Open induction in a TC^0 **arithmetic**

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Logic Colloquium | Évora | July 2013

Motivation

Correspondence of theories of bounded arithmetic *T* and computational complexity classes *C*:

- Provably total computable functions of T are C-functions
- T can do reasoning using C-predicates
 (comprehension, induction, ...)

Feasible reasoning:

- Given a natural concept $P \in C$, what can we prove about P using only concepts from C?
- That is: what does T prove about P?

Our *P*: elementary integer arithmetic operations $+, \cdot, \leq$

 $TC^{0} = DLOGTIME$ -uniform O(1)-depth $n^{O(1)}$ -size unbounded fan-in circuits with threshold gates $= O(\log n)$ time, O(1) thresholds on a threshold Turing machine = FOM-definable on finite structures representing strings (first-order logic with majority quantifiers)

Weak subclass of polynomial time

$\mathbf{T}\mathbf{C}^{0}$ and arithmetic operations

For integers given in binary:

- + and \leq are in $\mathbf{AC}^0 \subseteq \mathbf{TC}^0$
- \times is in TC⁰ (TC⁰-complete under Turing reductions)

 \mathbf{TC}^0 can also do:

- iterated addition $\sum_{i < n} x_i$
- integer division and iterated multiplication [HAB'02]
- the corresponding operations on \mathbb{Q} , $\mathbb{Q}(i)$
- approximate functions given by nice power series:
 - $\sin x$, $\log x$, $\sqrt[k]{x}$
- sorting, ...

 $\Rightarrow \mathbf{T}\mathbf{C}^0$ is the right class for basic arithmetic operations

The theory VTC⁰

The most common theory corresponding to TC^0 is VTC^0 :

- Zambella-style two-sorted bounded arithmetic
 - unary (auxiliary) integers with $0, 1, +, \cdot, \leq$
 - finite sets = binary integers = binary strings
- Noteworthy axioms:
 - Σ_0^B -comprehension (Σ_0^B = bounded, w/o SO q'fiers)
 - every set has a counting function
- Σ_1^1 -definable functions are exactly \mathbf{FTC}^0
- Has induction, minimization, ... for TC^0 -predicates

Binary arithmetic in VTC^0

 VTC^0

- can define $+, \cdot, \le$ on binary integers
- proves integers form a discretely ordered ring (DOR)

Basic question: What other properties of $+, \cdot, \leq$ for binary integers are provable in VTC^0 ?

In particular: does VTC^0 include Shepherdson's theory IOpen = DOR +quantifier-free induction in $L = \langle +, \cdot, \leq \rangle$?

$$\varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \forall x \ge 0 \varphi(x)$$

Annoying trouble: Unknown if VTC^0 can formalize the [HAB'02] algorithms for iterated multiplication and division

$$VTC^{0} \stackrel{?}{\vdash} \underbrace{\forall X \forall Y > 0 \exists Q \exists R < Y \left(X = Y \cdot Q + R \right)}_{DIV}$$

 \Rightarrow Consider iterated multiplication as an additional axiom:

 $(IMUL) \ \forall X, n \exists Y \forall i \le j < n \left(Y^{[\langle i,i \rangle]} = 1 \land Y^{[\langle i,j+1 \rangle]} = Y^{[\langle i,j \rangle]} \cdot X^{[j]} \right)$

Think $Y^{[\langle i,j\rangle]} = \prod_{k=i}^{j-1} X^{[k]}$

Note: $VTC^0 + IMUL$ corresponds to TC^0 , just like VTC^0 $VTC^0 + IMUL \vdash DIV$ We need IMUL rather than DIV for technical reasons

For a *DOR D*, the following are equivalent [Shep'64]:

- $D \vDash IOpen$
- *D* is an integer part of a real-closed field $R \supseteq D$:

 $\forall \alpha \in R \, \exists x \in D \, (x \le \alpha < x+1)$

• If $u < v \in D$ and $f \in D[x]$ is such that $f(u) \le 0 < f(v)$, there is $u \le x < v$ in D such that $f(x) \le 0 < f(x+1)$

Open induction and root finding

Corollary: The following are equivalent:

- $VTC^0 \pm IMUL$ proves IOpen
- For any constant d > 0, VTC⁰ ± IMUL can formalize a TC⁰ (real or complex) root approximation algorithm for degree d polynomials

Good news: TC^0 root approximation algorithms exist for any constant *d* [J'12]

Bad news: The argument heavily relies on complex analysis \Rightarrow not suitable for $VTC^0 + IMUL$

Proof overview

We show $VTC^0 + IMUL \vdash IOpen$ using a mixed strategy:

(1) Direct proof of a form of the Lagrange inversion formula

- polynomials can be locally inverted by power series
- use this to compute roots of polynomials with small constant coefficient

(2) Model-theoretic argument employing valued fields

- the fraction field F of a DOR D carries a natural valuation induced by <</p>
- $D \models DIV \Rightarrow D$ is an integer part of the completion \hat{F}
- D comes from $M \models VTC^0 + IMUL$ $\Rightarrow \hat{F}$ is henselian due to (1) $\Rightarrow \hat{F}$ is a real-closed field if M is ω -saturated

Lagrange inversion formula

Let $f(z) = \sum_{j=1}^{d} a_j z^j$, $a_1 = 1$, and consider $g(w) = \sum_{n=1}^{\infty} b_n w^n$,

$$b_n = \sum_{\sum_j (j-1)m_j = n-1} C_{m_2,...,m_d} \prod_{j=2}^d (-a_j)^{m_i}$$
$$C_{m_2,...,m_d} = \frac{\left(\sum_{j=2}^d jm_j\right)!}{\left(\sum_{j=2}^d (j-1)m_j + 1\right)! \prod_{j=2}^d m_j!}$$

 $(a_j, b_n, C_{\vec{m}} \text{ are binary rationals, } n, m_j \text{ unary integers})$ Lagrange inversion formula (LIF): f(g(w)) = w as formal power series

LIF in $VTC^0 + IMUL$

Theorem 1: $VTC^0 + IMUL$ proves LIF for any constant *d* Proof: By a convoluted but elementary induction on $\vec{m} = \langle m_2, \dots, m_d \rangle$, show the identity

$$C_{\vec{m}} = \sum_{k=2}^{d} \sum_{\vec{m}^{1} + \dots + \vec{m}^{k} = \vec{m} - \delta^{k}} C_{\vec{m}^{1}} \cdots C_{\vec{m}^{k}} \quad (\vec{m} \neq \vec{0})$$

 $VTC^0 + IMUL$ also proves a bound on the coefficients b_n : Lemma: $|b_n| \le (4a)^{n-1}$, where $a = \max\{1, \sum_{j=2}^d |a_j|\}$

Root approximation with LIF

Theorem 2: $VTC^0 + IMUL$ proves for any constant *d*: Let $h(z) = \sum_{j=0}^d a_j z^j$, $a_1 = 1$. Put $f(z) = h(z) - a_0$, and let g, b_n, a be as above.

If $|a_0| < 1/(4a)$, the partial sums $z_N = \sum_{n=1}^N b_n (-a_0)^n$ satisfy

$$|z_N| \le \frac{|a_0|}{1 - 4a|a_0|}$$
$$|z_N - z_M| \le \frac{|a_0|}{1 - 4a|a_0|} (4a|a_0|)^{N-1}$$
$$|h(z_N)| \le |a_0| N^d (4a|a_0|)^N$$

for any unary $N \leq M$.

Valued fields

valuation $v: K \twoheadrightarrow \Gamma \cup \{\infty\}$ on a field K:

- value group Γ : totally ordered abelian group
- $v(x) = \infty \Leftrightarrow x = 0$
- v(xy) = v(x) + v(y)
- $v(x+y) \ge \min\{v(x), v(y)\}$
- valuation ring $O = \{x \in K : v(x) \ge 0\}$
- maximal ideal $I = \{x \in K : v(x) > 0\} = O \smallsetminus O^*$
- residue field k = O/I

v is defined by the valuation ring up to equivalence: $\Gamma \simeq K^*/O^*$, $v: K^* \to K^*/O^*$ quotient map

Valuation on ordered fields

 $\langle K, \leq \rangle$ ordered field \Rightarrow natural valuation v with

$$O = \{x \in K : \exists n \in \mathbb{N} |x| \le n\}$$
$$I = \{x \in K : \forall n \in \mathbb{N} |x| \le 1/n\}$$

- residue field: archimedean $OF \Rightarrow k \subseteq \mathbb{R}$
- the completion \hat{K} of $\langle K, v \rangle$ is the largest ordered field extension of K in which K is dense

Open induction and valued fields

 $M \vDash VTC^0 + IMUL$ induces DOR *D*, let *F* be its fraction field Using $D \vDash DIV$, we have:

 $D \vDash IOpen \Leftrightarrow D \text{ integer part of a RCF}$ $\Leftrightarrow F \text{ dense subfield of a RCF}$ $\Leftrightarrow \hat{F} \text{ is a RCF}$

Criterion: *K* ordered field, *O* convex valuation ring of *K* \Rightarrow *K* is a RCF iff

- (1) value group $\Gamma = K^*/O^*$ is divisible
- (2) residue field k = O/I is a RCF

(3) *O* is henselian

Checking the conditions

In our case:

- (1) Γ is divisible—easy
- (2) We can assume $M \omega$ -saturated, then $k = \mathbb{R} \mathsf{RCF}$
- (3) We need: any $h(x) = \sum_{j \le d} a_j x^j \in O[x]$ such that $a_1 = 1$, $a_0 \in I$, has a root in O. This follows from Theorem 2.

We obtain Theorem 3: $VTC^0 + IMUL \vdash IOpen$

What about VTC⁰?

Question: Does VTC^0 prove IOpen?

Theorem 3 and [JP'98] imply that TFAE:

- $VTC^0 \vdash IOpen$
- $VTC^0 \vdash IMUL$
- $VTC^0 \vdash DIV$

 \Rightarrow the problem is whether VTC^0 can formalize the division algorithm of [HAB'02]

Thank you for attention!

References

S. Cook, P. Nguyen, Logical foundations of proof complexity, CUP, 2010.

A. Engler, A. Prestel, Valued fields, Springer, 2005.

W. Hesse, E. Allender, D. Mix Barrington, *Uniform constant-depth threshold circuits for division and iterated multiplication*, J. Comp. System Sci. 65 (2002), 695–716.

E. Jeřábek, *Root finding with threshold circuits*, Theoret. Comput. Sci. 462 (2012), 59–69.

J. Johannsen, C. Pollett, *On proofs about threshold circuits and counting hierarchies* (*extended abstract*), in: Proc. 13th LICS, 1998, 444–452.

J. Shepherdson, *A nonstandard model for a free variable fragment of number theory*, Bull. Acad. Polon. Sci. 12 (1964), 79–86.