Open induction in a TC^0 **arithmetic**

Emil Jeřábek

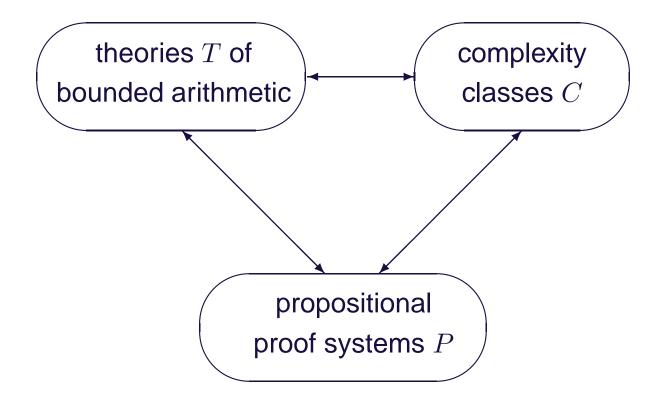
jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Prague Gathering of Logicians | Villa Lanna | February 2014

Correspondence

The "big picture" in proof complexity:



Theories vs. complexity classes

Correspondence of theories of bounded arithmetic *T* and computational complexity classes *C*:

- Provably total computable functions of T are C-functions
- T can do reasoning using C-predicates
 (comprehension, induction, ...)

Feasible reasoning:

- Given a natural concept $X \in C$, what can we prove about X using only concepts from C?
- That is: what does *T* prove about *X*?

This talk:

X = elementary integer arithmetic operations $+, \cdot, \leq$

 $\mathbf{A}\mathbf{C}^0 \subseteq \mathbf{A}\mathbf{C}\mathbf{C}^0 \subseteq \mathbf{T}\mathbf{C}^0 \subseteq \mathbf{N}\mathbf{C}^1 \subseteq \mathbf{L} \subseteq \mathbf{N}\mathbf{L} \subseteq \mathbf{A}\mathbf{C}^1 \subseteq \cdots \subseteq \mathbf{P}$

All circuit classes are assumed uniform.

- AC⁰: constant-depth poly-size unbounded fan-in circuits with ∧, ∨, ¬ gates
 FO = log time, O(1) alternations on an alternating TM
- ACC⁰: + MOD_m gates, constant m
- TC^0 : + majority gates
- NC¹: log-depth bounded fan-in circuits
 = poly-size formulas = alternating log time
- **L**: log space on a deterministic TM

 $TC^{0} = DLOGTIME$ -uniform O(1)-depth $n^{O(1)}$ -size unbounded fan-in circuits with threshold gates $= O(\log n)$ time, O(1) thresholds on a threshold Turing machine = FOM-definable on finite structures representing strings (first-order logic with majority quantifiers)

$\mathbf{T}\mathbf{C}^{0}$ and arithmetic operations

For integers given in binary:

- + and \leq are in $\mathbf{AC}^0 \subseteq \mathbf{TC}^0$
- \times is in TC⁰ (TC⁰-complete under Turing reductions)

 \mathbf{TC}^0 can also do:

- iterated addition $\sum_{i < n} x_i$
- integer division and iterated multiplication [HAB'02]
- the corresponding operations on \mathbb{Q} , $\mathbb{Q}(i)$
- approximate functions given by nice power series:
 - $\sin x$, $\log x$, $\sqrt[k]{x}$
- sorting, ...

 $\implies \mathbf{TC}^0$ is the right class for basic arithmetic operations

Emil Jeřábek | Open induction in a ${f TC}^0$ arithmetic | Prague Gathering of Logicians, February 2014

The theory VTC⁰

The most common theory corresponding to TC^0 is VTC^0 :

- Zambella-style two-sorted bounded arithmetic
 - unary (auxiliary) integers with $0, 1, +, \cdot, \leq$
 - finite sets = binary integers = binary strings
- Noteworthy axioms:
 - Σ_0^B -comprehension (Σ_0^B = bounded, w/o SO q'fiers)
 - every set has a counting function
- Σ_1^1 -definable functions are exactly \mathbf{FTC}^0
- Has induction, minimization, ... for TC^0 -predicates

Binary arithmetic in VTC^0

 VTC^0

- can define $+, \cdot, \le$ on binary integers
- proves integers form a discretely ordered ring (DOR)

Basic question: What other properties of $+, \cdot, \leq$ for binary integers are provable in VTC^0 ?

In particular: Does it prove some nontrivial instances of induction?

$VTC^0 + IMUL$

Annoying trouble: Unknown if VTC^0 can formalize the [HAB'02] algorithms for iterated multiplication and division

$$VTC^{0} \stackrel{?}{\vdash} \underbrace{\forall X \forall Y > 0 \exists Q \exists R < Y \left(X = Y \cdot Q + R \right)}_{DIV}$$

 $\implies \text{Consider iterated multiplication as an additional axiom:}$ $(IMUL) \ \forall X, n \ \exists Y \ \forall i \le j < n \left(Y^{[\langle i,i \rangle]} = 1 \land Y^{[\langle i,j+1 \rangle]} = Y^{[\langle i,j \rangle]} \cdot X^{[j]} \right)$ $\text{Think } Y^{[\langle i,j \rangle]} = \prod_{k=i}^{j-1} X^{[k]}$

Iterated multiplication and division

- $VTC^0 + IMUL$ corresponds to TC^0 , just like VTC^0
- $VTC^0 + IMUL \vdash DIV$
- We need *IMUL* rather than *DIV* for technical reasons.
 A "reasonable theory":
 - provably total computable functions closed under parallel repetition
 - closed under the Σ_0^B -choice rule

 $VTC^0 + IMUL$ is the smallest "reasonable theory" containing $VTC^0 + DIV$ (using [JP'98])

• $VTC^0 \vdash DIV$ iff $VTC^0 \vdash IMUL$

Open induction

The weakest arithmetic theory with a nontrivial fragment of the induction schema:

IOpen = DOR + induction for open formulas φ in $\langle +, \cdot, \leq \rangle$

$$\varphi(0) \land \forall x \, (\varphi(x) \to \varphi(x+1)) \to \forall x \ge 0 \, \varphi(x)$$

[Shep'64]

Main question: Does VTC^0 prove IOpen for binary integers?

Notes on *IOpen*

- IOpen proves DIV
- IOpen is ∀∃-axiomatized
- Its universal fragment is included in the theory of \mathbb{Z} -rings
 - $DOR + \forall x \exists \lfloor x/n \rfloor$ for each standard n > 0
 - = *DOR* + Presburger arithmetic
 - provable in VTC^0

 \implies we are mostly concerned about witnesses to \exists in axioms of IOpen

Ordered fields

Ordered field = field with a compatible total order

Real-closed field = an OF R satisfying one of the following equivalent conditions:

- every positive $a \in R$ has a square root, and every $f \in R[x]$ of odd degree has a root
- *R* has no proper ordered algebraic extension
- $R(\sqrt{-1})$ is algebraically closed
- $R \equiv \mathbb{R}$

Every OF *F* has a unique real closure rcl(F)= real-closed algebraic ordered extension $R \supseteq F$ Integer part of an OF F = discretely ordered subring $D \subseteq F$ such that every $\alpha \in F$ is within distance 1 from a $z \in D$

Theorem [Shep'64]: For a *DOR D*, the following are equivalent:

- $D \vDash IOpen$
- $D \models LOpen$
- *D* is an integer part of a real-closed field $R \supseteq D$
- If $u < v \in D$ and $f \in D[x]$ is such that $f(u) \le 0 < f(v)$, there is $u \le z < v$ in D such that $f(z) \le 0 < f(z+1)$

Witnessing theorem:

If $VTC^0 \pm IMUL \vdash \forall X \exists Y \varphi(X, Y)$, where φ is $\Sigma_1^1 (= \exists \Sigma_0^B)$ $\implies \exists a \mathbf{T}C^0$ function F s.t. $VTC^0 \pm IMUL \vdash \forall X \varphi(X, F(X))$.

Corollary: The following are equivalent:

- $VTC^0 \pm IMUL$ proves IOpen
- For every constant d > 0, VTC⁰ ± IMUL can formalize a TC⁰ (real or complex) root approximation algorithm for degree d polynomials

$\mathbf{T}\mathbf{C}^0$ root finding

Theorem [J'12]:

 TC^0 root approximation algorithms exist for any constant d.

- works naturally for complex polynomials and roots
- make f square-free, get roots of f' by induction on d
- $f(a) = b \implies f$ has an inverse function g_a s.t. $g_a(b) = a$ in a nbh of b, given by a power series $g_a(w) = \sum_n c_n (w - b)^n$
- $c_n \operatorname{TC}^0$ -computable (Lagrange inversion formula)
- image of g_a includes a nbh of a with radius proportional to the distance from a to the nearest root of f' \implies construct a poly-size set of sample points a s.t. all roots of f have the form $g_a(0)$

Formalization in $VTC^0 + IMUL$?

Corollary: $VTC^0 + Th_{\forall \Sigma_0^B}(\mathbb{N}) \vdash IOpen$

Bad news:

The argument heavily relies on complex analysis (Cauchy integral formula, ...)

 \implies unsuitable for formalization in bounded arithmetic

Nevertheless, we can prove

Main theorem: $VTC^0 + IMUL \vdash IOpen$

but we need a different strategy

Proof outline

- Direct proof of a form of the Lagrange inversion formula
 - polynomials can be locally inverted by power series
 - use this to compute roots of polynomials with small constant coefficient
- Model-theoretic argument using valued fields
 - the fraction field F of a DOR D carries a natural valuation induced by ≤
 - $D \models DIV \implies D$ is an integer part of the completion \hat{F}
 - *D* comes from $M \models VTC^0 + IMUL$
 - $\implies \hat{F}$ is henselian by LIF
 - \implies \hat{F} is a real-closed field if M is ω -saturated
 - \implies $D \vDash IOpen$ by Shepherdson's criterion

Lagrange inversion formula

Let $f(z) = \sum_{j=1}^{d} a_j z^j$, $a_1 = 1$, and consider $g(w) = \sum_{n=1}^{\infty} b_n w^n$,

$$b_n = \sum_{\sum_j (j-1)m_j = n-1} C_{m_2,...,m_d} \prod_{j=2}^d (-a_j)^{m_i}$$
$$C_{m_2,...,m_d} = \frac{\left(\sum_{j=2}^d jm_j\right)!}{\left(\sum_{j=2}^d (j-1)m_j + 1\right)! \prod_{j=2}^d m_j!}$$

 $(a_j, b_n, C_{\vec{m}} \text{ are binary rationals, } n, m_2, \dots, m_d \text{ unary integers})$ Lagrange inversion formula (LIF): f(g(w)) = w as formal power series

LIF in $VTC^0 + IMUL$

Theorem 1: $VTC^0 + IMUL$ proves LIF for any constant *d* Proof: By a convoluted but down-to-earth induction on $\vec{m} = \langle m_2, \dots, m_d \rangle$, show the identity

$$C_{\vec{m}} = \sum_{k=2}^{d} \sum_{\vec{m}^{1} + \dots + \vec{m}^{k} = \vec{m} - \delta^{k}} C_{\vec{m}^{1}} \cdots C_{\vec{m}^{k}} \quad (\vec{m} \neq \vec{0})$$
(*)

 $VTC^0 + IMUL$ also proves a bound on the coefficients b_n : Lemma: $|b_n| \le (4a)^{n-1}$, where $a = \max\{1, \sum_{j=2}^d |a_j|\}$

Aside: combinatorial interpretation of LIF

 $C_{\vec{m}} = \#$ of unary terms with m_j occurrences of a single *j*-ary connective for each j = 2, ..., d

= # of ordered rooted trees with m_j nodes of in-degree $j = 2, \ldots, d$ and no other inner nodes

LIF (*) \iff a term is a variable or $c(t_1, \ldots, t_k)$, where c is k-ary and t_j are terms

(counting of exponentially many objects \implies can't be used in $VTC^0 + IMUL$)

Root approximation with LIF

Theorem 2: $VTC^0 + IMUL$ proves for any constant *d*: Let $h(z) = \sum_{j=0}^d a_j z^j$, $a_1 = 1$. Put $f(z) = h(z) - a_0$, and let g, b_n, a be as above.

If $|a_0| < 1/(4a)$, the partial sums $z_N = \sum_{n=1}^N b_n (-a_0)^n$ satisfy

$$|z_N| \le c := \frac{|a_0|}{1 - 4a|a_0|}, \qquad |z_N - z_M| \le c (4a|a_0|)^{N-1}, |h(z_N)| \le |a_0| N^d (4a|a_0|)^N.$$

That is, they converge fast to a (bounded) root of h.

Shepherdson's criterion revisited

For any DOR *D* with fraction field *F*, TFAE:

- $D \vDash IOpen$
- $D \models DIV$, and F is a dense subfield of a RCF R

(Assume $D \models DIV$ from now on.) Canonical choice of R:

- R = the least RCF extending F = its real closure rcl(F)
- $D \vDash IOpen$ iff $F \subseteq rcl(F)$ is dense

Try the other way round:

- R = the largest ordered extension of F where it is dense = its (Scott) completion \hat{F}
- $D \models IOpen$ iff \hat{F} is a RCF

Completion of ordered fields

OF *F* is complete if it is not dense in any proper extension Fact: (Scott/folklore) Every OF *F* has a unique completion \hat{F} , i.e., a complete OF such that $F \subseteq \hat{F}$ is dense.

If $F \subseteq K$ is dense, then $K \subseteq \hat{F}$.

- \hat{F} can be constructed using a kind of Dedekind cuts
- Alternative description: completion of valued fields
 - ${\scriptstyle {\scriptscriptstyle \bullet}} \, \approx \, construction \, of \, \mathbb{R}$ with Cauchy sequences
 - advantage: can apply general results from valuation theory

Let *D* be a DOR coming from a model of arithmetic Basic intuition:

- D = "integers" of the model
- fraction field F = "rationals" of the model
- completion $\hat{F} =$ "reals" of the model
 - virtual elements that can be arbitrarily closely approximated by "rationals"
 - not interpretable in D (too large)

Valued fields

Valuation $v: K \twoheadrightarrow \Gamma \cup \{\infty\}$ on a field K:

- value group Γ : totally ordered abelian group
- $v(x) = \infty$ iff x = 0
- v(xy) = v(x) + v(y)
- $v(x+y) \ge \min\{v(x), v(y)\}$

Induces additional data:

- valuation ring $O = \{x \in K : v(x) \ge 0\}$
- maximal ideal $I = \{x \in K : v(x) > 0\} = O \smallsetminus O^*$
- residue field k = O/I

Valuation rings

- Valuation rings in K = subrings $O \subseteq K$ s.t. $a \in O$ or $a^{-1} \in O$ for all $a \in K^*$
- Abstractly: valuation ring = integral domain O s.t. $a \mid b$ or $b \mid a$ for all $a, b \in O$
 - \implies such *O* is a valuation ring in its fraction field *K*
- Valuation is defined by the valuation ring up to equivalence: $\Gamma \simeq K^*/O^*$, $v: K^* \to K^*/O^*$ quotient map

Example 1

Let k be a field. The field K = k((x)) of formal Laurent series

$$a = \sum_{n=N}^{\infty} a_n x^n, \qquad N \in \mathbb{Z}, a_n \in k$$

carries a valuation

$$v(a) = \min\{n \in \mathbb{Z} : a_n \neq 0\}$$

- Valuation ring = k[x] (formal power series)
- Value group = \mathbb{Z}
- Residue field = k

Example 2

Let p be a prime. The field $K = \mathbb{Q}_p$ of p-adic numbers

 $\dots a_3 a_2 a_1 a_0 a_{-1} \dots a_{-N}, \qquad a_n \in \{0, \dots, p-1\}$

carries the *p*-adic valuation

$$v_p(a) = \min\{n \in \mathbb{Z} : a_n \neq 0\}$$

- Valuation ring = \mathbb{Z}_p (*p*-adic integers)
- Value group = \mathbb{Z}
- Residue field = \mathbb{F}_p (*p*-element field)

Also induces the *p*-adic valuation on $\mathbb{Q} \subseteq \mathbb{Q}_p$: $v_p(p^e p_1^{e_1} \cdots p_k^{e_k}) = e$

Topology and completeness

Valuation induces a **topology** on the field: basic (cl)open sets = ultrametric balls

 $B(a,\gamma) = \{ u \in K : v(a-u) > \gamma \}, \qquad a \in K, \gamma \in \Gamma$

 $\langle K, v \rangle$ is complete if every transfinite Cauchy sequence converges

Theorem: Every valued field $\langle K, v \rangle$ has a unique completion, i.e., a complete extension $\langle \hat{K}, \hat{v} \rangle$ of $\langle K, v \rangle$ s.t. $K \subseteq \hat{K}$ is (topologically) dense

Examples: \mathbb{Q}_p is the completion of $\langle \mathbb{Q}, v_p \rangle$ k((x)) is the completion of k(x)

Valuations on ordered fields

 $\langle K, \leq \rangle$ ordered field \implies natural valuation v with

$$O = \{x \in K : \exists n \in \mathbb{N} | x | \le n\}$$
$$I = \{x \in K : \forall n \in \mathbb{N} | x | \le 1/n\}$$

- residue field: archimedean OF $\implies k \subseteq \mathbb{R}$
- valued field completion \hat{K} = ordered field completion
- More generally: valuations with convex valuation ring
 - residue field canonically ordered
 - valuation topology = interval topology

Need yet: how to recognize RCF?

Discrete valuation rings

Discrete valuation ring (DVR): valuation ring with $\Gamma = \mathbb{Z}$

- Examples: k[x], \mathbb{Z}_p
- Nice properties: noetherian, PID, ...

Hensel's lemma: O complete DVR, $f \in O[x]$, v(f(a)) > 0, v(f'(a)) = 0 $\implies f$ has a root $\alpha \in O$ with $v(\alpha - a) > 0$

Generally: valuation rings or valued fields satisfying Hensel's lemma are called henselian

- first-order property
- share nice model-theoretic properties of complete DVRs

Warning: Complete valuation rings are not henselian in general ($\Gamma = \mathbb{Z}$ makes a difference)

Theorem (Cohen):

Complete DVR of residue characteristic 0 are uniquely determined by the residue field (i.e., isomorphic to k[[x]]).

Vast generalization to henselian VF:

Ax–Kochen–Ershov principle:

Two henselian valued fields of res.char. 0 (more generally: unramified) are elementarily equivalent iff their residue fields and value groups are elementarily equivalent.

Characterization of RCF

- A (much easier) special case of AKE:
- **Theorem:** *K* ordered field, *O* convex valuation ring of *K* \implies *K* is a RCF iff
 - henselian
 - residue field k is a RCF
 - value group Γ is divisible

Example

Puiseux series: $K = k \langle\!\langle x \rangle\!\rangle := \bigcup_m k((x^{1/m}))$

$$\sum_{n=N}^{\infty} a_n x^{n/m}, \qquad N \in \mathbb{Z}, a_n \in k, m \in \mathbb{N}^+$$

- ✓ value group Q
- henselian (: each $k[x^{1/m}]$ is a complete DVR)

Corollary: $k \operatorname{RCF} \implies k \langle\!\langle x \rangle\!\rangle \operatorname{RCF}$

By the way: $k = rcl(\mathbb{Q}) \implies k\langle\langle x \rangle\rangle$ has an integer part of Puiseux polynomials with integer constant coefficient $\implies IOpen$ has a nonstandard recursive model [Shep'64]

Open induction and valued fields

- **Corollary:** Let D DOR, $D \models DIV$, F fraction field with natural valuation, \hat{F} its completion.
- Then $D \vDash IOpen$ iff \hat{F} henselian, residue field k RCF, value group Γ divisible.

Note: *F* and \hat{F} have the same residue field and value group

Our case: $M \vDash VTC^0 + IMUL$ induces **DOR** $D \vDash DIV$

- Γ is divisible—easy
- if M is ω -saturated, then $k = \mathbb{R}$
- \hat{F} henselian: follows from Theorem 2 (LIF)

This gives the Main theorem: $VTC^0 + IMUL \vdash IOpen$

Emil Jeřábek | Open induction in a \mathbf{TC}^0 arithmetic | Prague Gathering of Logicians, February 2014

What about VTC⁰?

Question: Does *VTC*⁰ prove *IOpen*?

The Main theorem and [JP'98] imply that TFAE:

- $VTC^0 \vdash IOpen$
- $VTC^0 \vdash IMUL$
- $VTC^0 \vdash DIV$

 \implies the problem is whether VTC^0 can formalize the division algorithm of [HAB'02]

Thank you for attention!

Emil Jeřábek | Open induction in a ${f TC}^0$ arithmetic | Prague Gathering of Logicians, February 2014

References

S. Cook, P. Nguyen, Logical foundations of proof complexity, CUP, 2010.

A. Engler, A. Prestel, Valued fields, Springer, 2005.

W. Hesse, E. Allender, D. Mix Barrington, *Uniform constant-depth threshold circuits for division and iterated multiplication*, J. Comp. System Sci. 65 (2002), 695–716.

E. Jeřábek, *Root finding with threshold circuits*, Theoret. Comput. Sci. 462 (2012), 59–69.

J. Johannsen, C. Pollett, *On proofs about threshold circuits and counting hierarchies* (*extended abstract*), in: Proc. 13th LICS, 1998, 444–452.

J. Shepherdson, *A nonstandard model for a free variable fragment of number theory*, Bull. Acad. Polon. Sci. 12 (1964), 79–86.

Emil Jeřábek | Open induction in a \mathbf{TC}^{0} arithmetic | Prague Gathering of Logicians, February 2014