Admissibility and unification with parameters

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Overview

The plan for this talk:

- General remarks on admissibility and unification
- Known results on admissibility in modal, intuitionistic, and Łukasiewicz logics
- Admissibility with parameters in modal and intuitionistic logics
- Admissibility with parameters in Łukasiewicz logic

Admissibility and unification in propositional logics

Propositional logics

Propositional logic L :

Language: formulas Form $_{L}$ built freely from atoms (variables) $\left\{x_{n}: n \in \omega\right\}$ using a fixed set of connectives of finite arity

Consequence relation \vdash_{L} : finitary structural Tarski-style consequence operator
l.e.: a relation $\Gamma \vdash_{L} \varphi$ between finite sets of formulas and formulas such that

- $\varphi \vdash_{L} \varphi$
- $\Gamma \vdash_{L} \varphi$ implies $\Gamma, \Gamma^{\prime} \vdash_{L} \varphi$
- $\Gamma \vdash_{L} \varphi$ and $\Gamma, \varphi \vdash_{L} \psi$ imply $\Gamma \vdash_{L} \psi$
- $\Gamma \vdash_{L} \varphi$ implies $\sigma(\Gamma) \vdash_{L} \sigma(\varphi)$ for every substitution σ

Algebraization

L is finitely algebraizable wrt a class K of algebras if there is a finite set $F(u, v)$ of formulas and a finite set $E(x)$ of equations such that
－$\Gamma \vdash_{L} \varphi \Leftrightarrow E(\Gamma) \vDash_{K} E(\varphi)$
－$\Theta \vDash_{K} t \approx s \Leftrightarrow F(\Theta) \vdash_{L} F(t, s)$
－$x \forall \vdash_{L} F(E(x))$
－$u \approx v \not ⿰ ⿰ 三 丨 ⿰ 丨 三_{K} E(F(u, v))$
We may assume K is a quasivariety
In the cases in this talk，we will always have：
$E(x)=\{x \approx 1\}, F(u, v)=\{u \leftrightarrow v\}, K$ is a variety

Equational unification

Let Θ be an equational theory (or a variety of algebras):

- Θ-unifier of a set Γ of equations:
a substitution σ s.t. ${ }_{\Theta} \sigma(t) \approx \sigma(s)$ for all $t \approx s \in \Gamma$
- Γ is Θ-unifiable if it has a Θ-unifier
- $\sigma \equiv_{\Theta} \tau$ iff $F_{\Theta} \sigma(u) \approx \tau(u)$ for every variable u
- $\sigma \preceq_{\Theta} \tau(\tau$ is more general than $\sigma)$ if $\exists \varrho \sigma \equiv_{\Theta} \varrho \circ \tau$
- Complete set of unifiers of Γ : a set X of unifiers of Γ such that every unifier of Γ is less general than some $\tau \in X$
- Θ has finitary unification type if every finite Γ has a finite complete set of unifiers

Unification in propositional logics

If L is a logic finitely algebraizable wrt a variety K, we can express K-unification in terms of L :
An L-unifier of a formula φ is σ such that $\vdash_{L} \sigma(\varphi)$
Then we have:

- L-unifier of $\varphi=K$-unifier of $E(\varphi)$
- K-unifier of $t \approx s=L$-unifier of $F(t, s)$
- $\sigma \equiv_{L} \tau$ iff $\vdash_{L} F(\sigma(x), \tau(x))$ for every x (in our case: $\vdash_{L} \sigma(x) \leftrightarrow \tau(x)$)

Admissible rules

Single-conclusion rule: Γ / φ
(Γ finite set of formulas)
Multiple-conclusion rule: $\Gamma / \Delta \quad(\Gamma, \Delta$ finite sets of formulas)

- Γ / Δ is L-derivable (or valid) if $\Gamma \vdash_{L} \delta$ for some $\delta \in \Delta$
- Γ / Δ is L-admissible (written as $\Gamma \mu_{L} \Delta$) if every L-unifier of Γ also unifies some $\delta \in \Delta$

$$
E(\Gamma / \Delta):=\bigwedge_{\gamma \in \Gamma} E(\gamma) \rightarrow \bigvee_{\delta \in \Delta} E(\delta):
$$

- Γ / Δ is derivable iff $E(\Gamma / \Delta)$ holds in all K-algebras
- Γ / Δ is admissible iff $E(\Gamma / \Delta)$ holds in free K-algebras

Note: Γ is unifiable iff $\Gamma \not \psi_{L} \varnothing$

Multiple-conclusion consequence relations

Single-conc. admissible rules form a consequence relation Multiple-conc. admissible rules form a (finitary structural) multiple-conclusion consequence relation:

- φ ト φ
- $\Gamma \sim \Delta$ implies $\Gamma, \Gamma^{\prime} \sim \Delta, \Delta^{\prime}$
- $\Gamma \sim \varphi, \Delta$ and $\Gamma, \varphi \sim \Delta$ imply $\Gamma \nsim \Delta$
- $\Gamma \nsim \Delta$ implies $\sigma(\Gamma) \downarrow \sigma(\Delta)$ for every substitution σ

A set B of rules is a basis of L-admissible rules if μ_{L} is the smallest m.-c. c. r. containing \vdash_{L} and B

Admissibly saturated approximation

Γ is admissibly saturated if $\Gamma \vdash_{L} \Delta$ implies $\Gamma \vdash_{L} \Delta$ for any Δ
Assume for simplicity that L has a well-behaved conjunction.
Admissibly saturated approximation of Γ : a finite set of formulas Π_{Γ} such that

- each $\pi \in \Pi_{\Gamma}$ is admissibly saturated
- $\Gamma \mu_{L} \Pi_{\Gamma}$
- $\pi \vdash_{L} \varphi$ for each $\pi \in \Pi_{\Gamma}$ and $\varphi \in \Gamma$

Application of admissible saturation

Assuming every Γ has an a.s. approximation Π_{Γ} :

- Reduction of \vdash_{L} to \vdash_{L} :

$$
\Gamma \vdash_{L} \Delta \quad \text { iff } \quad \forall \pi \in \Pi_{\Gamma} \exists \psi \in \Delta \pi \vdash_{L} \psi
$$

- If $\Gamma \mapsto \Pi_{\Gamma}$ is computable and \vdash_{L} is decidable, then \vdash_{L} is decidable
- If Γ / Π_{Γ} is derivable in $\vdash_{L}+$ a set of rules $B \subseteq \vdash_{L}$, then B is a basis of admissible rules
- If each $\pi \in \Pi_{\Gamma}$ has an mgu σ_{π}, then $\left\{\sigma_{\pi}: \pi \in \Pi_{\Gamma}\right\}$ is a complete set of unifiers for Γ
\Rightarrow finitary unification

Projective formulas

π is projective if it has a unifier σ such that $\pi \vdash_{L} x \leftrightarrow \sigma(x)$
(in general: $\pi \vdash_{L} F(x, \sigma(x))$) for every variable x

- Every projective formula is admissibly saturated
- σ is an mgu of π : if τ is a unifier of π, then $\tau \equiv_{L} \tau \circ \sigma$
- Projective formula \approx presentation of a projective algebra

Projective approximation := admissibly saturated approximation consisting of projective formulas

If projective approximations exist: convenient tool for analysis of unification and admissibility

Exact formulas

φ is exact if there exists σ such that

$$
\vdash_{L} \sigma(\psi) \quad \text { iff } \quad \varphi \vdash_{L} \psi
$$

for all formulas ψ

- projective \Rightarrow exact \Rightarrow admissibly saturated
- in general: can't be reversed
- if projective approximations exist: projective = exact = admissibly saturated
- exact formulas do not need to have mgu \Rightarrow can coexist with bad unification type

Parameters

In real life, propositional atoms model both "variables" and "constants"

We don't want to allow substitution for constants
Example (description logic):
(1) \forall child.(\neg HasSon $\sqcap \exists$ spouse. T)
(2) \forall child. \forall child. \neg Male $\sqcap \forall$ child.Married
(3) \forall child. \forall child. \neg Female $\sqcap \forall$ child.Married

Good: Unify (1) with (2) by HasSon \mapsto ヨchild.Male,
Married $\mapsto \exists$ spouse. \top
Bad: Unify (2) with (3) by Male \mapsto Female

Admissibility with parameters

In equational unification theory, it is customary to consider a setup with two kinds of atoms:

- variables $\left\{x_{n}: n \in \omega\right\}$
- parameters $\left\{p_{n}: n \in \omega\right\}$ (aka constants, metavariables, coefficients)

Substitutions only modify variables, we require $\sigma\left(p_{n}\right)=p_{n}$
Adapt accordingly the definitions of other notions:

- Unifiers, admissible rules, bases, a.s. formulas and approximations, projective formulas, ...

Exception: "Propositional logic" is always assumed to be closed under substitution for parameters

Inheritance

L^{\prime} inherits admissible rules of L if $\Gamma \sim_{L} \Delta \Rightarrow \Gamma \vdash_{L^{\prime}} \Delta$
Parameter-free examples:

- S4Grz inherits admissible rules of S4
- KC inherits single-conclusion admissible rules of IPC

Admissible rules with parameters cannot be inherited in a nontrivial way: L and L^{\prime} have the same theorems

$$
\begin{gathered}
\vdash_{L} \varphi \Rightarrow \vdash_{L} \varphi \Rightarrow \vdash_{L^{\prime}} \varphi \\
\vdash_{L} \varphi \Rightarrow \varphi(\vec{p}) \vdash_{L} q \Rightarrow \vdash_{L^{\prime}} \varphi
\end{gathered}
$$

Transitive modal logics

Transitive modal logics

Normal modal logics with a single modality \square, include the transitivity axiom $\square x \rightarrow \square \square x$ (i.e., $L \supseteq \mathbf{K} 4$)
Common examples: various combinations of

logic	axiom (on top of $\mathbf{K 4}$)	finite rooted transitive frames
$\mathbf{S 4}$	$\square x \rightarrow x$	reflexive
$\mathbf{D 4}$	$\diamond \top$	final clusters reflexive
$\mathbf{G L}$	$\square(\square x \rightarrow x) \rightarrow \square x$	irreflexive
$\mathbf{K 4 G r z}$	$\square(\square(x \rightarrow \square x) \rightarrow x) \rightarrow \square x$	no proper clusters
$\mathbf{K 4 . 1}$	$\square \diamond x \rightarrow \diamond \square x$	no proper final clusters
$\mathbf{K 4 . 2}$	$\diamond \square x \rightarrow \square \diamond x$	unique final cluster
$\mathbf{K 4 . 3}$	$\square(\square x \rightarrow y) \vee \square(\square y \rightarrow x)$	linear (chain of clusters)
$\mathbf{K 4 B}$	$x \rightarrow \square \diamond x$	lone cluster
$\mathbf{S 5}$	$=\mathbf{S 4 \oplus \mathbf { B }}$	lone reflexive cluster

Some classes of transitive logics

Cofinal-subframe (csf) logics:

- complete wrt a class of frames closed under the removal of a subset of non-final points
- all combinations of logics from the table are csf

Extensible logics:

- If a frame F has a unique root r whose reflexivity is compatible with L, and $F \backslash\{r\} \vDash L$, then $F \vDash L$
- K4, S4, GL, K4Grz, S4Grz, D4, K4.1, ... (not K4.2, ...)

Linear extensible logics:

- K4.3, S4.3, GL.3, ...

Admissibility in transitive modal logics

A lot is known about admissibility without parameters:

- Admissibility is decidable in a large class of logics (Rybakov)
- Extensible logics have projective approximations (Ghilardi)
- finitary unification type
- complete sets of unifiers computable
- Bases of admissible rules for extensible logics (J.)
- Computational complexity of admissibility (J.)
- Lower bounds for a quite general class of logics
- Matching upper bounds for csf extensible logics
- ... and more ...

Projectivity in modal logics

Fix $L \supseteq \mathbf{K} 4$ with the finite model property (fmp)
Extension property: if F is a finite L-model with a unique root r and $x \vDash \varphi$ for every $x \in F \backslash\{r\}$, then we can change valuation of variables in r to make $r \vDash \varphi$

Theorem [Ghilardi]: The following are equivalent:

- φ is projective
- φ has the extension property
- θ_{φ} is a unifier of φ
where θ_{φ} is an explicitly defined composition of substitutions of the form $\sigma(x)=\square \varphi \wedge x$ or $\sigma(x)=\square \varphi \rightarrow x$

Bases of admissible rules

If L is an extensible logic, it has a basis of admissible rules consisting of

$$
\frac{\square y \rightarrow \square x_{1} \vee \cdots \vee \square x_{n}}{\unlhd y \rightarrow x_{1}, \ldots, \boxtimes y \rightarrow x_{n}} \quad(n \in \omega)
$$

if L admits an irreflexive point, and

$$
\frac{\square(y \leftrightarrow \square y) \rightarrow \square x_{1} \vee \cdots \vee \square x_{n}}{\square y \rightarrow x_{1}, \ldots, \boxtimes y \rightarrow x_{n}} \quad(n \in \omega)
$$

if L admits a reflexive point
For L linear extensible, take only $n=0,1$

Complexity of admissible rules

Lower bound:
Assume $L \supseteq \mathbf{K} 4$ and every depth-3 tree is a skeleton of an L-frame with prescribed final clusters.
Then L-admissibility is coNEXP-hard.
Upper bounds: Admissibility in

- csf extensible logics is coNEXP-complete
- csf linearly extensible logics is coNP-complete

Intuitionistic logic

Admissible rules of IPC and some intermediate logics (KC, LC, ...) can be analyzed similarly to the modal case:

- Admissibility is decidable (Rybakov)
- Projective approximations exist (Ghilardi)
- finitary unification type
- complete sets of unifiers computable
- Bases of admissible rules (lemhoff)
- Computational complexity of admissibility (J.)

Translation for intermediate logics

In fact, admissibility in intermediate logics can be directly reduced to modal logics by means of the Blok-Esakia isomorphism, using the following result of Rybakov:

Theorem:
If $L \supseteq$ IPC and σL is its largest modal companion, then

$$
\Gamma \vdash_{L} \Delta \Leftrightarrow \mathrm{~T}(\Gamma) \vdash_{\sigma L} \mathrm{~T}(\Delta),
$$

where T is the Gödel translation
Example: $\sigma \mathrm{IPC}=\mathbf{S} 4 \mathrm{Grz}, \sigma \mathrm{KC}=\mathbf{S} 4.2 \mathrm{Grz}, \sigma \mathrm{LC}=\mathbf{S} 4.3 \mathrm{Grz}$, $\sigma \mathrm{CPC}=$ Triv

Lukasiewicz logic

Admissibility in Łukasiewicz logic

Parameter-free admissible rules of $\mathfrak{Ł}$ are fairly well understood:

- Admissibility is equivalent to validity in the 1-generated free $M V$-algebra
- Semantic (geometric) description of admissible rules and admissibly saturated formulas
- All formulas have admissibly saturated approximations
- Admissibility in $Ł$ is decidable (PSPACE-complete)
- Explicit basis of admissible rules
- Admissibly saturated formulas are exact [Cabrer]
- OTOH: $Ł$ has nullary unification type [Marra\&Spada] \Rightarrow projective approximations in general do not exist

Anchoredness

If $X \subseteq \mathbb{R}^{n}$, let $A(X)$ be its affine hull and $C(X)$ its convex hull X is anchored if $A(X) \cap \mathbb{Z}^{n} \neq \varnothing$

Using Hermite normal form, we obtain:

- $X \subseteq \mathbb{Q}^{n}$ is anchored iff

$$
\forall u \in \mathbb{Z}^{n} \forall a \in \mathbb{Q}\left[\forall x \in X\left(u^{\top} x=a\right) \Rightarrow a \in \mathbb{Z}\right]
$$

(Whenever X is contained in a hyperplane defined by an affine function with integral linear coefficients, its constant coefficients must be integral, too.)

- Given $x_{0}, \ldots, x_{k} \in \mathbb{Q}^{n}$, it is decidable in polynomial time whether $\left\{x_{0}, \ldots, x_{k}\right\}$ is anchored

Characterization of admissibility in \mathbf{L}

Theorem [J.]: Write $t(\Gamma)=\left\{x \in[0,1]^{n}: \forall \varphi \in \Gamma \varphi(x)=1\right\}$ as a union of rational polytopes $\bigcup_{j<r} C_{j}$.

Then $\Gamma \not \downarrow_{Ł} \Delta$ iff $\exists a \in\{0,1\}^{n} \forall \psi \in \Delta \exists j_{0}, \ldots, j_{k}<r$ such that

- $a \in C_{j_{0}}$
- each $C_{j_{i}}$ is anchored
- $C_{j_{i}} \cap C_{j_{i+1}} \neq \varnothing$
- $\psi(x)<1$ for some $x \in C_{j_{k}}$

Corollary: Admissibility in $Ł$ is decidable

Computational complexity

- $\Gamma \nvdash_{七} \Delta$ is reducible to reachability in an exponentially large graph with poly-time edge relation:
- vertices: anchored polytopes in $t(\Gamma)$
. edges: C, C^{\prime} connected iff $C \cap C^{\prime} \neq \varnothing$
$\Rightarrow h_{\mathfrak{t}} \in$ PSPACE
- In fact: ${\digamma_{Ł}}^{\text {is PSPACE-complete }}$
- In contrast, $\operatorname{Th}(\mathbf{Ł})$ and $\vdash_{Ł}$ are coNP-complete [Mundici]

Admissibly saturated formulas

The characterization of ${\mu_{Ł}}$ easily implies:

- $\varphi \in F_{n}$ is admissibly saturated in $Ł$ iff $t(\varphi)$
- is connected,
- intersects $\{0,1\}^{n}$, and
- is piecewise anchored
(i.e., a finite union of anchored polytopes)
- In $\not \subset$, every formula φ has an admissibly saturated approximation

Exact and projective formulas

- Cabrer gave a description of exact formulas in $Ł$, which implies the equivalence of:
- φ is admissibly saturated
- φ is exact
- $t(\varphi)$ is connected and $\vdash_{Ł} \varphi \leftrightarrow \bigvee_{i} \pi_{i}$ with projective π_{i}
- Marra \& Spada proved that $Ł$ has nullary unification type \Rightarrow it can't have projective approximations
. Example: $x \vee \neg x \vee y \vee \neg y$ is admissibly saturated, but not projective

Multiple-conclusion basis

The construction of a.s. approximations can be simulated by simple rules:
Theorem [J.]: $\left\{N A_{p}: p\right.$ is a prime $\}+C C_{3}+W D P$ is an independent basis of multiple-conclusion $Ł$-admissible rules

$$
\begin{aligned}
N A_{k} & =\frac{x \vee \chi_{k}(y)}{x} \\
C C_{n} & =\frac{\neg(y \vee \neg y)^{n}}{} \\
W D P & =\frac{x \vee \neg x}{x, \neg x}
\end{aligned}
$$

Admissibility with parameters in modal logics

Known results

Not that much is known about admissibility in transitive modal logics in the presence of parameters:

- Rybakov's results on decidability of admissibility also apply to admissibility with parameters
- Recently, he expanded the results to effectively construct complete sets of unifiers \Rightarrow finitary unification type

Terminology: From now on, admissibility and unification always allow parameters

New results

Parameters complicate matters, but typical properties carry over:

- Ghilardi-style characterization of projective formulas
- Existence of projective approximations for cluster-extensible (clx) logics [defined on the next slide]
- Semantic description of admissibility in clx logics
- Explicit bases of admissible rules for clx logics
- Computational complexity:
- Lower bounds on unification in wide classes of transitive logics
- Matching upper bounds for admissibility in clx logics
- Translation of these results to intuitionistic logic

Cluster-extensible logics

Let L be a transitive modal logic with fmp, $n \in \omega$, and C a finite cluster.

A finite rooted frame F is of type $\langle n, C\rangle$ if its root cluster $\operatorname{rcl}(F)$ is isomorphic to C and has n immediate successor clusters.
L is $\langle n, C\rangle$-extensible if:
For every type- $\langle n, C\rangle$ frame F, if $F \backslash \operatorname{rcl}(F)$ is an L-frame, then so is F.
L is cluster-extensible (clx), if it is $\langle n, C\rangle$-extensible whenever there exists a type- $\langle n, C\rangle L$-frame.

Properties of clx logics

Examples: All combinations of K4, S4, GL, D4, K4Grz, K4.1, K4.3, K4B, S5, \pm bounded branching

Nonexamples: K4.2, S4.2, ...
For every clx logic L :

- L is finitely axiomatizable
- L has the exponential-size model property
- L is $\forall \exists$-definable on finite frames
- L is decidable in PSPACE (if width ≥ 2, PSPACE-complete)

Projective formulas: the extension property

Fix $L \supseteq \mathbf{K} 4$ with the fmp, and P and V finite sets of parameters and variables, resp.

- If F is a rooted model with valuation of $P \cup V$, its variant is any model F^{\prime} which differs from F only by changing the value of some variables $x \in V$ in $\operatorname{rcl}(F)$
- A set M of finite rooted L-models evaluating $P \cup V$ has the model extension property, if: every L-model F whose all rooted generated proper submodels belong to M has a variant $F^{\prime} \in M$
- A formula φ in atoms $P \cup V$ has the model extension property if $\operatorname{Mod}_{L}(\varphi):=\{F: \forall x \in F(x \vDash \varphi)\}$ does

Projective formulas: Löwenheim substitutions

Let φ be a formula in atoms $P \cup V$

- For every $D=\left\{\beta_{x}: x \in V\right\}$, where each β_{x} is a Boolean function of the parameters P, define the substitution

$$
\theta_{D}(x)=(\square \varphi \wedge x) \vee\left(\neg \boxtimes \varphi \wedge \beta_{x}\right)
$$

- Let θ_{φ} be the composition of substitutions θ_{D} for all the $2^{2^{|P|}|V|}$ possible D 's, in arbitrary order

Projective formulas: a characterization

Theorem:
Let $L \supseteq \mathbf{K} 4$ have the fmp, and φ be a formula in finitely many parameters P and variables V. Tfae:

- φ is projective
- φ has the model extension property
- θ_{φ}^{N} is a unifier of φ
where $N=(|B|+1)\left(2^{|P|}+1\right), B=\{\psi: \square \psi \subseteq \varphi\}$
Remark: If $P=\varnothing$, we have $N \leq 2|\varphi|$.
Ghilardi's original proof gives N nonelementary (tower of exponentials of height $\operatorname{md}(\varphi)$)

Projective approximations

Theorem:
If L is a clx logic, every formula φ has a projective approximation Π_{φ}.
Moreover, every $\pi \in \Pi_{\varphi}$ is a Boolean combination of subformulas of φ.

Corollary:

- $\left\{\theta_{\pi}: \pi \in \Pi_{\varphi}\right\}$ is a complete set of unifiers of φ
- Admissibility in L is decidable
- If $n=|\varphi|$, then $\left|\Pi_{\varphi}\right| \leq 2^{2^{n}}$, and $|\pi|=O\left(n 2^{n}\right) \forall \pi \in \Pi_{\varphi}$
- $\left|\theta_{\pi}\right|$ is doubly exponential in $|B|+|V|$, and triply exponential in $|P|$. This is likely improvable.

Size of projective approximations

The bounds $\left|\Pi_{\varphi}\right|=2^{2^{O(n)}}$ and $|\pi|=2^{O(n)}$ for $\pi \in \Pi_{\varphi}$ are asymptotically optimal, even if $P=\varnothing$:

- If L is $\langle 2, \bullet\rangle$-extensible (e.g., K4, GL), consider

$$
\begin{aligned}
\varphi_{n} & =\bigwedge_{i<n}\left(\square x_{i} \vee \square \neg x_{i}\right) \rightarrow \square y \vee \square \neg y \\
\Pi_{\varphi_{n}} & =\left\{\bigwedge_{i<n}\left(\square x_{i} \vee \square \neg x_{i}\right) \rightarrow(y \leftrightarrow \beta(\vec{x})) \mid \beta: \mathbf{2}^{n} \rightarrow \mathbf{2}\right\}
\end{aligned}
$$

- Similar examples work for $\langle 2, \circ\rangle$-extensible logics (S4)

Irreflexive extension rules

Let $n<\omega$, and P a finite set of parameters.
$\operatorname{Ext}_{n, \boldsymbol{\bullet}}^{P}$ is the set of rules

$$
\frac{P^{e} \wedge \square y \rightarrow \square x_{1} \vee \cdots \vee \square x_{n}}{\square y \rightarrow x_{1}, \ldots, \boxtimes y \rightarrow x_{n}}
$$

for each assignment $e: P \rightarrow \mathbf{2}$
Notation:

$$
\varphi^{1}=\varphi, \varphi^{0}=\neg \varphi, P^{e}=\bigwedge_{p \in P} p^{e(p)}, \mathbf{2}^{P}=\{e \mid e: P \rightarrow \mathbf{2}\}
$$

Reflexive extension rules

Let C be a finite reflexive cluster
$\operatorname{Ext}_{n, C}^{P}$ is the set of the following rules:
Pick $E: C \rightarrow \mathbf{2}^{P}$ and $e_{0} \in E(C)$, and consider

$$
\begin{aligned}
& P^{e_{0}} \wedge \odot\left(y \rightarrow \bigvee_{e \in E(C)} \square\left(P^{e} \rightarrow y\right)\right) \wedge \bigwedge_{e \in E(C)} \\
& \\
& \rightarrow \square x_{1} \vee \cdots \vee \square x_{n}
\end{aligned}
$$

$$
\backsim y \rightarrow x_{1}, \ldots, \boxtimes y \rightarrow x_{n}
$$

Tight predecessors

P a finite set of parameters, C a finite cluster, $n<\omega$

- A P - L-frame is a (Kripke or general) L-frame W together with a fixed valuation of parameters $p \in P$
- If $X=\left\{w_{1}, \ldots, w_{n}\right\} \subseteq W$ and $E: C \rightarrow \mathbf{2}^{P}$, a tight E-predecessor $(E-\mathrm{tp})$ of X is $\left\{u_{c}: c \in C\right\} \subseteq W$ such that

$$
u_{c} \vDash P^{E(c)}, \quad u_{c} \uparrow=X \uparrow \cup\left\{u_{d}: d \in c \uparrow\right\}
$$

(Note: $c \uparrow=C$ if C is reflexive, $c \uparrow=\varnothing$ if irreflexive)

- W is $\langle n, C\rangle$-extensible if every $\left\{w_{1}, \ldots, w_{n}\right\} \subseteq W$ has an E-tp for every $E: C \rightarrow \mathbf{2}^{P}$
- If L is a clx logic, W is L-extensible if it is $\langle n, C\rangle$-extensible whenever L is

Correspondence and completeness

Theorem: If P is a finite set of parameters and W is a descriptive or Kripke P-K4-frame, tfae:

- $W \vDash \operatorname{Ext}_{n, C}^{P}$
- W is $\langle n, C\rangle$-extensible

Corollary: For a logic $L \supseteq \mathbf{K} 4$, tfae:

- L is $\langle n, C\rangle$-extensible
- $\operatorname{Ext}_{n, C}^{P}$ is L-admissible for every P

Theorem: If L has fmp and is $\langle n, C\rangle$-extensible for all $\langle n, C\rangle \in X$, then $L+\left\{\operatorname{Ext}_{n, C}^{P}:\langle n, C\rangle \in X\right\}$ is complete wrt locally finite ($=$ all rooted subframes finite) P - L-frames, $\langle n, C\rangle$-extensible for each $\langle n, C\rangle \in X$

Semantics and bases of admissible rules

Theorem:
Let L be a clx logic, and Γ / Δ a rule in a finite set of parameters P. Then tfae:

- $\Gamma \mu_{L} \Delta$
- Γ / Δ holds in every [locally finite] L-extensible P - L-frame
- Γ / Δ is derivable in \vdash_{L} extended by the rules $\operatorname{Ext}_{n, C}^{P}$ such that L is $\langle n, C\rangle$-extensible

Corollary: If L is a clx logic, it has a basis of admissible rules consisting of $\operatorname{Ext}_{n, C}^{P}$ for all finite P and all $\langle n, C\rangle$ such that L is $\langle n, C\rangle$-extensible

Complexity: wide logics

Theorem:
If $L \supseteq \mathbf{K} 4$ has width ≥ 2, then unification (and thus inadmissibility) in L is NEXP-hard.

Theorem:
If L is a clx logic of width ≥ 2 and bounded cluster size, then inadmissibility (and thus unification) in L is NEXP-complete.

Examples: GL, K4Grz, S4Grz, ... (\pm bounded branching)

Complexity: fat logics

Theorem:
If $L \supseteq \mathbf{K} 4$ has unbounded cluster size, then unification in L is coNEXP-hard.

Theorem:
If L is a clx logic of width ≤ 1 and unbounded cluster size, then inadmissibility in L is coNEXP-complete.

Examples: S5, K4.3, S4.3, ...

Complexity: wide and fat logics

L is "chubby" if for all $n>0$ there is a finite rooted L-frame containing an n-element cluster C and an element incomparable with C
Recall: $\Sigma_{2}^{\mathrm{EXP}}=$ NEXP $^{\mathrm{NP}}$
Theorem:
If $L \supseteq \mathbf{K} 4$ is chubby, then unification in L is $\Sigma_{2}^{\mathrm{EXP}}$-hard.
Theorem:
If L is a clx logic of width ≥ 2 and unbounded cluster size, then inadmissibility in L is $\Sigma_{2}^{\mathrm{EXP}}$-complete.
Examples: K4, S4, S4.1, ... (\pm bounded branching)

Complexity: slim logics

Theorem:

If $L \supseteq \mathbf{K} 4$, then unification in L is PSPACE-hard, unless L is a tabular logic of width 1.

Theorem:
If L is a clx logic of width 1 , bounded cluster size, and depth >1, then admissibility in L is PSPACE-complete.
Examples: GL.3, K4Grz.3, S4Grz.3, ...
Theorem:
If L is a tabular logic of width 1 and depth d, then unification and inadmissibility in L are $\Pi_{2 d}^{\mathrm{P}}$-complete.
Examples: S5 + $\mathrm{Alt}_{n}, \mathrm{~K} 4+\square \perp, \ldots$

Complexity: summary

We get the following classification for clx logics:

logic		\vdash_{L}	\sim_{L}		example
cluster size	branching		par.-free	with param's	
$<\infty$	0	coNP-complete		$\Sigma_{2}^{\mathrm{P}} \mathrm{c}$.	$\mathbf{S 5}+\mathrm{Alt}_{n}$
	1			PSPACE-c.	GL. 3
∞	≤ 1			NEXP-c.	S5, S4.3
$<\infty$	2	PSPACE	coNEXP	complete	GL, Grz
∞		PSPACE-C.		Π_{2}^{EXP}-c.	K4, S4

With parameters, non-unifiability and admissibility have the same complexity

Logics with a top

The concept of clx logics and the whole machinery can be adapted to S4.2 and similar logics with a single top cluster

logic		\vdash_{L}	\sim_{L}		example
inner cl. size	top cl. size		par.-free	w/ param's	
$<\infty$	$<\infty$	PSPACE-c.	coNEXP-complete		GL.2, Grz. 2
	∞			$\Theta_{2}^{\text {EXP }}$-c.	S4.1.4 + S4.2
∞				Π_{2}^{EXP}-c.	K4.2, S4.2

$\Theta_{2}^{\mathrm{EXP}}$ is the exponential version of the class Θ_{2}^{P} :

$$
\Theta_{2}^{\mathrm{EXP}}:=\mathrm{EXP}^{\mathrm{NP}[\text { poly }]}=\mathrm{EXP}^{\| \mathrm{NP}}=\mathrm{P}^{\mathrm{NEXP}}=\mathrm{PSPACE}^{\mathrm{NEXP}}
$$

Intuitionistic logic

Rybakov's translation theorem can be generalized to admissibility with parameters:

Theorem:
If $L \supseteq$ IPC and σL is its largest modal companion, then

$$
\Gamma \vdash_{L} \Delta \Leftrightarrow \mathrm{~T}(\Gamma) \vdash_{\sigma L} \mathrm{~T}(\Delta)
$$

[However, $\bigwedge \square(p \rightarrow \square p) \rightarrow \mathbf{T}(\varphi)$ is often more convenient.]

Note: Clx logics translate to IPC and the bounded branching logics T_{n} (incl. $\mathrm{T}_{1}=\mathrm{LC}, \mathrm{T}_{0}=\mathrm{CPC}$)
Extensions of S 4.2 give KC and $\mathrm{KC}+\mathrm{T}_{n}$

Corollaries

The translation yields:

- Char. of projective formulas in $L \supseteq$ IPC with fmp
- Existence of projective approximations and semantic description of ${h_{L}}$ for IPC, KC, $\mathrm{T}_{n}, \mathrm{KC}+\mathrm{T}_{n}$
- Complexity (lower bounds need an extra argument): admissibility and non-unifiability is
- coNEXP-complete for IPC, KC, $\mathbf{T}_{n}, \mathbf{K C}+\mathbf{T}_{n}(n \geq 2)$
. PSPACE-complete for LC
- $\Sigma_{2 d}^{\mathrm{P}}$-complete for G_{d+1}
- coNEXP-hard for any other intermediate logic

Intuitionistic extension rules

Bases of admissible rules require a separate construction: A basis for IPC and T_{n} is given by the rules

$$
\frac{\bigwedge P \wedge\left(\bigvee_{i=1}^{n} x_{i} \vee \bigvee Q \rightarrow y\right) \rightarrow \bigvee_{i=1}^{n} x_{i} \vee \bigvee Q}{\bigwedge P \wedge y \rightarrow x_{1}, \ldots, \bigwedge P \wedge y \rightarrow x_{n}}
$$

where P, Q are disjoint finite sets of parameters

Admissibility with parameters in Łukasiewicz logic

Overview of the situation

- Work in progress ...
- Geometry more complicated-we can no longer restrict attention to McNaughton functions in one variable
- All formulas have admissibly saturated approximations of effectively bounded complexity
\Rightarrow problem reduces to description of a.s. formulas
- Some necessary conditions for a.s. formulas \Rightarrow sufficient conditions for admissibility
- The conditions are complete for the case of 1 parameter

Reduction

In the parameter-free case, admissibility is detected by substitutions in one variable

In the presence of parameters, we need no variables at all:
Theorem: If $\Gamma \not \chi_{Ł} \Delta$, where $\Gamma \cup \Delta$ are formulas in variables x_{1}, \ldots, x_{n} and parameters $p_{1}, \ldots, p_{m}, m \geq 1$, then there is a substitution σ such that

- σ is a unifier of Γ
- σ is not a unifier of any $\delta \in \Delta$
- the only atoms occurring in any $\sigma\left(x_{i}\right)$ are p_{1}, \ldots, p_{m}

Notation

We consider formulas $\varphi\left(p_{1}, \ldots, p_{m}, x_{1}, \ldots, x_{n}\right), m \geq 1$
$t(\varphi)=\left\{v \in I^{m+n}: \varphi(v)=1\right\}, I=[0,1]$
π is the projection $I^{m+n} \rightarrow I^{m}$
Substitutions are represented by McNaughton functions $\sigma: I^{m} \rightarrow I^{m+n}$ such that $\pi \circ \sigma=$ id
σ is a unifier of φ iff $\operatorname{rng}(\sigma) \subseteq t(\varphi)$
We fix rational polyhedral complexes $P=\left\{P_{i}: i<r\right\}$ and $Q=\left\{Q_{j}: j<s\right\}$ such that

- $t(\varphi)=\|P\|:=\bigcup_{i<r} P_{i}$
- $I^{m}=\|Q\|$
- $\forall i \exists j \pi\left(P_{i}\right)=Q_{j}$

More notation

If $X \subseteq \mathbb{R}^{k}, \mathrm{~A}(X)$ denotes its affine hull Int P_{i} is the "geometric interior" of the polytope P_{i} :

$$
\operatorname{Int} P_{i}=P_{i} \backslash \bigcup\left\{P_{j}: P_{j} \subsetneq P_{i}\right\}
$$

$=$ relative topological interior of P_{i} in $\mathrm{A}\left(P_{i}\right)$
Every point of $\|P\|$ belongs to a unique $\operatorname{Int} P_{i}$

Admissibly saturated approximations

Theorem: The following are equivalent:

- φ is admissibly saturated
- $\forall \varepsilon>0$ there is a unifier σ of φ such that

$$
t(\varphi) \subseteq B(\operatorname{rng}(\sigma), \varepsilon):=\{x: \operatorname{dist}(x, \operatorname{rng}(\sigma))<\varepsilon\}
$$

- there is a unifier σ of φ whose range meets $\operatorname{Int} P_{i}$ for every maximal $P_{i} \in P$

Corollary:
Every φ has an admissibly saturated approximation, whose elements are subcomplexes of P

Admissibly saturated formulas

Need a more intrinsic description of a.s. formulas
Question: How can rng (σ) look like in terms of the P_{i} 's when σ is a unifier of φ ?

Let $P(\sigma)=\left\{i: \operatorname{rng}(\sigma) \cap \operatorname{Int} P_{i} \neq \varnothing\right\}$
Example: For every Q_{j} there is $i \in P(\sigma)$ s.t. $Q_{j}=\pi\left(P_{i}\right)$

Goodness

$\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right) \in \mathbb{R}^{m+n}$ is good if $b_{j} \in \mathbb{Z}+\sum_{i} a_{i} \mathbb{Z} \forall j$
P_{i} is good if Int P_{i} contains a rational good point
Note: If all $a_{i} \in \mathbb{Q}$, then $\mathbb{Z}+\sum_{i} a_{i} \mathbb{Z}=\frac{1}{d} \mathbb{Z}$, where $d=\operatorname{den}\left(a_{1}, \ldots, a_{m}\right)$
rng (σ) consists of good points
Corollary: If $i \in P(\sigma)$, then P_{i} is good
Lemma: If $\mathrm{A}\left(P_{i}\right)$ contains a rational good point and $\pi\left(P_{i}\right)$ is not a single point, then rational good points are dense in $\mathrm{A}\left(P_{i}\right)$, and a fortiori in $\operatorname{Int} P_{i}$

Projection anchoredness

P_{i} is projection anchored if there exists an affine map $L: \mathrm{A}\left(\pi\left(P_{i}\right)\right) \rightarrow \mathrm{A}\left(P_{i}\right)$ with integer coefficients s.t. $\pi \circ L=\mathrm{id}$ P_{i} is fully anchored if it is projection anchored and $\mathrm{A}\left(\pi\left(P_{i}\right)\right)=\mathbb{R}^{m}$

Lemma: If P_{i} is projection anchored and $b \in \mathrm{~A}\left(P_{i}\right)$ is a good point, there exists L as above s.t. $L(\pi(b))=b$

Note: A projection anchored P_{i} is good, unless $\pi\left(P_{i}\right)$ is a single point

Anchoredness of substitutions

Let $b=\sigma(a) \in \operatorname{Int} P_{i}$. There is a neighbourhood $U \ni a$ mapped by σ into a neighbourhood of b small enough to meet only Int P_{j} s.t. $P_{j} \supseteq P_{i}$.
If $\pi\left(P_{j}\right) \supsetneq \pi\left(P_{i}\right)$ (and thus $\operatorname{Int} \pi\left(P_{i}\right) \cap \operatorname{Int} \pi\left(P_{j}\right)=\varnothing$) for every $P_{j} \supsetneq P_{i}, j \in P(\sigma)$, we must have

$$
\sigma: U \cap \pi\left(\operatorname{Int} P_{i}\right) \rightarrow \operatorname{Int} P_{i} .
$$

We can restrict σ further to a relatively open subset $V \subseteq \pi\left(\operatorname{Int} P_{i}\right)$ where it is affine. Since $\mathrm{A}(V)=\mathrm{A}\left(\pi\left(P_{i}\right)\right), P_{i}$ is projection anchored.
This motivates the following recursive definition:

Hereditary anchoredness

P_{i} is hereditarily anchored if

- P_{i} is good and projection anchored
- every $Q_{k} \supsetneq \pi\left(P_{i}\right)$ is the projection of some hereditarily anchored $P_{j} \supsetneq P_{i}$
P_{i} is hereditarily covered if
- P_{i} is good
- $\pi\left(P_{i}\right)=\pi\left(P_{j}\right)$ for some hereditarily anchored $P_{j} \supseteq P_{i}$

Corollary: If $i \in P(\sigma)$, then P_{i} is hereditarily covered
Note: If $P_{i} \in P$ is maximal, it is hereditarily anchored iff it is fully anchored

Admissibly saturated formulas

Any admissibly saturated formula satisfies:
(1) Every maximal $P_{i} \in P$ is hereditarily anchored
(2) Every nonempty Q_{j} is the projection of some hereditarily anchored P_{i}
(3) For every j,

$$
\bigcup\left\{\operatorname{Int} P_{i}: Q_{j} \subseteq \pi\left(P_{i}\right), P_{i} \text { hereditarily covered }\right\}
$$

is connected
Note: Condition (3) implies that the fiber $\|P\| \cap \pi^{-1}(a)$ is connected $\forall a \in I^{m}$

Questions

- Is admissibility with parameters in $Ł$ decidable?
- Are the given conditions for admissibly saturated formulas in $Ł$ sufficient?
- Is there a general reduction of admissibility to non-unifiability (with parameters)?

Thank you for attention!

References

F. Baader, S. Ghilardi, Unification in modal and description logics, LJIGPL 19 (2011), 705-730.
F. Baader, W. Snyder, Unification theory, in: Handbook of Automated Reasoning (A. Robinson and A. Voronkov, eds.), vol. I, Elsevier, 2001, 445-533.
L. Cabrer, Simplicial geometry of unital lattice-ordered abelian groups, submitted, arXiv:1202.5947 [math.CO].
S. Ghilardi, Unification in intuitionistic logic, J. Symb. Log. 64 (1999), 859-880.
\qquad Best solving modal equations, Ann. Pure Appl. Log. 102 (2000), 183-198.
R. Iemhoff, On the admissible rules of intuitionistic propositional logic, J. Symb. Log. 66 (2001), 281-294.
E. Jeřábek, Admissible rules of modal logics, J. Log. Comp. 15 (2005), 411-431.
\qquad Complexity of admissible rules, Arch. Math. Log. 46 (2007), 73-92.
\qquad Admissible rules of Łukasiewicz logic, J. Log. Comp. 20 (2010), 425-447.
___ Bases of admissible rules of Łukasiewicz logic, J. Log. Comp. 20 (2010), 1149-1163.
__ Admissible rules of Łukasiewicz logic, J. Log. Comp. 20 (2010), 425-447.

Emil Jeřábek|Admissibility and unification with parameters|LATD 2012, Kanazawa

References (cont'd)

E. Jeřábek, The complexity of admissible rules of Łukasiewicz logic, J. Log. Comp. (2012), published online.
V. Marra, L. Spada, Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras, preprint, 2011.
V. Rybakov, Admissibility of logical inference rules, Elsevier, 1997.
_ Unifiers in transitive modal logics for formulas with coefficients (meta-variables), Log. J. IGPL (2012), published online.

