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jerabek@math.cas.cz

http://math.cas.cz/˜jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Logic Colloquium | Évora | July 2013



Motivation

Correspondence of theories of bounded arithmetic T and
computational complexity classes C:

Provably total computable functions of T are C-functions

T can do reasoning using C-predicates
(comprehension, induction, . . . )

Feasible reasoning:

Given a natural concept P ∈ C, what can we prove about
P using only concepts from C?

That is: what does T prove about P?

Our P : elementary integer arithmetic operations +, ·,≤
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The classTC
0

TC
0 = DLOGTIME-uniform O(1)-depth nO(1)-size

unbounded fan-in circuits with threshold gates

= O(log n) time, O(1) thresholds

on a threshold Turing machine

= FOM-definable on finite structures

representing strings

(first-order logic with majority quantifiers)

Weak subclass of polynomial time
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TC
0 and arithmetic operations

For integers given in binary:

+ and ≤ are in AC
0 ⊆ TC

0

× is in TC
0 (TC

0-complete under Turing reductions)

TC
0 can also do:

iterated addition
∑

i<n xi

integer division and iterated multiplication [HAB’02]

the corresponding operations on Q, Q(i)

approximate functions given by nice power series:
sin x, log x, k

√
x

sorting, . . .

⇒ TC
0 is the right class for basic arithmetic operations
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The theory VTC 0

The most common theory corresponding to TC
0 is VTC 0:

Zambella-style two-sorted bounded arithmetic
unary (auxiliary) integers with 0, 1,+, ·,≤
finite sets = binary integers = binary strings

Noteworthy axioms:
ΣB

0 -comprehension (ΣB
0 = bounded, w/o SO q’fiers)

every set has a counting function

Σ1
1-definable functions are exactly FTC

0

Has induction, minimization, . . . for TC
0-predicates
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Binary arithmetic in VTC 0

VTC 0

can define +, ·,≤ on binary integers

proves integers form a discretely ordered ring (DOR)

Basic question:
What other properties of +, ·,≤ for binary integers are
provable in VTC 0?

In particular: does VTC 0 include Shepherdson’s theory
IOpen = DOR + quantifier-free induction in L = 〈+, ·,≤〉?

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀x ≥ 0ϕ(x)
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VTC 0
+ IMUL

Annoying trouble: Unknown if VTC 0 can formalize the
[HAB’02] algorithms for iterated multiplication and division

VTC 0
?
⊢ ∀X∀Y > 0∃Q∃R < Y (X = Y · Q + R)

︸ ︷︷ ︸

DIV

⇒ Consider iterated multiplication as an additional axiom:

(IMUL) ∀X,n∃Y ∀i ≤ j < n
(
Y [〈i,i〉] = 1∧Y [〈i,j+1〉] = Y [〈i,j〉]·X [j]

)

Think Y [〈i,j〉] =
∏j−1

k=i X [k]

Note: VTC 0 + IMUL corresponds to TC
0, just like VTC 0

VTC 0 + IMUL ⊢ DIV

We need IMUL rather than DIV for technical reasons
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IOpen algebraized

For a DOR D, the following are equivalent [Shep’64]:

D � IOpen

D is an integer part of a real-closed field R ⊇ D:

∀α ∈ R ∃x ∈ D (x ≤ α < x + 1)

If u < v ∈ D and f ∈ D[x] is such that f(u) ≤ 0 < f(v),
there is u ≤ x < v in D such that f(x) ≤ 0 < f(x + 1)
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Open induction and root finding

Corollary: The following are equivalent:

VTC 0 ± IMUL proves IOpen

For any constant d > 0, VTC 0 ± IMUL can formalize a
TC

0 (real or complex) root approximation algorithm for
degree d polynomials

Good news: TC
0 root approximation algorithms exist for any

constant d [J’12]

Bad news: The argument heavily relies on complex analysis
⇒ not suitable for VTC 0 + IMUL
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Proof overview

We show VTC 0 + IMUL ⊢ IOpen using a mixed strategy:

(1) Direct proof of a form of the Lagrange inversion formula
polynomials can be locally inverted by power series

use this to compute roots of polynomials with small
constant coefficient

(2) Model-theoretic argument employing valued fields
the fraction field F of a DOR D carries a natural
valuation induced by ≤
D � DIV ⇒ D is an integer part of the completion F̂

D comes from M � VTC 0 + IMUL

⇒ F̂ is henselian due to (1)
⇒ F̂ is a real-closed field if M is ω-saturated
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Lagrange inversion formula

Let f(z) =
∑d

j=1 ajz
j, a1 = 1, and consider g(w) =

∑∞
n=1 bnwn,

bn =
∑

P

j
(j−1)mj=n−1

Cm2,...,md

d∏

j=2

(−aj)
mi

Cm2,...,md
=

(∑d
j=2 jmj

)
!

(∑d
j=2(j − 1)mj + 1

)
!
∏d

j=2 mj !

(aj , bn, C~m are binary rationals, n,mj unary integers)

Lagrange inversion formula (LIF):
f(g(w)) = w as formal power series
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LIF in VTC 0
+ IMUL

Theorem 1: VTC 0 + IMUL proves LIF for any constant d

Proof: By a convoluted but elementary induction on
~m = 〈m2, . . . ,md〉, show the identity

C~m =

d∑

k=2

∑

~m1+···+~mk=~m−δk

C~m1 · · ·C~mk (~m 6= ~0)

VTC 0 + IMUL also proves a bound on the coefficients bn:

Lemma: |bn| ≤ (4a)n−1, where a = max
{
1,

∑d
j=2|aj |

}
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Root approximation with LIF

Theorem 2: VTC 0 + IMUL proves for any constant d:
Let h(z) =

∑d
j=0 ajz

j, a1 = 1. Put f(z) = h(z) − a0, and let
g, bn, a be as above.

If |a0| < 1/(4a), the partial sums zN =
∑N

n=1 bn(−a0)
n satisfy

|zN | ≤ |a0|
1 − 4a|a0|

|zN − zM | ≤ |a0|
1 − 4a|a0|

(
4a|a0|)N−1

|h(zN )| ≤ |a0|Nd
(
4a|a0|

)N

for any unary N ≤ M .
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Valued fields

valuation v : K ։ Γ ∪ {∞} on a field K:

value group Γ: totally ordered abelian group

v(x) = ∞ ⇔ x = 0

v(xy) = v(x) + v(y)

v(x + y) ≥ min{v(x), v(y)}
valuation ring O = {x ∈ K : v(x) ≥ 0}
maximal ideal I = {x ∈ K : v(x) > 0} = O r O∗

residue field k = O/I

v is defined by the valuation ring up to equivalence:
Γ ≃ K∗/O∗, v : K∗ → K∗/O∗ quotient map
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Valuation on ordered fields

〈K,≤〉 ordered field ⇒ natural valuation v with

O = {x ∈ K : ∃n ∈ N |x| ≤ n}
I = {x ∈ K : ∀n ∈ N |x| ≤ 1/n}

residue field: archimedean OF ⇒ k ⊆ R

the completion K̂ of 〈K, v〉 is the largest ordered field
extension of K in which K is dense
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Open induction and valued fields

M � VTC 0 + IMUL induces DOR D, let F be its fraction field

Using D � DIV , we have:

D � IOpen ⇔ D integer part of a RCF

⇔ F dense subfield of a RCF

⇔ F̂ is a RCF

Criterion: K ordered field, O convex valuation ring of K

⇒ K is a RCF iff

(1) value group Γ = K∗/O∗ is divisible

(2) residue field k = O/I is a RCF

(3) O is henselian
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Checking the conditions

In our case:

(1) Γ is divisible—easy

(2) We can assume M ω-saturated, then k = R RCF

(3) We need: any h(x) =
∑

j≤d ajx
j ∈ O[x] such that a1 = 1,

a0 ∈ I, has a root in O. This follows from Theorem 2.

We obtain
Theorem 3: VTC 0 + IMUL ⊢ IOpen
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What about VTC 0?

Question: Does VTC 0 prove IOpen?

Theorem 3 and [JP’98] imply that TFAE:

VTC 0 ⊢ IOpen

VTC 0 ⊢ IMUL

VTC 0 ⊢ DIV

⇒ the problem is whether VTC 0 can formalize the division
algorithm of [HAB’02]
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Thank you for attention!
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