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Overview

The plan for this talk:

General remarks on admissibility and unification

Known results on admissibility in modal, intuitionistic,
and Łukasiewicz logics

Admissibility with parameters in modal and intuitionistic
logics

Admissibility with parameters in Łukasiewicz logic
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Admissibility and unification in
propositional logics
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Propositional logics

Propositional logic L:

Language: formulas FormL built freely from atoms (variables)
{xn : n ∈ ω} using a fixed set of connectives of finite arity

Consequence relation ⊢L: finitary structural Tarski-style
consequence operator
I.e.: a relation Γ ⊢L ϕ between finite sets of formulas and
formulas such that

ϕ ⊢L ϕ

Γ ⊢L ϕ implies Γ,Γ′ ⊢L ϕ

Γ ⊢L ϕ and Γ, ϕ ⊢L ψ imply Γ ⊢L ψ

Γ ⊢L ϕ implies σ(Γ) ⊢L σ(ϕ) for every substitution σ
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Algebraization

L is finitely algebraizable wrt a class K of algebras if there is
a finite set F (u, v) of formulas and a finite set E(x) of
equations such that

Γ ⊢L ϕ⇔ E(Γ) �K E(ϕ)

Θ �K t ≈ s⇔ F (Θ) ⊢L F (t, s)

x ⊣⊢L F (E(x))

u ≈ v ��K E(F (u, v))

We may assume K is a quasivariety

In the cases in this talk, we will always have:
E(x) = {x ≈ 1}, F (u, v) = {u↔ v}, K is a variety
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Equational unification

Let Θ be an equational theory (or a variety of algebras):

Θ-unifier of a set Γ of equations:
a substitution σ s.t. �Θ σ(t) ≈ σ(s) for all t ≈ s ∈ Γ

Γ is Θ-unifiable if it has a Θ-unifier

σ ≡Θ τ iff �Θ σ(u) ≈ τ(u) for every variable u

σ �Θ τ (τ is more general than σ) if ∃̺ σ ≡Θ ̺ ◦ τ

Complete set of unifiers of Γ: a set X of unifiers of Γ such
that every unifier of Γ is less general than some τ ∈ X

Θ has finitary unification type if every finite Γ has a finite
complete set of unifiers
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Unification in propositional logics

If L is a logic finitely algebraizable wrt a variety K, we can
express K-unification in terms of L:

An L-unifier of a formula ϕ is σ such that ⊢L σ(ϕ)

Then we have:

L-unifier of ϕ = K-unifier of E(ϕ)

K-unifier of t ≈ s = L-unifier of F (t, s)

σ ≡L τ iff ⊢L F (σ(x), τ(x)) for every x
(in our case: ⊢L σ(x) ↔ τ(x))

. . .
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Admissible rules

Single-conclusion rule: Γ / ϕ (Γ finite set of formulas)

Multiple-conclusion rule: Γ / ∆ (Γ,∆ finite sets of formulas)

Γ / ∆ is L-derivable (or valid) if Γ ⊢L δ for some δ ∈ ∆

Γ / ∆ is L-admissible (written as Γ |∼L ∆)
if every L-unifier of Γ also unifies some δ ∈ ∆

E(Γ / ∆) :=
∧

γ∈Γ

E(γ) →
∨

δ∈∆

E(δ):

Γ / ∆ is derivable iff E(Γ / ∆) holds in all K-algebras

Γ / ∆ is admissible iff E(Γ / ∆) holds in free K-algebras

Note: Γ is unifiable iff Γ |6∼L ∅
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Multiple-conclusion consequence relations

Single-conc. admissible rules form a consequence relation

Multiple-conc. admissible rules form a (finitary structural)
multiple-conclusion consequence relation:

ϕ |∼ ϕ

Γ |∼ ∆ implies Γ,Γ′ |∼ ∆,∆′

Γ |∼ ϕ,∆ and Γ, ϕ |∼ ∆ imply Γ |∼ ∆

Γ |∼ ∆ implies σ(Γ) |∼ σ(∆) for every substitution σ

A set B of rules is a basis of L-admissible rules if |∼L is the
smallest m.-c. c. r. containing ⊢L and B
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Admissibly saturated approximation

Γ is admissibly saturated if Γ |∼L ∆ implies Γ ⊢L ∆ for any ∆

Assume for simplicity that L has a well-behaved conjunction.

Admissibly saturated approximation of Γ:
a finite set of formulas ΠΓ such that

each π ∈ ΠΓ is admissibly saturated

Γ |∼L ΠΓ

π ⊢L ϕ for each π ∈ ΠΓ and ϕ ∈ Γ
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Application of admissible saturation

Assuming every Γ has an a.s. approximation ΠΓ:

Reduction of |∼L to ⊢L:

Γ |∼L ∆ iff ∀π ∈ ΠΓ ∃ψ ∈ ∆ π ⊢L ψ

If Γ 7→ ΠΓ is computable and ⊢L is decidable, then |∼L is
decidable

If Γ / ΠΓ is derivable in ⊢L + a set of rules B ⊆ |∼L, then
B is a basis of admissible rules

If each π ∈ ΠΓ has an mgu σπ, then {σπ : π ∈ ΠΓ} is a
complete set of unifiers for Γ

⇒ finitary unification
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Projective formulas

π is projective if it has a unifier σ such that π ⊢L x↔ σ(x)

(in general: π ⊢L F (x, σ(x))) for every variable x

Every projective formula is admissibly saturated

σ is an mgu of π: if τ is a unifier of π, then τ ≡L τ ◦ σ

Projective formula ≈ presentation of a projective algebra

Projective approximation := admissibly saturated
approximation consisting of projective formulas

If projective approximations exist:
convenient tool for analysis of unification and admissibility
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Exact formulas

ϕ is exact if there exists σ such that

⊢L σ(ψ) iff ϕ ⊢L ψ

for all formulas ψ

projective ⇒ exact ⇒ admissibly saturated

in general: can’t be reversed

if projective approximations exist:
projective = exact = admissibly saturated

exact formulas do not need to have mgu
⇒ can coexist with bad unification type
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Parameters

In real life, propositional atoms model both “variables” and
“constants”

We don’t want to allow substitution for constants

Example (description logic):

(1) ∀child.(¬HasSon ⊓ ∃spouse.⊤)

(2) ∀child.∀child.¬Male ⊓ ∀child.Married

(3) ∀child.∀child.¬Female ⊓ ∀child.Married

Good: Unify (1) with (2) by HasSon 7→ ∃child.Male,
Married 7→ ∃spouse.⊤

Bad: Unify (2) with (3) by Male 7→ Female
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Admissibility with parameters

In equational unification theory, it is customary to consider a
setup with two kinds of atoms:

variables {xn : n ∈ ω}

parameters {pn : n ∈ ω}

(aka constants, metavariables, coefficients)

Substitutions only modify variables, we require σ(pn) = pn

Adapt accordingly the definitions of other notions:

Unifiers, admissible rules, bases, a.s. formulas and
approximations, projective formulas, . . .

Exception: “Propositional logic” is always assumed to be
closed under substitution for parameters
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Inheritance

L′ inherits admissible rules of L if Γ |∼L ∆ ⇒ Γ |∼L′ ∆

Parameter-free examples:

S4Grz inherits admissible rules of S4

KC inherits single-conclusion admissible rules of IPC

Admissible rules with parameters cannot be inherited in a
nontrivial way: L and L′ have the same theorems

⊢L ϕ ⇒ |∼L ϕ ⇒ ⊢L′ ϕ

0L ϕ ⇒ ϕ(~p) |∼L q ⇒ 0L′ ϕ
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Transitive modal logics
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Transitive modal logics

Normal modal logics with a single modality 2, include the
transitivity axiom 2x→ 22x (i.e., L ⊇ K4)

Common examples: various combinations of
logic axiom (on top of K4) finite rooted transitive frames

S4 2x → x reflexive

D4 3⊤ final clusters reflexive

GL 2(2x → x) → 2x irreflexive

K4Grz 2(2(x → 2x) → x) → 2x no proper clusters

K4.1 ·23x → ·32x no proper final clusters

K4.2 3 ·2x → 2 ·3x unique final cluster

K4.3 2( ·2x → y) ∨ 2(2y → x) linear (chain of clusters)

K4B x → 23x lone cluster

S5 = S4 ⊕ B lone reflexive cluster
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Some classes of transitive logics

Cofinal-subframe (csf) logics:

complete wrt a class of frames closed under the removal
of a subset of non-final points

all combinations of logics from the table are csf

Extensible logics:

If a frame F has a unique root r whose reflexivity is
compatible with L, and F r {r} � L, then F � L

K4, S4, GL, K4Grz, S4Grz, D4, K4.1, . . . (not K4.2, . . . )

Linear extensible logics:

K4.3, S4.3, GL.3, . . .
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Admissibility in transitive modal logics

A lot is known about admissibility without parameters:

Admissibility is decidable in a large class of logics
(Rybakov)

Extensible logics have projective approximations
(Ghilardi)

finitary unification type
complete sets of unifiers computable

Bases of admissible rules for extensible logics (J.)

Computational complexity of admissibility (J.)
Lower bounds for a quite general class of logics
Matching upper bounds for csf extensible logics

. . . and more . . .
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Projectivity in modal logics

Fix L ⊇ K4 with the finite model property (fmp)

Extension property: if F is a finite L-model with a unique
root r and x � ϕ for every x ∈ F r {r}, then we can change
valuation of variables in r to make r � ϕ

Theorem [Ghilardi]: The following are equivalent:

ϕ is projective

ϕ has the extension property

θϕ is a unifier of ϕ

where θϕ is an explicitly defined composition of substitutions
of the form σ(x) = ·2ϕ ∧ x or σ(x) = ·2ϕ→ x

Emil Je řábek|Admissibility and unification with parameters |LATD 2012, Kanazawa 18:64



Bases of admissible rules

If L is an extensible logic, it has a basis of admissible rules
consisting of

2y → 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn
(n ∈ ω)

if L admits an irreflexive point, and

·2(y ↔ 2y) → 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn
(n ∈ ω)

if L admits a reflexive point

For L linear extensible, take only n = 0, 1
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Complexity of admissible rules

Lower bound:
Assume L ⊇ K4 and every depth-3 tree is a skeleton of an
L-frame with prescribed final clusters.
Then L-admissibility is coNEXP-hard.

Upper bounds: Admissibility in

csf extensible logics is coNEXP-complete

csf linearly extensible logics is coNP-complete
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Intuitionistic logic

Admissible rules of IPC and some intermediate logics (KC,
LC, . . . ) can be analyzed similarly to the modal case:

Admissibility is decidable (Rybakov)

Projective approximations exist (Ghilardi)
finitary unification type
complete sets of unifiers computable

Bases of admissible rules (Iemhoff)

Computational complexity of admissibility (J.)

. . .
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Translation for intermediate logics

In fact, admissibility in intermediate logics can be directly
reduced to modal logics by means of the Blok–Esakia
isomorphism, using the following result of Rybakov:

Theorem:
If L ⊇ IPC and σL is its largest modal companion, then

Γ |∼L ∆ ⇔ T(Γ) |∼σL T(∆),

where T is the Gödel translation

Example: σIPC = S4Grz, σKC = S4.2Grz, σLC = S4.3Grz,
σCPC = Triv
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Łukasiewicz logic
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Admissibility in Łukasiewicz logic

Parameter-free admissible rules of Ł are fairly well
understood:

Admissibility is equivalent to validity in the 1-generated
free MV -algebra

Semantic (geometric) description of admissible rules
and admissibly saturated formulas

All formulas have admissibly saturated approximations

Admissibility in Ł is decidable (PSPACE-complete)

Explicit basis of admissible rules

Admissibly saturated formulas are exact [Cabrer]

OTOH: Ł has nullary unification type [Marra&Spada]
⇒ projective approximations in general do not exist
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Anchoredness

If X ⊆ Rn, let A(X) be its affine hull and C(X) its convex hull

X is anchored if A(X) ∩ Zn 6= ∅

Using Hermite normal form, we obtain:

X ⊆ Qn is anchored iff

∀u ∈ Zn ∀a ∈ Q [∀x ∈ X (uTx = a) ⇒ a ∈ Z]

(Whenever X is contained in a hyperplane defined by an
affine function with integral linear coefficients, its
constant coefficients must be integral, too.)

Given x0, . . . , xk ∈ Qn, it is decidable in polynomial time
whether {x0, . . . , xk} is anchored
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Characterization of admissibility in Ł

Theorem [J.]: Write t(Γ) = {x ∈ [0, 1]n : ∀ϕ ∈ Γ ϕ(x) = 1} as a
union of rational polytopes

⋃

j<r Cj.

Then Γ |6∼Ł ∆ iff ∃a ∈ {0, 1}n ∀ψ ∈ ∆ ∃j0, . . . , jk < r such that

a ∈ Cj0

each Cji
is anchored

Cji
∩ Cji+1 6= ∅

ψ(x) < 1 for some x ∈ Cjk

Corollary: Admissibility in Ł is decidable
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Computational complexity

Γ |6∼Ł ∆ is reducible to reachability in an exponentially
large graph with poly-time edge relation:

vertices: anchored polytopes in t(Γ)

edges: C,C ′ connected iff C ∩ C ′ 6= ∅

⇒ |∼Ł ∈ PSPACE

In fact: |∼Ł is PSPACE-complete

In contrast, Th(Ł) and ⊢Ł are coNP-complete [Mundici]
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Admissibly saturated formulas

The characterization of |∼Ł easily implies:

ϕ ∈ Fn is admissibly saturated in Ł iff t(ϕ)

is connected,
intersects {0, 1}n, and
is piecewise anchored
(i.e., a finite union of anchored polytopes)

In Ł, every formula ϕ has an admissibly saturated
approximation
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Exact and projective formulas

Cabrer gave a description of exact formulas in Ł, which
implies the equivalence of:

ϕ is admissibly saturated
ϕ is exact
t(ϕ) is connected and ⊢Ł ϕ↔

∨

i πi with projective πi

Marra & Spada proved that Ł has nullary unification type
⇒ it can’t have projective approximations

Example: x ∨ ¬x ∨ y ∨ ¬y is admissibly saturated, but
not projective
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Multiple-conclusion basis

The construction of a.s. approximations can be simulated by
simple rules:

Theorem [J.]: {NAp : p is a prime} + CC 3 + WDP is an
independent basis of multiple-conclusion Ł-admissible rules

NAk =
x ∨ χk(y)

x

CC n =
¬(y ∨ ¬y)n

WDP =
x ∨ ¬x

x,¬x
0 1

0

1

1/

χ ( )

k
x

x
k
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Admissibility with parameters
in modal logics
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Known results

Not that much is known about admissibility in transitive
modal logics in the presence of parameters:

Rybakov’s results on decidability of admissibility also
apply to admissibility with parameters

Recently, he expanded the results to effectively construct
complete sets of unifiers ⇒ finitary unification type

Terminology: From now on, admissibility and unification
always allow parameters
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New results

Parameters complicate matters, but typical properties carry
over:

Ghilardi-style characterization of projective formulas

Existence of projective approximations for
cluster-extensible (clx) logics [defined on the next slide]

Semantic description of admissibility in clx logics

Explicit bases of admissible rules for clx logics

Computational complexity:
Lower bounds on unification in wide classes of
transitive logics
Matching upper bounds for admissibility in clx logics

Translation of these results to intuitionistic logic
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Cluster-extensible logics

Let L be a transitive modal logic with fmp, n ∈ ω, and C a
finite cluster.

A finite rooted frame F is of type 〈n,C〉 if its root cluster rcl(F )

is isomorphic to C and has n immediate successor clusters.

L is 〈n,C〉-extensible if:
For every type-〈n,C〉 frame F , if F r rcl(F ) is an L-frame,
then so is F .

L is cluster-extensible (clx), if it is 〈n,C〉-extensible whenever
there exists a type-〈n,C〉 L-frame.
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Properties of clx logics

Examples: All combinations of K4, S4, GL, D4, K4Grz,
K4.1, K4.3, K4B, S5, ± bounded branching

Nonexamples: K4.2, S4.2, . . .

For every clx logic L:

L is finitely axiomatizable

L has the exponential-size model property

L is ∀∃-definable on finite frames

L is decidable in PSPACE

(if width ≥ 2, PSPACE-complete)
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Projective formulas: the extension property

Fix L ⊇ K4 with the fmp, and P and V finite sets of
parameters and variables, resp.

If F is a rooted model with valuation of P ∪ V , its variant
is any model F ′ which differs from F only by changing
the value of some variables x ∈ V in rcl(F )

A set M of finite rooted L-models evaluating P ∪ V has
the model extension property, if:
every L-model F whose all rooted generated proper
submodels belong to M has a variant F ′ ∈M

A formula ϕ in atoms P ∪ V has the model extension
property if ModL(ϕ) := {F : ∀x ∈ F (x � ϕ)} does
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Projective formulas: Löwenheim substitutions

Let ϕ be a formula in atoms P ∪ V

For every D = {βx : x ∈ V }, where each βx is a Boolean
function of the parameters P , define the substitution

θD(x) = ( ·2ϕ ∧ x) ∨ (¬ ·2ϕ ∧ βx)

Let θϕ be the composition of substitutions θD for all the
22|P ||V | possible D’s, in arbitrary order
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Projective formulas: a characterization

Theorem:
Let L ⊇ K4 have the fmp, and ϕ be a formula in finitely many
parameters P and variables V . Tfae:

ϕ is projective

ϕ has the model extension property

θN
ϕ is a unifier of ϕ

where N = (|B| + 1)(2|P | + 1), B = {ψ : 2ψ ⊆ ϕ}

Remark: If P = ∅, we have N ≤ 2|ϕ|.
Ghilardi’s original proof gives N nonelementary
(tower of exponentials of height md(ϕ))
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Projective approximations

Theorem:
If L is a clx logic, every formula ϕ has a projective
approximation Πϕ.

Moreover, every π ∈ Πϕ is a Boolean combination of
subformulas of ϕ.

Corollary:

{θπ : π ∈ Πϕ} is a complete set of unifiers of ϕ

Admissibility in L is decidable

If n = |ϕ|, then |Πϕ| ≤ 22n

, and |π| = O(n2n) ∀π ∈ Πϕ

|θπ| is doubly exponential in |B| + |V |, and triply
exponential in |P |. This is likely improvable.
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Size of projective approximations

The bounds |Πϕ| = 22O(n)

and |π| = 2O(n) for π ∈ Πϕ are
asymptotically optimal, even if P = ∅:

If L is 〈2, •〉-extensible (e.g., K4, GL), consider

ϕn =
∧

i<n

(2xi ∨ 2¬xi) → 2y ∨ 2¬y

Πϕn
=

{

∧

i<n

( ·2xi ∨ ·2¬xi) → (y ↔ β(~x))
∣

∣

∣
β : 2

n → 2

}

Similar examples work for 〈2, ◦〉-extensible logics (S4)
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Irreflexive extension rules

Let n < ω, and P a finite set of parameters.

ExtPn,• is the set of rules

P e ∧ 2y → 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn

for each assignment e : P → 2

Notation:
ϕ1 = ϕ, ϕ0 = ¬ϕ, P e =

∧

p∈P

pe(p), 2
P = {e | e : P → 2}
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Reflexive extension rules

Let C be a finite reflexive cluster

ExtPn,C is the set of the following rules:
Pick E : C → 2

P and e0 ∈ E(C), and consider

P e0 ∧ ·2
(

y →
∨

e∈E(C)

2(P e → y)
)

∧
∧

e∈E(C)

·2
(

2(P e → 2y) → y
)

→ 2x1 ∨ · · · ∨ 2xn

·2y → x1, . . . , ·2y → xn

Emil Je řábek|Admissibility and unification with parameters |LATD 2012, Kanazawa 40:64



Tight predecessors

P a finite set of parameters, C a finite cluster, n < ω

A P -L-frame is a (Kripke or general) L-frame W together
with a fixed valuation of parameters p ∈ P

If X = {w1, . . . , wn} ⊆W and E : C → 2
P , a tight

E-predecessor (E-tp) of X is {uc : c ∈ C} ⊆W such that

uc � PE(c), uc↑ = X↑ ∪ {ud : d ∈ c↑}

(Note: c↑ = C if C is reflexive, c↑ = ∅ if irreflexive)

W is 〈n,C〉-extensible if every {w1, . . . , wn} ⊆W has an
E-tp for every E : C → 2

P

If L is a clx logic, W is L-extensible if it is
〈n,C〉-extensible whenever L is
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Correspondence and completeness

Theorem: If P is a finite set of parameters and W is a
descriptive or Kripke P -K4-frame, tfae:

W � ExtPn,C

W is 〈n,C〉-extensible

Corollary: For a logic L ⊇ K4, tfae:

L is 〈n,C〉-extensible

ExtPn,C is L-admissible for every P

Theorem: If L has fmp and is 〈n,C〉-extensible for all
〈n,C〉 ∈ X, then L+ {ExtPn,C : 〈n,C〉 ∈ X} is complete wrt
locally finite (= all rooted subframes finite) P -L-frames,
〈n,C〉-extensible for each 〈n,C〉 ∈ X
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Semantics and bases of admissible rules

Theorem:
Let L be a clx logic, and Γ / ∆ a rule in a finite set of
parameters P . Then tfae:

Γ |∼L ∆

Γ / ∆ holds in every [locally finite] L-extensible P -L-frame

Γ / ∆ is derivable in ⊢L extended by the rules ExtPn,C such
that L is 〈n,C〉-extensible

Corollary: If L is a clx logic, it has a basis of admissible rules
consisting of ExtPn,C for all finite P and all 〈n,C〉 such that L is
〈n,C〉-extensible
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Complexity: wide logics

Theorem:
If L ⊇ K4 has width ≥ 2, then unification (and thus
inadmissibility) in L is NEXP-hard.

Theorem:
If L is a clx logic of width ≥ 2 and bounded cluster size, then
inadmissibility (and thus unification) in L is NEXP-complete.

Examples: GL, K4Grz, S4Grz, . . . (± bounded branching)
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Complexity: fat logics

Theorem:
If L ⊇ K4 has unbounded cluster size, then unification in L is
coNEXP-hard.

Theorem:
If L is a clx logic of width ≤ 1 and unbounded cluster size,
then inadmissibility in L is coNEXP-complete.

Examples: S5, K4.3, S4.3, . . .
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Complexity: wide and fat logics

L is “chubby” if for all n > 0 there is a finite rooted L-frame
containing an n-element cluster C and an element
incomparable with C

Recall: ΣEXP
2 = NEXPNP

Theorem:
If L ⊇ K4 is chubby, then unification in L is ΣEXP

2 -hard.

Theorem:
If L is a clx logic of width ≥ 2 and unbounded cluster size,
then inadmissibility in L is ΣEXP

2 -complete.

Examples: K4, S4, S4.1, . . . (± bounded branching)
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Complexity: slim logics

Theorem:
If L ⊇ K4, then unification in L is PSPACE-hard, unless L is a
tabular logic of width 1.

Theorem:
If L is a clx logic of width 1, bounded cluster size, and depth
> 1, then admissibility in L is PSPACE-complete.

Examples: GL.3, K4Grz.3, S4Grz.3, . . .

Theorem:
If L is a tabular logic of width 1 and depth d, then unification
and inadmissibility in L are ΠP

2d-complete.

Examples: S5 + Altn, K4 + 2⊥, . . .
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Complexity: summary

We get the following classification for clx logics:

logic
⊢L

|∼
L example

cluster
size

bran-
ching

par.-free with param’s

< ∞
0

coNP-complete

ΣP
2 -c. S5 + Altn

1 PSPACE-c. GL.3

∞ ≤ 1 NEXP-c. S5, S4.3

< ∞
≥ 2 PSPACE-c.

coNEXP-complete GL, Grz

∞ ΠEXP
2 -c. K4, S4

With parameters, non-unifiability and admissibility have the same

complexity

Emil Je řábek|Admissibility and unification with parameters |LATD 2012, Kanazawa 48:64



Logics with a top

The concept of clx logics and the whole machinery can be
adapted to S4.2 and similar logics with a single top cluster

logic
⊢L

|∼
L example

inner
cl. size

top cl.
size

par.-free w/ param’s

< ∞
< ∞

PSPACE-c.

coNEXP-complete GL.2, Grz.2

∞ ΘEXP
2 -c. S4.1.4 + S4.2

∞ ΠEXP
2 -c. K4.2, S4.2

ΘEXP
2 is the exponential version of the class ΘP

2 :

ΘEXP
2 := EXPNP[poly] = EXP‖NP = PNEXP = PSPACENEXP
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Intuitionistic logic

Rybakov’s translation theorem can be generalized to
admissibility with parameters:

Theorem:
If L ⊇ IPC and σL is its largest modal companion, then

Γ |∼L ∆ ⇔ T(Γ) |∼σL T(∆)

[However,
∧

p∈P

2(p→ 2p) → T(ϕ) is often more convenient.]

Note: Clx logics translate to IPC and the bounded branching
logics Tn (incl. T1 = LC, T0 = CPC)
Extensions of S4.2 give KC and KC + Tn
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Corollaries

The translation yields:

Char. of projective formulas in L ⊇ IPC with fmp

Existence of projective approximations and semantic
description of |∼L for IPC, KC, Tn, KC + Tn

Complexity (lower bounds need an extra argument):
admissibility and non-unifiability is

coNEXP-complete for IPC, KC, Tn, KC + Tn (n ≥ 2)
PSPACE-complete for LC

ΣP
2d-complete for Gd+1

coNEXP-hard for any other intermediate logic
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Intuitionistic extension rules

Bases of admissible rules require a separate construction:

A basis for IPC and Tn is given by the rules

∧

P ∧
(

n
∨

i=1

xi ∨
∨

Q→ y
)

→
n
∨

i=1

xi ∨
∨

Q

∧

P ∧ y → x1, . . . ,
∧

P ∧ y → xn

where P,Q are disjoint finite sets of parameters

Emil Je řábek|Admissibility and unification with parameters |LATD 2012, Kanazawa 52:64



Admissibility with parameters
in Łukasiewicz logic
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Overview of the situation

Work in progress . . .

Geometry more complicated—we can no longer restrict
attention to McNaughton functions in one variable

All formulas have admissibly saturated approximations of
effectively bounded complexity
⇒ problem reduces to description of a.s. formulas

Some necessary conditions for a.s. formulas
⇒ sufficient conditions for admissibility

The conditions are complete for the case of 1 parameter
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Reduction

In the parameter-free case, admissibility is detected by
substitutions in one variable

In the presence of parameters, we need no variables at all:

Theorem: If Γ |6∼Ł ∆, where Γ ∪ ∆ are formulas in variables
x1, . . . , xn and parameters p1, . . . , pm, m ≥ 1, then there is a
substitution σ such that

σ is a unifier of Γ

σ is not a unifier of any δ ∈ ∆

the only atoms occurring in any σ(xi) are p1, . . . , pm
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Notation

We consider formulas ϕ(p1, . . . , pm, x1, . . . , xn), m ≥ 1

t(ϕ) = {v ∈ Im+n : ϕ(v) = 1}, I = [0, 1]

π is the projection Im+n → Im

Substitutions are represented by McNaughton functions
σ : Im → Im+n such that π ◦ σ = id

σ is a unifier of ϕ iff rng(σ) ⊆ t(ϕ)

We fix rational polyhedral complexes P = {Pi : i < r} and
Q = {Qj : j < s} such that

t(ϕ) = ‖P‖ :=
⋃

i<r Pi

Im = ‖Q‖

∀i ∃j π(Pi) = Qj
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More notation

If X ⊆ Rk, A(X) denotes its affine hull

IntPi is the “geometric interior” of the polytope Pi:

IntPi = Pi r
⋃

{Pj : Pj ( Pi}

= relative topological interior of Pi in A(Pi)

Every point of ‖P‖ belongs to a unique IntPi
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Admissibly saturated approximations

Theorem: The following are equivalent:

ϕ is admissibly saturated

∀ε > 0 there is a unifier σ of ϕ such that

t(ϕ) ⊆ B(rng(σ), ε) := {x : dist(x, rng(σ)) < ε}

there is a unifier σ of ϕ whose range meets IntPi for
every maximal Pi ∈ P

Corollary:
Every ϕ has an admissibly saturated approximation, whose
elements are subcomplexes of P
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Admissibly saturated formulas

Need a more intrinsic description of a.s. formulas

Question: How can rng(σ) look like in terms of the Pi’s when
σ is a unifier of ϕ?

Let P (σ) = {i : rng(σ) ∩ IntPi 6= ∅}

Example: For every Qj there is i ∈ P (σ) s.t. Qj = π(Pi)
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Goodness

(a1, . . . , am, b1, . . . , bn) ∈ Rm+n is good if bj ∈ Z +
∑

i aiZ ∀j

Pi is good if IntPi contains a rational good point

Note: If all ai ∈ Q, then Z +
∑

i aiZ = 1
dZ, where

d = den(a1, . . . , am)

rng(σ) consists of good points

Corollary: If i ∈ P (σ), then Pi is good

Lemma: If A(Pi) contains a rational good point and π(Pi) is
not a single point, then rational good points are dense in
A(Pi), and a fortiori in IntPi
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Projection anchoredness

Pi is projection anchored if there exists an affine map
L : A(π(Pi)) → A(Pi) with integer coefficients s.t. π ◦ L = id

Pi is fully anchored if it is projection anchored and
A(π(Pi)) = Rm

Lemma: If Pi is projection anchored and b ∈ A(Pi) is a good
point, there exists L as above s.t. L(π(b)) = b

Note: A projection anchored Pi is good, unless π(Pi) is a
single point
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Anchoredness of substitutions

Let b = σ(a) ∈ IntPi. There is a neighbourhood U ∋ a

mapped by σ into a neighbourhood of b small enough to
meet only IntPj s.t. Pj ⊇ Pi.

If π(Pj) ) π(Pi) (and thus Int π(Pi) ∩ Intπ(Pj) = ∅) for every
Pj ) Pi, j ∈ P (σ), we must have

σ : U ∩ π(IntPi) → IntPi.

We can restrict σ further to a relatively open subset
V ⊆ π(IntPi) where it is affine. Since A(V ) = A(π(Pi)), Pi is
projection anchored.

This motivates the following recursive definition:
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Hereditary anchoredness

Pi is hereditarily anchored if

Pi is good and projection anchored

every Qk ) π(Pi) is the projection of some hereditarily
anchored Pj ) Pi

Pi is hereditarily covered if

Pi is good

π(Pi) = π(Pj) for some hereditarily anchored Pj ⊇ Pi

Corollary: If i ∈ P (σ), then Pi is hereditarily covered

Note: If Pi ∈ P is maximal, it is hereditarily anchored iff it is
fully anchored
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Admissibly saturated formulas

Any admissibly saturated formula satisfies:

(1) Every maximal Pi ∈ P is hereditarily anchored

(2) Every nonempty Qj is the projection of some hereditarily
anchored Pi

(3) For every j,
⋃

{IntPi : Qj ⊆ π(Pi), Pi hereditarily covered}

is connected

Note: Condition (3) implies that the fiber ‖P‖ ∩ π−1(a) is
connected ∀a ∈ Im
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Questions

Is admissibility with parameters in Ł decidable?

Are the given conditions for admissibly saturated
formulas in Ł sufficient?

Is there a general reduction of admissibility to
non-unifiability (with parameters)?
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Thank you for attention!
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