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jerabek@math.cas.cz
http://math.cas.cz/˜jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Logic Colloquium 2010, Paris



Propositional proof complexity

Fix a language L ⊆ Σ∗ (think L = TAUT = classical
propositional tautologies).

A proof system P for L:

ϕ has a P -proof iff ϕ ∈ L

polynomial-time decidable whether π is a P -proof of ϕ

P is p-bounded if every ϕ ∈ L has a proof of length poly(|ϕ|)

P p-simulates a proof system Q (Q ≤p P ) if we can translate
Q-proofs to P -proofs of the same formula in polynomial time

P is p-equivalent to Q (P ≡p Q) if P ≤p Q ∧Q ≤p P
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Propositional proof complexity (cont’d)

Theorem [Cook, Reckhow ’79]: There exists a p-bounded
proof system for TAUT iff NP = coNP .

Goal: prove that every proof system for TAUT requires
exponentially long proofs

Reality:

exponential lower bounds and nonsimulation (speed-up)
results for some specific, rather weak, proof systems

simulations
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Frege systems

Usual propositional sequent calculus LK :

operates with sequents ϕ1, . . . , ϕn ⊢ ψ1, . . . , ψm

structural rules: identity, cut, weakening, contraction,
exchange

logical rules: left and right introduction rules for each
connective

LK is p-equivalent to

Frege systems: operate with formulas, finite list of
schematic rules (e.g., modus ponens + axioms), sound
and implicationally complete

natural deduction
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Subsystems of Frege

LK /Frege is a very strong proof system, no lower bounds in
sight

Weaken the proof system by restricting formulas in the proof
to some subset Θ. Examples:

bounded-depth LK /Frege: Θ = formulas of depth
≤ a constant d (need

∧

and
∨

of unbounded arity)
exponential lower bounds: PHP

monotone sequent calculus MLK : Θ = monotone
formulas (= using ∧, ∨, but no ¬)
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Monotone sequent calculus

Motivation: exponential lower bounds on monotone circuit
complexity (even separation from nonmonotone circuits)

maybe we could exploit these to get an exponential
separation of MLK and LK?

The answer is no:

Theorem [AGP ’02]: MLK quasipolynomially simulates LK :
a monotone sequent in n variables with an LK -proof of
size s has an MLK -proof of size sO(1)nO(log n).

also: certain hypothesis (see next slide) implies
polynomial simulation
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Threshold functions

Tn
k (p1, . . . , pn) = 1 ⇔

∣

∣{i | pi = 1}
∣

∣ ≥ k

poly-size formulas by carry-save addition

size nO(log n) monotone formulas by divide-and-conquer

in fact: poly-size monotone formulas, but randomized
construction (Valiant ’84) or very complicated (AKS ’83)

Hypothesis (let’s call it H):
There exists poly-size monotone formulas for Tn

k whose
basic properties have poly-time constructible LK -proofs.

some progress towards H in [J. ’08]
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Less restrictive subsystems of Frege

Bad: Restricting formulas appearing in a proof to Θ also
restricts sequents that can be proved in the system!

MLK can only prove monotone sequents

Alternative approach: relax the restriction

any formula can appear in a proof, but cut formulas can
only come from Θ

conservative extension of the other approach: when
proving a sequent Γ ⊢ ∆ where Γ ∪ ∆ ⊆ Θ, all formulas in
the proof will be from Θ (∵ subformula property)

complete proof system for full propositional logic
(∵ contains cut-free LK )
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LK with monotone cuts

MCLK :
sequent calculus where only monotone formulas can be cut

coincides with MLK when proving monotone sequents

unlike MLK , can also prove all nonmonotone tautological
sequents

We know from [AGP ’02] that MCLK quasipolynomially
simulates LK -proofs of monotone sequents.

What about general sequents? In principle, MCLK could be
as bad as the cut-free sequent calculus for these.
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Complexity of MCLK

Theorem [J.]: MCLK quasipolynomially simulates LK .
A sequent in m variables with an LK -proof of size s has an
MCLK -proof of size sO(1)nO(log n).

in other words: given any sequent proof, we can
transform it into a not much bigger proof with no cuts on
nonmonotone formulas

if H holds, the simulation can be made polynomial
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Proof idea

The idea is based on Wegener’s slice functions:

If Tn
k (~p) ∧ ¬Tn

k+1(~p), then

¬pi ↔ Tn−1
k (p1, . . . , pi−1, pi+1, . . . , pn)

This allows for every formula to be translated with a
monotone formula.
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Refutation systems

Refutation system: a kind of propositional proof system
where we prove ¬ϕ by deriving a contradiction from ϕ

Often: ϕ is CNF, given as a set of clauses

pi1 ∨ · · · ∨ pik ∨ ¬pj1 ∨ · · · ∨ ¬pjl

Examples:

resolution

algebraic systems: polynomial calculus,
Lovász–Schrijver, cutting planes

LK or Frege as a refutation system: if unrestricted,
p-equivalent to its use as a normal proof system
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MLK as a refutation system

We can represent a clause C = pi1 ∨ · · · ∨ pik ∨ ¬pj1 ∨ · · · ∨ ¬pjl

by a monotone sequent C⊢:

pj1 , . . . , pjl
⊢ pi1, . . . , pik

An MLK -refutation of a CNF ϕ is a derivation of the
contradictory sequent

⊢

from the set of initial sequents {C⊢ | C ∈ ϕ} using the rules of
MLK

resolution = fragment of MLK using only the cut rule
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Complexity of MLK refutations

Theorem [J.]: MLK as a refutation system
quasipolynomially simulates LK :
A CNF in m variables with an LK -refutation of size s has an
MLK -refutation of size sO(1)nO(log n).

again, the simulation can be made polynomial under H
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Thank you for attention!
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