{0}^{b}-\mathrm{MIN}$

Theorem

$\exists \Delta_{0}$ definition of $a^{r} \bmod m$ s.t. $I \Delta_{0}+\operatorname{WPHP}\left(\Delta_{0}\right) \vdash$

$$
a^{0} \equiv 1 \quad(\bmod m), \quad a^{r+1} \equiv a^{r} a \quad(\bmod m)
$$

Overview of the formalization

- preparatory results
- $V T C^{0} \vdash$ there are enough primes
- VTC ${ }^{0}$ (pow) can do division $\lfloor X / m\rfloor$ by small primes
(1) $V T C^{0}($ imul $) \vdash I M U L$
- hard part: CRR reconstruction
- teach $V T C^{0}$ (imul) to compute in CRR from scratch
(2) $V^{0} \vdash \operatorname{IMUL}\left[|w|^{c}\right]$
- the polylogarithmic cut in V^{0} is a model of VNL
(3) $V^{0}+W P H P \vdash$ totality of pow
- reorganize the [HAB'02] algorithm to avoid circularity
- can't do (0) directly!
- structure theorem for finite abelian groups (partially)
- each turn around the vicious circle IMUL \rightarrow cyclicity \rightarrow imul \rightarrow IMUL makes progress
\Longrightarrow proof by induction

Minutiae

1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
(3) Minutiae
4. Working with CRR

5 Polylogarithmic cut
6 Modular exponentiation
(7) The grand scheme

Primes

CRR requires a steady supply of primes
Consider contribution of various prime factors to $\binom{2 n}{n}$:

Theorem (Chebyshev 1848)

$$
\sum_{p \leq x} \log p=\Theta(x)
$$

Stragithforward formalization:

Lemma

$$
V T C^{0} \vdash \sum_{p \leq x|x|^{17}}(|p|-1) \geq x \text { for } x \text { large enough }
$$

Division by small primes

Need $X \bmod m$ to define CRR and to manipulate it

Lemma

$$
V T C^{0}(\text { pow }) \vdash m \text { prime } \rightarrow \forall X \exists Q \exists r<m X=m Q+r
$$

$$
\left\lfloor\frac{2^{n}}{m}\right\rfloor=\sum_{i<n} 2^{i}\left(\left(2^{n-i} \bmod m\right) \bmod 2\right)
$$

Working with CRR

(1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
(3) Minutiae
(4) Working with CRR
(5) Polylogarithmic cut
(6) Modular exponentiation

7 The grand scheme

Goal: CRR reconstruction

Theorem

$\exists \mathbf{T C}^{0}$ (imul)-function Rec s.t. VTC ${ }^{0}$ (imul) proves:
\vec{m} distinct primes, $|X|<\sum_{i}\left(\left|m_{i}\right|-1\right)$
$\Longrightarrow \operatorname{Rec}\left(\vec{m} ; \operatorname{CRR}_{\vec{m}}(X)\right)=X$

Corollary

$$
V T C^{0}(\text { imul }) \vdash I M U L
$$

Proof: \vec{m} large enough $\Longrightarrow Y_{j}:=\operatorname{Rec}\left(\vec{m} ; \prod_{i<j} \operatorname{CRR}_{\vec{m}}\left(X_{i}\right)\right)$
By induction on j, show $\left|Y_{j}\right| \leq \sum_{i<j}\left|X_{i}\right|$ and $Y_{j+1}=X_{j} Y_{j}$

Basic tool

Notation: $[\vec{m}]=\prod_{i<k} m_{i},[\vec{m}]_{\neq j}=\prod_{i \neq j} m_{i}$

CRR rank equation

$$
X<[\vec{m}], \vec{x}=\operatorname{CRR}_{\vec{m}}(X) \Longrightarrow
$$

$$
\sum_{i<k} \frac{x_{i} h_{i}}{m_{i}}=r(\vec{x})+\frac{X}{[\vec{m}]}
$$

where $h_{i}=[\vec{m}]_{\neq i}^{-1} \bmod m_{i}$

- rank $r(\vec{x})$: small integer
- holds in $\mathbb{Q} \Longrightarrow$ approximation $\xi(\vec{m} ; \vec{x})$ of $X /[\vec{m}]$
- holds in $\mathbb{Z} / a \mathbb{Z} \Longrightarrow$ base extension $e(\vec{m} ; \vec{x} ; a)=X \bmod a$

Rank and friends formalized

In $V T C^{0}$ (imul): for large enough n, consider

$$
\begin{aligned}
S_{n}(\vec{m} ; \vec{x}) & =\sum_{i<k}\left\lceil\frac{2^{n} x_{i} h_{i}}{m_{i}}\right\rceil \\
r_{n}(\vec{m} ; \vec{x}) & =\left\lfloor 2^{-n} S_{n}(\vec{m} ; \vec{x})\right\rfloor \\
\xi_{n}(\vec{m} ; \vec{x}) & =2^{-n}\left(S_{n}(\vec{m} ; \vec{x}) \bmod 2^{n}\right) \\
e_{n}(\vec{m} ; \vec{x} ; a) & =\sum_{i<k} x_{i} h_{i}[\vec{m}]_{\neq i}-r_{n}(\vec{m} ; \vec{x})[\vec{m}] \quad \bmod a
\end{aligned}
$$

The laborious part: prove lots of properties of r_{n}, ξ_{n}, e_{n} from first principles

Computing with CRR: example (I)

$$
\begin{aligned}
& \vec{x}=\operatorname{CRR}_{\vec{m}}(X), \vec{y}=\operatorname{CRR}_{\vec{m}}(Y) \Longrightarrow \\
& \vec{x}+\vec{y}(\bmod \vec{m}) \text { represents }(X+Y) \bmod [\vec{m}]
\end{aligned}
$$

Formalize without reference to X, Y :

Lemma

$$
\begin{aligned}
& \text { VTC }{ }^{0}(\text { imul }) \text { proves: } n \geq|k|, \vec{z}=(\vec{x}+\vec{y}) \bmod \vec{m} \\
& \Longrightarrow \exists c \in\{-1,0,1\} \text { s.t. }
\end{aligned}
$$

$$
\begin{aligned}
r_{n}(\vec{m} ; \vec{z}) & =r_{n}(\vec{m} ; \vec{x})+r_{n}(\vec{m} ; \vec{y})+c-\sum_{x_{i}+y_{i} \geq m_{i}} h_{i} \\
\xi_{n}(\vec{m} ; \vec{z}) & =\xi_{n}(\vec{m} ; \vec{x})+\xi_{n}(\vec{m} ; \vec{y})-c \pm 2^{-n} k \\
e_{n}(\vec{m} ; \vec{z} ; a) & \equiv e_{n}(\vec{m} ; \vec{x} ; a)+e_{n}(\vec{m} ; \vec{y} ; a)-c[\vec{m}] \quad(\bmod a)
\end{aligned}
$$

Computing with CRR: example (II)

r_{n} and e_{n} are discrete quantities
\Longrightarrow approximation better be exact for large enough n

Lemma

$V T C^{0}$ (imul) proves: $n^{\prime} \geq n \geq|k|+2+\sum_{i<k}\left|m_{i}\right| \Longrightarrow$

$$
\begin{aligned}
r_{n}(\vec{m} ; \vec{x}) & =r_{n^{\prime}}(\vec{m} ; \vec{x}) \\
e_{n}(\vec{m} ; \vec{x} ; \vec{a}) & =e_{n^{\prime}}(\vec{m} ; \vec{x} ; \vec{a}) \\
\xi_{n}(\vec{m} ; \vec{x}) & =\xi_{n^{\prime}}(\vec{m} ; \vec{x}) \pm 2^{-n} k
\end{aligned}
$$

The reconstruction procedure

Given \vec{m}, \vec{x} :
Fix large enough s, prime sequences $\vec{a}_{u}, u<s$, and put

$$
\begin{aligned}
\vec{w}_{t} & =\left(2^{-t} \prod_{u<t}\left(1+\left[\vec{a}_{u}\right]\right)\right) e\left(\vec{m} ; \vec{x} ; \vec{m}, \vec{a}_{<t}\right) \quad \bmod \vec{m}, \vec{a}_{<t} \\
\vec{y}_{t} & =\left[\vec{a}_{<t}\right]^{-1}\left(\vec{w}_{t} \upharpoonright \vec{m}-e\left(\vec{a}_{<t} ; \vec{w}_{t} \upharpoonright \vec{a}_{<t} ; \vec{m}\right)\right) \quad \bmod \vec{m} \\
b_{t} & \in\{-1,0,1,2\} \quad \text { s.t. } \quad \vec{y}_{t}-2 \vec{y}_{t+1} \equiv \operatorname{CRR}_{\vec{m}}\left(b_{t}\right)
\end{aligned}
$$

Define $\operatorname{Rec}(\vec{m} ; \vec{x})=\sum_{t<s} 2^{t} b_{t}$

Analysis of CRR reconstruction

Let $\vec{x}=\operatorname{CRR}_{\vec{m}}(X)$
In the real world:

- \vec{w}_{t} represents $X \prod_{u<t} \frac{1+\left[\vec{a}_{u}\right]}{2}$
- \vec{y}_{t} represents $\left\lfloor X \prod_{u<t} \frac{1+\left[\vec{a}_{u}\right]}{2\left[\vec{a}_{u}\right]}\right\rfloor=\left\lfloor X 2^{-t}\right\rfloor$
- $b_{t}=\operatorname{bit}(X, t) \Longrightarrow \operatorname{Rec}(\vec{m} ; \vec{x})=X$

In $V T C^{0}(\mathrm{imul}):$
$-\xi_{n}\left(\vec{m} ; \vec{y}_{t}\right) \approx \xi_{n}\left(\vec{m}, \vec{a}_{<t} ; \vec{w}_{t}\right) \approx 2^{-t} \xi_{n}(\vec{m} ; \vec{x})$

- $\xi_{n}\left(\vec{m} ; \vec{y}_{t}\right) \approx 2 \xi_{n}\left(\vec{m} ; \overrightarrow{y_{t+1}}\right)+b_{t} \xi_{n}(\vec{m} ; \overrightarrow{1})$
$-\operatorname{Rec}(\vec{m} ; \vec{x}) \xi_{n}(\vec{m} ; \overrightarrow{1}) \approx \xi_{n}(\vec{m} ; \vec{x}) \approx X \xi_{n}(\vec{m} ; \overrightarrow{1})$
$\Longrightarrow \operatorname{Rec}(\vec{m} ; \vec{x})=X$

Polylogarithmic cut

(1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm
(3) Minutiae
4. Working with CRR
(5) Polylogarithmic cut
(6) Modular exponentiation

7 The grand scheme

The polylogarithmic cut

$$
\begin{aligned}
& \mathcal{M}=\left\langle M_{1}, M_{2}, \in,\right| \cdot|, 0,1,+, \cdot,<\rangle \vDash V^{0} \\
& \Longrightarrow \mathcal{M}_{\mathrm{pl}}=\left\langle M_{\mathrm{pl}, 1}, M_{\mathrm{pl}, 2}, \ldots\right\rangle \text { where } \\
& \\
& M_{\mathrm{pl}, 1}=\left\{x \in M_{1}: \exists c \in \omega \mathcal{M} \vDash \exists w x \leq|w|^{c}\right\} \\
& \\
& M_{\mathrm{pl}, 2}=\left\{X \in M_{2}:|X| \in M_{\mathrm{pl}, 1}\right\}
\end{aligned}
$$

Using the idea of Nepomnjaščij's theorem:

- [Zam'97] (implicitly) $\mathcal{M} \vDash V^{0} \Longrightarrow \mathcal{M}_{\mathrm{pl}} \vDash V L$
- [Mül'13] $\mathcal{M} \vDash V^{0} \Longrightarrow \mathcal{M}_{\mathrm{pl}} \vDash V N C^{1}$

Lemma

$$
\mathcal{M} \vDash V^{0} \Longrightarrow \mathcal{M}_{\mathrm{pl}} \vDash V N L
$$

Polylogarithmic products

Lemma

$V T C^{0}(\mathrm{imul}) \subseteq V L$

Corollary

For any constant c, V^{0} can do:

- $\prod_{i<n} X_{i}$ if $\sum_{i}\left|X_{i}\right| \leq|w|^{c}$
- $\lfloor Y / X\rfloor$ if $|X|,|Y| \leq|w|^{c}$
- $\prod_{i<n} a_{i} \bmod m$ if $n \leq|w|^{c}$

Modular exponentiation

1) $\mathrm{TC}^{0}, V T C^{0}$, and IMUL
(2) Hesse-Allender-Barrington algorithm

3 Minutiae
4 Working with CRR
5 Polylogarithmic cut
(6) Modular exponentiation

7 The grand scheme

Main idea of [HAB'02]

To compute a^{r} for $a \in(\mathbb{Z} / m \mathbb{Z})^{\times}$:

- $n=\varphi(m)=\left|(\mathbb{Z} / m \mathbb{Z})^{\times}\right|$
- fix a large enough prime sequence \vec{d},

$$
d_{i}=O(\log n), d_{i} \nmid n
$$

$-x \mapsto x^{d_{i}}$ is an automorphism $\Longrightarrow \mathbf{A C}$ inverse $x \mapsto x^{1 / d_{i}}$

- compute $a_{i}=a^{\left\lfloor n / d_{i}\right\rfloor}=a^{-\left(n \bmod d_{i}\right) / d_{i}}$ (using $a^{n}=1$)
- write $r \equiv u+\sum_{i} u_{i}\left\lfloor n / d_{i}\right\rfloor(\bmod n)$,

$$
u_{i}=O(\log n), \bar{u}=O\left((\log n)^{2}\right)
$$

$-a^{r}=a^{u} \prod_{i} a_{i}^{u_{i}} \quad\left(\right.$ using $\left.a^{n}=1\right)$
Analysis requires: modular exponentiation (chicken or egg?),
Fermat's little theorem

Simplify the algorithm

Drop $a^{\left\lfloor n / d_{i}\right\rfloor}$, just use $a^{1 / d_{i}}$ directly!
$>d=\prod_{i} d_{i}: n<d<n^{O(1)}$

- define $a^{x / d}$ for $x<2 d$ using the $\operatorname{CRR}_{\vec{d}}$ rank equation:

$$
\frac{x}{d}=u+\sum_{i} \frac{u_{i}}{d_{i}} \Longrightarrow a^{x / d}:=a^{u} \prod_{i}\left(a^{1 / d_{i}}\right)^{u_{i}}
$$

where $u_{i}=x[\vec{d}]_{\neq i}^{-1} \bmod d_{i}=O(\log n), u=O(\log n)$

- WPHP $\Longrightarrow a^{x / d}$ is t-periodic for some $t \leq 2 n$ \Longrightarrow extend the definition of $a^{x / d}$ to all x with $a^{(x \bmod t) / d}$
- put $a^{r}=a^{(r d) / d}$

Modular exponentiation formalized

Theorem

$V^{0}+W P H P \subseteq V T C^{0}$ proves the totality of pow

Also extends to non-prime m
\& using conservativity, can do it in $I \Delta_{0}+W P H P\left(\Delta_{0}\right)$:

Theorem

$\exists \Delta_{0}$ definition of $a^{r} \bmod m$ s.t. $I \Delta_{0}+W P H P\left(\Delta_{0}\right) \vdash$

$$
a^{0} \equiv 1 \quad(\bmod m), \quad a^{r+1} \equiv a^{r} a \quad(\bmod m)
$$

The grand scheme

(1) TC $^{0}, V T C^{0}$, and IMUL

2 Hesse-Allender-Barrington algorithm
3. Minutiae

4 Working with CRR
5 Polylogarithmic cut
6. Modular exponentiation
(7) The grand scheme

Cyclic generators

Still missing: VTC $\stackrel{?}{\vdash} m$ prime $\rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$is cyclic

$$
\Longrightarrow V T C^{0}=V T C^{0}(\text { pow })=V T C^{0}(\text { imul })
$$

Lemma

The following are equivalent over $V T C^{0}$:

- IMUL
- m prime $\rightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$is cyclic
- m, p primes, $a \not \equiv 1 \equiv a^{p} \equiv b^{p}(\bmod m)$
$\rightarrow \exists r<p b \equiv a^{r}(\bmod m)$

Can we escape this vicious circle?

Fine-tune the parameters

IMUL[w]:

- $\exists \prod_{i<n} X_{i}$ whenever $\sum_{i}\left|X_{i}\right| \leq w$
imul[$w]$:
$-\exists \prod_{i<n} a_{i} \bmod m$ whenever $m \leq w$ prime
Cyc $[z, w]$:
- $m \leq z$ and $p<w$ primes, $a \not \equiv 1 \equiv a^{p} \equiv b^{p}(\bmod m)$ $\rightarrow \exists r<p b \equiv a^{r}(\bmod m)$

NB: $\operatorname{Cyc}[z, w] \in \Sigma_{0}^{B}$

imul \rightarrow IMUL \rightarrow Cyc

Lemma

$V T C^{0}$ proves imul $\left[w^{3}\right] \rightarrow \operatorname{IMUL}[w]$

By inspection of the proof of $V T C^{0}($ imul $) \vdash I M U L$

Lemma

$V T C^{0}$ proves $\operatorname{IMUL}\left[w^{2}|z|\right] \rightarrow C y c[z, w]$

Given $a \not \equiv 1 \equiv a^{p} \equiv b^{p}(\bmod m)$, construct the polynomial

$$
f(x) \equiv \prod_{i<p}\left(x-a^{i}\right) \quad(\bmod m)
$$

$$
f(x) \equiv f(a x) \Longrightarrow f(x) \equiv x^{p}-1 \Longrightarrow \prod_{i<p}\left(b-a^{i}\right) \equiv 0
$$

Cyc \rightarrow imul

Lemma

For any $c, V T C^{0} \vdash C y c[z, w] \rightarrow \operatorname{imul}\left[\min \left\{z, w^{c}|z|^{c}\right\}\right]$

Mimick the proof of the structure theorem for finite abelian groups
$m \leq z$ prime, $C y c[z, w] \Longrightarrow(\mathbb{Z} / m \mathbb{Z})^{\times}$is a large cyclic group $\times p$-prime components for $p \geq w$
\Longrightarrow has a generating set of size $O(|m| /|w|)$
\Longrightarrow bit-size $O\left(|m|^{2} /|w|\right)=O(|z|)$

Finish the argument

Theorem

VTC ${ }^{0}$ proves IMUL

Proof: $V T C^{0}$ proves

$$
(w+1)^{6}|z|^{3} \leq z \wedge C y c[z, w] \rightarrow C y c[z, w+1]
$$

\Longrightarrow by induction on w :

$$
w^{6}|z|^{3} \leq z \rightarrow C y c[z, w]
$$

Summary

- VTC ${ }^{0}$ proves IMUL
- $V T C^{0}$ proves RSUV-translation of Σ_{0}^{b}-MIN
- $C_{2}^{0} \equiv C_{2}^{0}[d i v]$, proves $\Sigma_{0}^{b}-M I N$
- $I \Delta_{0}+\operatorname{WPHP}\left(\Delta_{0}\right)$ has a well-behaved Δ_{0} definition of $a^{r} \bmod m$

References

- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994-1003
- A. Chiu, G. Davida, B. Litow: Division in logspace-uniform NC ${ }^{1}$, RAIRO - Theoret. Inf. Appl. 35 (2001), 259-275
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695-716
- E. Jeřábek: Open induction in a bounded arithmetic for TC 0, Arch. Math. Logic 54 (2015), 359-394
- E. Jeřábek: Iterated multiplication in VTC ${ }^{0}$, arXiv:2011.03095 [cs.LO]

References (cont'd)

- J. Johannsen, C. Pollett: On proofs about threshold circuits and counting hierarchies (extended abstract), LICS, 1998, 444-452
- J. Johannsen: Weak bounded arithmetic, the Diffie-Hellman problem, and Constable's class K, LICS, 1999, 268-274
- J. Johannsen, C. Pollett: On the Δ_{1}^{b}-bit-comprehension rule, Logic Colloquium '98 (Proceedings), ASL, 2000, 262-280
- S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127-156
- S. Müller: Polylogarithmic cuts in models of \mathbf{V}^{0}, Logical Methods in Comp. Sci. 9 (2013), no. 1
- D. Zambella: End extensions of models of linearly bounded arithmetic, Ann. Pure Appl. Logic 88 (1997), 263-277

