Approximate counting in bounded arithmetic

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

The counting problem

Work in a theory of arithmetic.
Problem: Given a finite (= bounded) definable set X, determine its cardinality $|X|$.
Applications:

- proofs using counting arguments or probabilistic reasoning
- formalization of randomized algorithms

Example 1: the pigeonhole principle

Theorem: If $a<b$, there is no surjection $f:[0, a) \rightarrow[0, b)$.
Proof: By induction on $k \leq b$, show that

$$
|\{x<a \mid f(x)<k\}| \geq k .
$$

Since the LHS is at most a, we obtain a contradiction for $k=b>a$.

Notation: $a=[0, a)$, e.g., $f: a \rightarrow b$

Example 2: Ramsey's theorem

Theorem: An undirected graph $G=\langle V, E\rangle$ on n vertices contains a clique or independent set of size $\geq \frac{1}{2} \log n$.
Proof: For $u \neq v \in V$, define $c(u, v) \in\{0,1\}$ by

$$
c(u, v)=1 \Leftrightarrow\{u, v\} \in E .
$$

By induction on $k \leq\lceil\log n\rceil$, show that there exist $c_{0}, \ldots, c_{k-1}<2$ and distinct vertices u_{0}, \ldots, u_{k-1} such that

$$
\begin{gathered}
\forall i<j<k c\left(u_{i}, u_{j}\right)=c_{i}, \\
\left|\left\{v \in V \mid \forall i<k c\left(u_{i}, v\right)=c_{i}\right\}\right| \geq \frac{n+1}{2^{k}}-1 .
\end{gathered}
$$

Denote the set on the LHS by $S\left(u_{0}, \ldots, u_{k-1} ; c_{0}, \ldots, c_{k-1}\right)$.

Example 2: Ramsey's theorem (cont'd)

The induction step: pick $u_{k} \in S(\vec{u} ; \vec{c})$. Since

$$
S(\vec{u} ; \vec{c})=\left\{u_{k}\right\} \cup S\left(\vec{u}, u_{k} ; \vec{c}, 0\right) \cup S\left(\vec{u}, u_{k} ; \vec{c}, 1\right),
$$

we can choose $c_{k}<2$ so that

$$
\left|S\left(\vec{u}, u_{k} ; \vec{c}, c_{k}\right)\right| \geq \frac{|S(\vec{u} ; \vec{c})|-1}{2} \geq \frac{n+1}{2^{k+1}}-1 .
$$

Let $k=\lceil\log n\rceil$. If $c<2$ is the more populous colour among c_{0}, \ldots, c_{k-1}, then $H=\left\{u_{i} \mid c_{i}=c\right\}$ is a homogeneous set of size $\geq k / 2$.

Example 3: the tournament principle

A tournament is a directed graph where any two vertices are joined by exactly one edge.

IOW: tournament = choice of orientation of edges of K_{n}.
If there is an edge $a \rightarrow b$, player a beats player b.
A dominating set is a set D of players such that any other player is beaten by some member of D.

Example 3: the tournament principle (cont'd)

Theorem: A tournament G with n players has a dominating set of size $\leq \log (n+1)$.

Proof: By induction on n. There are $n(n-1) / 2$ matches in total, hence there exists a player v who wins $\geq(n-1) / 2$ matches. By the induction hypothesis, the subtournament consisting of the $\leq(n-1) / 2$ players who beat v has a dominating set D of size $\leq \log ((n-1) / 2+1)=\log (n+1)-1$, thus $D \cup\{v\}$ is a dominating set in the original tournament of size $\leq \log (n+1)$.

Example 4: the "probabilistic method"

Theorem: For any $n>2$, there exists a graph G on n vertices with no clique or independent set of size $\geq 2 \log n$. Proof: Consider a random G. If $X \subseteq V$ has size k, then X is a homogeneous set for G with probability $2^{1-\binom{k}{2} \text {, hence } G}$ contains a homogeneous set of size k with probability at most

$$
\binom{n}{k} 2^{1-\binom{k}{2}} \leq \frac{n^{k}}{k!} 2^{1-\binom{k}{2}} \leq\left(\frac{n e}{k 2^{(k-1) / 2}}\right)^{k}<\left(\frac{n}{2^{k / 2}}\right)^{k} \leq 1
$$

as long as $k \geq 2 \log n, k>e \sqrt{2}$.

Bounded arithmetic

Buss' theories

Language: $0, S,+, \cdot, \leq,|x|, \#,\left\lfloor x / 2^{y}\right\rfloor$
Intended meaning $|x|=\lceil\log (x+1)\rceil, x \# y=2^{|x| \cdot|y|}$
Sharply bounded quantifiers: $\exists x \leq|t| \varphi, \forall x \leq|t| \varphi$
$\hat{\Sigma}_{i}^{b}$-formulas: i blocks of bounded quantifiers, starting with existential, followed by a sharply bounded kernel
Σ_{i}^{b}-formulas: ignore sharply bounded quantifiers anywhere $\hat{\Pi}_{i}^{b}, \Pi_{i}^{b}$: dually
$i>0 \Rightarrow \Sigma_{i}^{b}(\mathbb{N})=\Sigma_{i}^{P}, \Pi_{i}^{b}(\mathbb{N})=\Pi_{i}^{P}$
BASIC: finite list of open axioms, mostly recursive definitions of the function symbols

Buss' theories: T_{2}^{i}

$$
\begin{aligned}
& T_{2}^{i}=B A S I C+\Sigma_{i}^{b}-I N D=B A S I C+\Pi_{i}^{b}-I N D \\
& (\varphi-I N D) \quad \varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \varphi(u)
\end{aligned}
$$

For $i>0: \quad T_{2}^{i}=B A S I C+\Sigma_{i}^{b}-M I N=B A S I C+\Sigma_{i}^{b}-M A X$

$$
=B A S I C+\Pi_{i-1}^{b}-M I N=B A S I C+\Pi_{i-1}^{b}-M A X
$$

(φ-MIN)

$$
\varphi(u) \rightarrow \exists x(\varphi(x) \wedge \forall y<x \neg \varphi(y))
$$

$(\varphi-M A X) \quad \varphi(0) \rightarrow \exists x \leq a(\varphi(x) \wedge \forall y \leq a(\varphi(y) \rightarrow y \leq x))$

Buss' theories: S_{2}^{i}

For $i>0: S_{2}^{i}=$ BASIC + any of the following:

$$
\begin{aligned}
& \Sigma_{i}^{b}-P I N D, \Pi_{i}^{b}-P I N D, \Sigma_{i}^{b}-L I N D, \Pi_{i}^{b}-L I N D, \\
& \Sigma_{i}^{b}-L M I N, \Pi_{i-1}^{b}-L M I N, \Sigma_{i}^{b}-L M A X, \Pi_{i-1}^{b}-L M A X, \\
& \Sigma_{i}^{b} \text {-COMP, } \Pi_{i}^{b}-C O M P
\end{aligned}
$$

(φ-PIND)

$$
\begin{aligned}
& \varphi(0) \wedge \forall x(\varphi(\lfloor x / 2\rfloor) \rightarrow \varphi(x)) \rightarrow \varphi(u) \\
& \varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \varphi(|u|) \\
& \varphi(u) \rightarrow \exists x(\varphi(x) \wedge \forall y(\varphi(y) \rightarrow|x| \leq|y|)) \\
& \varphi(0) \rightarrow \exists x \leq a(\varphi(x) \wedge \forall y \leq a(\varphi(y) \rightarrow|y| \leq|x|)) \\
& \varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \varphi(|u|) \\
& \varphi(u) \rightarrow \exists x(\varphi(x) \wedge \forall y(\varphi(y) \rightarrow|x| \leq|y|)) \\
& \exists x<a \# 1 \forall u<|a|(u \in x \leftrightarrow \varphi(u)) \\
& \not\left\lfloor x / 2^{u}\right\rfloor=2\left\lfloor x / 2^{u+1}\right\rfloor+1
\end{aligned}
$$

(φ-LIND)
(φ-LMIN)
(φ-LMAX)
(φ-COMP)

Buss' theories: basic properties

- $T_{2}^{0} \subseteq S_{2}^{1} \subseteq T_{2}^{1} \subseteq S_{2}^{2} \subseteq \cdots \subseteq T_{2}^{i} \subseteq S_{2}^{i+1} \subseteq T_{2}^{i+1} \subseteq \cdots \subseteq T_{2}=S_{2}$
- S_{2}^{i+1} is a $\forall \Sigma_{i+1}^{b}$-conservative extension of T_{2}^{i}
- poly-time functions have well-behaved Σ_{1}^{b}-definitions in $T_{2}^{0} \Rightarrow$ expansion by $P V$-functions
- T_{2}^{i} / S_{2}^{i} proves the relevant $(P \mid L) I N D,(L) M I N, \ldots$ schemata in the expanded language \Rightarrow we can use $P V$-functions freely
- more generally, T_{2}^{i} has Σ_{i+1}^{b}-definitions for $F P^{\Sigma_{i}^{P}}$ $\Rightarrow P V_{i+1}$-functions
- Buss' witnessing theorem: if $S_{2}^{i+1} \vdash \exists y \varphi(\vec{x}, y), \varphi \in \Sigma_{i+1}^{b}$, then there exists $f \in P V_{i+1}$ s.t. $T_{2}^{i} \vdash \varphi(\vec{x}, f(\vec{x}))$

Buss' theories: relativization

We can relativize the theories by adding an "oracle" $S_{2}^{i}(\alpha), T_{2}^{i}(\alpha)$: include a new predicate $\alpha(x),{ }^{*}$ expand schemas to the new language, no other axioms about α

- in $\langle\mathbb{N}, A\rangle: \Sigma_{i}^{b}(\alpha)$ defines $\left(\Sigma_{i}^{P}\right)^{A}, P V(\alpha)$ defines $F P^{A}$
- unconditional independence and separation results
- if $T_{2}^{i}(\alpha)$ proves stuff about $\Sigma_{j}^{b}(\alpha)$-formulas, then T_{2}^{i+k} proves the same about Σ_{j+k}^{b}-formulas for any k

We will work in the relativized theories, but will omit α to keep the notation compact

[^0]
Exact counting in formal arithmetic

We can count using sequence encoding:

$$
\begin{aligned}
& |X| \leq k \Leftrightarrow \exists w \forall x\left[x \in X \rightarrow \exists i<k(w)_{i}=x\right] \\
& |X| \geq k \Leftrightarrow \exists w \forall i<k\left[(w)_{i} \in X \wedge \forall j<i(w)_{j} \neq(w)_{i}\right]
\end{aligned}
$$

- $I \Sigma_{i}$ can count $\Sigma_{0}^{0}\left(\Sigma_{i}^{0}\right)$-sets $(i>0)$
- $I \Delta_{0}+\exp$ can count $\Delta_{0}^{0}(\exp)$-sets
- S_{2}^{i} can count small Σ_{i}^{b}-sets $(i>0)$
- T_{2}^{0} can count sets given explicitly by a sequence

Small $=$ of size $\leq \log a$ for some a.
What about larger sets?

Toda's theorem

In bounded arithmetic, we need $|X|$ to be definable by a bounded formula. This is impossible even for poly-time X : $\# P=$ class of functions of the form $f(x)=|\{y \mid R(x, y)\}|$, where $R \in P$ and $R(x, y) \Rightarrow|y| \leq|x|^{c}$
Theorem [Toda '89]: $\quad P H \subseteq P^{\# P}$
Corollary: If $\# P \subseteq F P^{P H}$, then $P H=\Sigma_{k}^{P}$ for some k.
If exact counting of poly-time sets is expressible by a bounded formula, then the polynomial hierarchy collapses
\Rightarrow can use only approximate counting

Weak pigeonhole principle

Weak pigeonhole principle

The multifunction (relation) pigeonhole principle:

$$
\begin{aligned}
m P H P_{a}^{b}(R)=\forall y<b \exists & <a R(y, x) \\
& \rightarrow \exists y<y^{\prime}<b \exists x<a\left(R(y, x) \wedge R\left(y^{\prime}, x\right)\right)
\end{aligned}
$$

Weak pigeonhole principle: b "much" larger than a
Popular choices: $m P H P_{a}^{a^{2}}, m P H P_{a}^{2 a}$. For us:

$$
m W P H P(R)=m P H P_{a}^{a(|b|+1)}(R)
$$

Theorem [PWW '88, MPW '02]: $T_{2}^{2} \vdash m W P H P\left(\Sigma_{1}^{b}\right)$

Variants of WPHP

Special cases where R or R^{-1} is a function:
surjective WPHP

injective WPHP

$$
i P H P_{a}^{b}(g)=\forall y<b g(y)<a \rightarrow \exists y<y^{\prime}<b g(y)=g\left(y^{\prime}\right)
$$

retraction-pair WPHP

$$
r P H P_{a}^{b}(f, g)=\forall y<b g(y)<a \rightarrow \exists y<b f(g(y)) \neq y
$$

Variants of WPHP (cont'd)

$S_{2}^{1}+s W P H P(P V)$ is $\forall \Sigma_{1}^{b}$-conservative over $T_{2}^{0}+r W P H P(P V)$
Wilkie's witnessing theorem: If $S_{2}^{1}+s W P H P(P V) \vdash \exists y \varphi(\vec{x}, y)$, $\varphi \in \Sigma_{1}^{b}$, then there exists a randomized poly-time algorithm f such that $\varphi(\vec{x}, f(\vec{x}))$ for every \vec{x}.
False for $i W P H P$, if factoring is hard!
\Rightarrow our variant of choice is $r W P H P$ or $s W P H P$

Applications of WPHP

WPHP can replace counting arguments in bounded arithmetic.

Already in the paper which introduced it:
Theorem [PWW '88]: $I \Delta_{0}+\Omega_{1} \vdash \forall x \exists p>x$ (p is prime).
Proof outline: Assume that there is no prime between a and a^{11}. By manipulating prime factorizations, stitch an injection from $9 a \log a$ to $8 a \log a$.
(In our setting: it goes through in $S_{2}^{1}+r W P H P(\Gamma) \subseteq T_{2}^{3}$, where $\Gamma=F P^{N P[\text { wit }, \log n]}$ is the class of provably total Σ_{2}^{b}-definable functions of S_{2}^{1}.)

Approximate counting with WPHP

Basic idea: witness that $|X| \leq a$ by exhibiting a function f such that $f: a \rightarrow X$ (for $s W P H P$) or $f: X \hookrightarrow a$ (for $i W P H P$).

Trouble: Where do we get these functions from?
On the face of it, WPHP is a passive counting principle: it tells us that something is impossible, it does not supply any counting functions.

Example: Ramsey's theorem reloaded

Theorem [Pudlák '90]: $T_{2}(E)$ proves Ramsey's theorem: a graph $\langle V=n, E\rangle$ has a homogeneous set of size $\geq \frac{1}{2} \log n$. Proof: Recall: if $u_{0}, \ldots, u_{k-1}<n$ are pairwise distinct and $c_{0}, \ldots, c_{k-1}<2$ are such that $\forall i<j c\left(u_{i}, u_{j}\right)=c_{j}$, we put

$$
S(\vec{u} ; \vec{c})=\left\{v<n \mid \forall i<k\left(u_{i} \neq v \wedge c\left(u_{i}, v\right)=c_{i}\right)\right\} .
$$

We have

$$
u \in S(\vec{u} ; \vec{c}) \Rightarrow S(\vec{u} ; \vec{c})=\{u\} \cup S(\vec{u}, u ; \vec{c}, 0) \cup S(\vec{u}, u ; \vec{c}, 1) .
$$

This translates into a straightforward manipulation of counting functions:

Example: Ramsey's theorem (cont'd)

If $f_{c}:\{0,1\}^{<r} \rightarrow S(\vec{u}, u ; \vec{c}, c), c<2$, then $f:\{0,1\}^{<r+1} \rightarrow S(\vec{u} ; \vec{c})$, where

$$
\begin{aligned}
f(\rangle) & =u \\
f(w \frown\langle c\rangle) & =f_{c}(w)
\end{aligned}
$$

(*)

Assuming for contradiction $S\left(u_{0}, \ldots, u_{k-1} ; c_{0}, \ldots, c_{k-1}\right)=\varnothing$ whenever $k=K:=\lfloor\log n\rfloor-1$, we have trivially an $f:\{0,1\}^{<0} \rightarrow S(\vec{u} ; \vec{c})$, and iterating $(*)$ we get

$$
f_{\vec{u} ; \vec{c}}:\{0,1\}^{<K-k} \rightarrow S\left(u_{0}, \ldots, u_{k-1} ; c_{0}, \ldots, c_{k-1}\right) .
$$

We can likewise construct its coretraction

$$
g_{\vec{u} ; \vec{c}}: S(\vec{u} ; \vec{c}) \hookrightarrow\{0,1\}^{<K-k} .
$$

Example: Ramsey's theorem (still cont'd)

The complete definition ($*=$ "undefined"):

$$
\begin{aligned}
& f_{\vec{u} ; \vec{c}}(w)= \begin{cases}* & \text { if } S(\vec{u} ; \vec{c})=\varnothing \\
u & \text { if } w=\langle \rangle \\
f_{\vec{u}, u ; \vec{c}, c}\left(w^{\prime}\right) & \text { if } w=w^{\prime} \cap\langle c\rangle\end{cases} \\
& g_{\vec{u} ; \vec{c}(x)}= \begin{cases}\langle \rangle & \text { if } x=u \\
g_{\vec{u}, u, \vec{c}, c}(x) \bigcirc\langle c\rangle & \text { where } c=c(u, x)\end{cases} \\
& \text { where } u=\min S(\vec{u} ; \vec{c})
\end{aligned}
$$

$$
f(\vec{u}, \vec{c}, w)=f_{\vec{u}, \vec{c}}(w) \text { and } g(\vec{u}, \vec{c}, x)=g_{\vec{u} \cdot \vec{c}}(x) \text { are in } F P^{N P}
$$

Example: Ramsey's theorem (f'shed)

By induction on $K-k$, we prove

$$
x \in S(\vec{u} ; \vec{c}) \Rightarrow f_{\vec{u} ; \vec{c}}\left(g_{\vec{u} ; \vec{c}}(x)\right)=x .
$$

For $k=0$: a retraction pair from $\{0,1\}^{<K} \approx 2^{K}-1$ onto $S(;)=n \geq 2^{K+1}$, contradicts WPHP.
Thus there exist $c_{0}, \ldots, c_{K-1}, u_{0}, \ldots, u_{K}$, from which we pick a homogeneous set of size $\geq 1+\lceil K / 2\rceil \geq 1+\left\lfloor\frac{1}{2} \log n\right\rfloor$. QED
We actually got
Theorem: Ramsey's theorem is provable in $T_{2}^{1}(E)+r W P H P\left(P V_{2}(E)\right) \subseteq T_{2}^{3}(E)$.

Morals to draw

This worked. However:

- The definition of f, g is messy (even leading to miscalculation of its complexity) \Rightarrow want a general theory of counting so that we do not need to resort to ad hoc functions.
- We have an obvious way of combining witnesses for $|X| \leq a$ and $|Y| \leq b$ into a witness for $|X \cup Y| \leq a+b$. What about the dual principle

$$
|X \dot{\cup} Y|<a+b \Rightarrow|X|<a \text { or }|Y|<b ?
$$

Needed for the tournament principle, for example.

General theory of counting

Rest of the talk: two general setups
Approximate probabilities:

- estimate the size of $X \subseteq 2^{n}$ within error $2^{n} / \operatorname{poly}(m)$ $=$ estimate $\operatorname{Pr}_{x<a}(x \in X)$ within error $1 /$ poly (m)
- $P /$ poly sets can be counted in $T_{2}^{0}+s W P H P(P V) \subseteq T_{2}^{2}$
- based on pseudorandom generators

Proper approximate counting:

- estimate the size of $X \subseteq 2^{n}$ within error $|X| / \operatorname{poly}(m)$
- $\Sigma_{1}^{b} /$ poly sets can be counted in $T_{2}^{1}+s W P H P\left(P V_{2}\right) \subseteq T_{2}^{3}$
(often $r W P H P$ suffices)
- based on hashing

Approximate probabilities

Approximate probabilities: intro

Basic strategy:

- we can estimate $\operatorname{Pr}_{x<a}(x \in X)$ with error ε by drawing $O(1 / \varepsilon)$ independent random samples \Rightarrow randomized poly-time algorithm
- derandomize using the Nisan-Wigderson pseudorandom generator
- analysis of the generator can be carried out in T_{2}^{0}, it provides explicit "counting functions" for X

Nisan-Wigderson generator

- intended for derandomization of poly-time algorithms (BPP)
- $N W_{f}: 2^{O(\log n)} \rightarrow 2^{n}$ fools poly-size circuits $C: 2^{n} \rightarrow 2$
- computable in time $\operatorname{poly}(n)$ (= exponential in the size of the input)
- needs access to the truth table of an exponentially hard Boolean function $f: 2^{O(\log n)} \rightarrow 2$

Hard Boolean functions

Hardness of a function $f: 2^{k} \rightarrow 2$:
$H(f) \leq s$ iff there exists a circuit C of size $\leq s$ such that

$$
\operatorname{Pr}_{x \in 2^{k}}(C(x)=f(x)) \geq \frac{1}{2}+\frac{1}{s}
$$

f is (average-case) ε-hard if $H(f) \geq 2^{\varepsilon k}$

- by a simple counting argument, most Boolean functions are $\left(\frac{1}{3}-o(1)\right)$-hard
- we can easily enumerate the easy functions $\Rightarrow T_{2}^{0}+s W P H P(P V) \vdash\left(\frac{1}{3}-o(1)\right)$-hard functions exist
- (in fact: over S_{2}^{1}, this is equivalent to $s W P H P(P V)$)

Nisan-Wigderson generator (cont'd)

Theorem [NW '94]: For every $\varepsilon>0$, there exist $c, d>0$ and a setting of parameters of the Nisan-Wigderson generator so that $N W_{f}: 2^{c \log n} \rightarrow 2^{n}$ satisfies:

Whenever $f: 2^{d \log n} \rightarrow 2$ is ε-hard and $C: 2^{n} \rightarrow 2$ is a circuit of size at most n, we have

$$
\left|\operatorname{Pr}_{x \in 2^{n}}(C(x))-\operatorname{Pr}_{y \in 2^{c \log n}}\left(C\left(N W_{f}(y)\right)\right)\right| \leq \frac{1}{n} .
$$

(If we need bigger $|C|$ or smaller error, we can pad C with dummy variables.)

NW in bounded arithmetic

Idea: Estimate $\operatorname{Pr}_{x \in 2^{n}}(C(x))$ by sampling it on the output of $N W_{f}$.

Problem: How does the theory know that the result is not just a meaningless number? Need some witness to ensure that the definition is well-behaved.

Solution: The NW generator can be analyzed in a very constructive way, ensuring the existence of suitable retraction pairs witnessing correctness of the computed size.

NW in bounded arithmetic (cont'd)

Theorem: $T_{2}^{0}+s W P H P(P V)$ proves:
Let $X \subseteq 2^{n}$ be defined by a circuit C, and $\varepsilon^{-1} \in \log$. There exist $s \leq 2^{n}, 0<v \leq \operatorname{poly}\left(n \varepsilon^{-1}|C|\right)$, and functions

$$
v\left(s+\varepsilon 2^{n}\right) \underset{g_{0}}{\stackrel{f_{0}}{\rightleftarrows}} v \times X \quad v \times\left(X \dot{\cup} \varepsilon 2^{n}\right) \stackrel{f_{1}}{\rightleftarrows} \text { g } v s
$$

defined by circuits of size poly $\left(n \varepsilon^{-1}|C|\right)$ such that $f_{i} \circ g_{i}=$ id. Notation:

- $n \in \log \Leftrightarrow \exists a n=|a|$
- ε rational: $\varepsilon^{-1} \in \log \Leftrightarrow \varepsilon>0 \wedge \exists a \varepsilon^{-1} \leq|a|$

Size comparison with error

Definition: $X, Y \subseteq 2^{n}$ definable sets, $\varepsilon \geq 0, n=|a|$:

- $X \preceq_{\varepsilon} Y$ iff there exist $v>0$ and a circuit

$$
C: v \times\left(Y \dot{\cup} \varepsilon 2^{n}\right) \rightarrow v \times X
$$

- $X \approx_{\varepsilon} Y$ iff $X \preceq_{\varepsilon} Y \wedge Y \preceq_{\varepsilon} X$
- $\operatorname{Pr}_{x<a}(x \in X) \preceq_{\varepsilon} p$ iff $X \cap a \preceq_{\varepsilon} p a$, and similarly for \succeq, \approx

Corollary: $T_{2}^{0}+s W P H P(P V)$ proves: If X is defined by a circuit and $\varepsilon^{-1} \in \log$, there exists s such that $X \approx_{\varepsilon} s$.

Complexity of

- As it stands: $X \preceq_{\varepsilon} Y$ is an unbounded $\exists \Pi_{2}^{b}$-formula
- If $\varepsilon^{-1} \in \log$ and X, Y are defined by circuits, it is (essentially) Σ_{2}^{b} by the Theorem
- In fact, it is $P /$ poly: given $\varepsilon^{-1} \in \log$ and a family $\left\{X_{u} \mid u<a\right\}$ of subsets of 2^{n} defined by a circuit $C(u, x): a \times 2^{n} \rightarrow 2$, there is a circuit s such that $X_{u} \approx_{\varepsilon} s(u)$, and circuits giving similarly the witnessing functions f_{i}, g_{i}
\Rightarrow can appear in induction formulas even in T_{2}^{0}

Elementary properties of

$T_{2}^{0}+s W P H P(P V)$ proves (for sets defined by circuits and Greeks in inverse Log):

- $X \preceq_{\varepsilon} Y \preceq_{\delta} Z \Rightarrow X \preceq_{\varepsilon+\delta} Z$
- $X \preceq_{\varepsilon} X^{\prime}, Y \preceq_{\delta} Y^{\prime} \Rightarrow X \times Y \preceq_{\varepsilon+\delta+\varepsilon \delta} X^{\prime} \times Y^{\prime}$
- $X \preceq_{\varepsilon} X^{\prime}, Y \preceq_{\delta} Y^{\prime}, X^{\prime} \cap Y^{\prime}=\varnothing \Rightarrow X \cup Y \preceq_{\varepsilon+\delta} X^{\prime} \cup Y^{\prime}$
- $s \preceq_{\varepsilon} X \preceq_{\delta} t \Rightarrow s \leq t+(\varepsilon+\delta+\eta) 2^{n}$
- $X \preceq_{\varepsilon} Y$ or $Y \preceq_{\varepsilon} X$
- $X \preceq_{\varepsilon} Y \Rightarrow 2^{n} \backslash Y \preceq_{\varepsilon+\eta} 2^{n} \backslash X$
- $X \approx_{\varepsilon} s, Y \approx_{\delta} t, X \cap Y \approx_{\eta} u \Rightarrow X \cup Y \approx_{\varepsilon+\delta+\eta+\xi} s+t-u$

Averaging

Theorem: $T_{2}^{0}+s W P H P(P V)$ proves: if $X \subseteq 2^{m}$ and $Y \subseteq X \times 2^{n}$ are definable by circuits, $X \preceq_{\delta} t$, and $Y_{x}:=\{y \mid\langle x, y\rangle \in Y\} \preceq_{\varepsilon} s$ for every $x \in X$, then $Y \preceq_{\varepsilon+\delta+\varepsilon \delta+\xi}$ st for any $\xi^{-1} \in \log$.
Read contrapositively, this gives a formalization of the averaging principle: if $|X| \leq t$ and $\left|\bigcup_{x \in X} Y_{x}\right|>u$, then there exists $x \in X$ such that $\left|Y_{x}\right|>u / t$.

Chernoff-Hoeffding inequality

Theorem: $T_{2}^{0}+s W P H P(P V)$ proves: if $X \subseteq a$ is defined by a circuit, $m \in \log , p, \varepsilon, \delta \in[0,1]$, and $\operatorname{Pr}_{x<a}(x \in X) \succeq_{\delta} p$, then

$$
\operatorname{Pr}_{w \in a^{m}}\left(\left|\left\{i<m \mid(w)_{i} \in X\right\}\right| \leq m(p-\varepsilon)\right) \preceq_{0} c 4^{m\left(c \delta-\varepsilon^{2}\right)}
$$

for some standard constant c.

Inclusion-exclusion principle

Theorem: $T_{2}^{0}+s W P H P(P V)$ proves: let $X_{i} \subseteq 2^{n}(i<m)$ be defined by a sequence of circuits. Let $k \leq m,(2 m / k)^{k} \in \log$. Assume $\bigcap_{i \in I} X_{i} \approx_{\varepsilon_{I}} s_{I}$ for every $I \subseteq m$ of size at most k, and put

$$
s=\sum_{\substack{I \subseteq m \\ 0<|I| \leq k}}(-1)^{|I|+1} s_{I}, \quad \varepsilon=\sum_{\substack{I \subseteq m \\ 0<|I| \leq k}} \varepsilon_{I}
$$

Then for any $\xi^{-1} \in \log$,

$$
\bigcup_{i<m} X_{i} \succeq_{\varepsilon+\xi} s \quad \text { or } \quad \bigcup_{i<m} X_{i} \preceq_{\varepsilon+\xi} s
$$

if k is even or odd, respectively.

Randomized algorithms

Main application: formalization of classes of randomized algorithms (TFRP, BPP, APP, MA, AM, ...)

- straightforward to define using approximate probabilities
- can't expect all of them to be "provably total": mostly semantic classes, no known complete problems
- instead, show that the definition is "well-behaved":
- amplification of probability of success
- closure properties (e.g., composition)
- trading randomness for nonuniformity
- inclusions between the randomized classes and levels of $P H$

Approximate counting

Approximate counting: intro

Proper approximate counting: error relative to size of X, not size of the ambient universe

- witness that $|X| \leq s$ using linear hash functions (Sipser's coding lemma)
- again, equivalent to existence of suitable surjective "counting functions"
- asymmetric: no witness for $|X| \geq s$
- can meaningfully count "sparse" sets
\Rightarrow useful for inductive counting arguments:
Ramsey's theorem, tournament principle

Linear hashing: basic idea

Let $X \subseteq 2^{n}=F^{n}, F=G F(2),|X|=s$.
If $x \neq y \in F^{n}$ and $a \in F^{n}$ is a random vector,

$$
\operatorname{Pr}_{a}\left(a^{\boldsymbol{\top}} x=a^{\boldsymbol{\top}} y\right)=\operatorname{Pr}_{a}\left(a^{\boldsymbol{\top}}(x-y)=0\right)=\frac{1}{2} .
$$

Thus, if $A \in F^{t \times n}$ is a random matrix,

$$
\begin{gathered}
\operatorname{Pr}_{A}(A x=A y)=2^{-t}, \\
\mathrm{E}_{A}|\{\langle x, y\rangle \mid x, y \in X, x<y, A x=A y\}|=2^{-t}\binom{s}{2} .
\end{gathered}
$$

If $2^{t}>\binom{s}{2}$, there exists an injective linear function $A: X \hookrightarrow 2^{t}$ \Rightarrow we can distinguish sets of size $\leq s$ and roughly $\geq s^{2}$!

Sipser's coding lemma

- $A \in F^{t \times n}$ separates x from $X \subseteq F^{n}$ if $A x \neq A y$ for every $y \in X \backslash\{x\}$
- $\left\{A_{i} \mid i<k\right\}$ isolates X if every $x \in X$ is separated from X by some A_{i}

Take $k=\lceil\log s\rceil, t=k+1$. We have
$\operatorname{Pr}_{A}(A$ does not separate x from $X)<\frac{s}{2^{t}} \leq \frac{1}{2}$,
$\operatorname{Pr}_{A_{0}, \ldots, A_{k-1}}\left(\right.$ no A_{i} separates x from $\left.X\right)<\frac{1}{2^{k}}$,
$\operatorname{Pr}_{A_{0}, \ldots, A_{k-1}}\left(X\right.$ not isolated by $\left.A_{0}, \ldots, A_{k-1}\right)<\frac{s}{2^{k}} \leq 1$.

Sipser's coding lemma (cont'd)

Theorem [Sipser '83]: Let $X \subseteq 2^{n},|X| \leq s, k=\lceil\log s\rceil$, $t=k+1$. Then there exists $\left\{A_{i} \mid i<k\right\}, A_{i} \in F^{t \times n}$, which isolates X.

OTOH: If such a sequence exists, each A_{i} can only separate 2^{t} points, hence $|X| \leq 2^{t} k \leq 4 s(\log s+1)$
\Rightarrow we can distinguish sets of size s and about $4 s \log s$
We want: distinguish s from $s(1+\varepsilon)$ for polynomially small ε Apply to X^{c} : distinguish $\left|X^{c}\right| \leq s^{c}$ from $4 s^{c} \log s^{c}=4 s^{c} c \log s$ \Rightarrow distinguish $|X| \leq s$ from $s(4 c \log s)^{1 / c} \leq s(1+\varepsilon)$ for suitably chosen $c=\operatorname{poly}\left(\varepsilon^{-1}, \log \log s\right)$

Formalized approximate counting

Definition: Let $X \subseteq 2^{n}$ be a definable set and $\varepsilon^{-1} \in \log$.

- if $s>0: X \precsim_{\varepsilon} s$ iff there exists $0<s^{\prime} \leq s$ and a sequence $\left\{A_{i} \mid i<t\right\}, A_{i} \in F^{t \times n}$, which isolates X^{c}, where $c=12\left|s^{\prime}\right|\left[\varepsilon^{-1}\right\rceil^{2}$ and $t=\left|s^{\prime c}\right|+1$
- $X \precsim 0$ iff X is empty
- $X \precsim s$ iff $X \precsim_{\Omega} s$ for all $\varepsilon^{-1} \in \log$

Basic properties:

- the definition is monotone and independent of n
- if $X \in \Sigma_{1}^{b}$, then $\precsim \varepsilon$ is Σ_{2}^{b}; we can make it $\Pi_{1}^{b} /$ poly

Reformulation with surjections

Theorem: $T_{2}^{1}+s W P H P\left(P V_{2}\right)$ proves: let $X \in \Sigma_{1}^{b}, f \in P V_{2}$, $r, d>0, d \in \log$, and assume $f: r s^{d} \rightarrow *{ }^{*} r \times X^{d}$. Then $X \precsim s$. Moreover,

$$
\operatorname{Pr}\left(\left\{A_{i} \mid i<t\right\} \text { does not isolate } X^{c}\right) \preceq_{0}^{\Sigma_{1}^{b}} 2 / 3,
$$

where c, t are as in the definition.
Theorem: $T_{2}^{1}+r W P H P\left(P V_{2}\right)$ proves: if $X \in \Sigma_{1}^{b}$ and $X \precsim_{\varepsilon} s$, there exists a $P V_{2}$-retraction pair $\lfloor s(1+\varepsilon)\rfloor^{c} \rightleftarrows X^{c}$, where c is as in the definition.

[^1]
Agreement with other counting setups

Theorem: $T_{2}^{1}+r W \operatorname{HPP}\left(P V_{2}\right)$ proves: if $X \in \Sigma_{1}^{b}$ and $s \leq \varepsilon^{-1} \in \log$, then $X \precsim_{\varepsilon} s$ iff there exists a sequence of length at most s which includes all elements of X.

Theorem: $T_{2}^{1}+s W P H P\left(P V_{2}\right)$ proves: let $X, Y \in \Sigma_{1}^{b}, f \in P V_{2}$, $d, r>0, d, \varepsilon^{-1} \in \log$. If $f: r \times X^{d} \rightarrow r \times Y^{d}$ and $X \precsim \varepsilon s$, then $Y \precsim\lfloor s(1+\varepsilon)\rfloor$.
In particular: if $Y \preceq_{\delta} X$ and $X \precsim_{\varepsilon} s$, then $Y \precsim s(1+\varepsilon)+\delta 2^{n}$.

Unions and products

Theorem: $T_{2}^{1}+r W P H P\left(P V_{2}\right)$ proves for $X, Y \in \Sigma_{1}^{b}$:

- if $X \precsim \varepsilon s$ and $Y \precsim \varepsilon t$, then $X \cup Y \precsim\lfloor(s+t)(1+2 \varepsilon)\rfloor$
- if $X \precsim \varepsilon s$ and $Y \precsim \varepsilon t$, then $X \times Y \precsim\left\lfloor s t(1+\varepsilon)^{2}\right\rfloor$
- if $X \dot{\cup} Y \precsim \varepsilon s+t+1$, then $X \precsim\lfloor s(1+2 \varepsilon)\rfloor$ or $Y \precsim\lfloor t(1+2 \varepsilon)\rfloor$
- if $X \times Y \precsim \varepsilon s t$, then $X \precsim\lfloor s(1+\varepsilon)\rfloor$ or $Y \precsim\lfloor t(1+\varepsilon)\rfloor$

Similar properties also hold for sums and products of logarithmically many sets rather than just two.

Averaging

Or: sums of many sets. Let $X, Y \in \Sigma_{1}^{b}, Y \subseteq X \times 2^{n}$, and denote $Y_{x}=\{y \mid\langle x, y\rangle \in Y\}$.
Theorem: $T_{2}^{1}+s W P H P\left(P V_{2}\right)$ proves: if

- $X \precsim_{\varepsilon} s$ and
- $Y_{x} \precsim \varepsilon t$ for all $x \in X$,
then $Y \precsim\lfloor s t(1+4 \varepsilon)\rfloor$.

Theorem: $T_{2}^{1}+r W P H P\left(P V_{2}\right)$ proves: if $Y \precsim \varepsilon s t$, then

- $X \precsim s-1$ or
- there exists $x \in X$ such that $Y_{x} \precsim\lfloor t(1+2 \varepsilon)\rfloor$.

Approximate enumeration

Theorem: $T_{2}^{1}+r W P H P\left(P V_{2}\right)$ proves: let $X \in \Sigma_{1}^{b}$, and $\varepsilon^{-1} \in \log$. There exist t, s such that $s \leq t \leq\lfloor s(1+\varepsilon)\rfloor$, and non-decreasing $P V_{2}$-retraction pairs

such that f, g are ≤ 2-to- 1 , and

$$
\left\lfloor\frac{s}{t} u\right\rfloor \leq g(f(u)) \leq\left\lceil\frac{s}{t} u\right\rceil
$$

for every $u<t$.

Example: the tournament principle

Recall the proof from slide \#6:

Theorem: A tournament G with n players has a dominating set of size $\leq \log (n+1)$.

Proof: By induction on n. There are $n(n-1) / 2$ matches in total, hence there exists a player v who wins $\geq(n-1) / 2$ matches. By the induction hypothesis, the subtournament consisting of the $\leq(n-1) / 2$ players who beat v has a dominating set D of size $\leq \log ((n-1) / 2+1)=\log (n+1)-1$, thus $D \cup\{v\}$ is a dominating set in the original tournament of size $\leq \log (n+1)$.

Let's translate it to bounded arithmetic.

Example: the tournament principle (cont'd)

Theorem: $T_{2}^{1}(G)+r W P H P\left(P V_{2}(G)\right) \subseteq T_{2}^{3}(G)$ proves the tournament principle.
Proof: We can work in $S_{2}^{2}(G)+s W P H P\left(P V_{2}(G)\right)$ by conservativity. Notation: if $\left\langle a_{i} \mid i<k\right\rangle$ is a sequence of players, let $G(\vec{a})=\left\{x<n \mid \forall i<k x \rightarrow a_{i}\right\}$.
Fix $\varepsilon^{-1} \in \log$ such that $(1+\varepsilon)^{8(|n|+1)}<2$. By Σ_{2}^{b}-LIND on $k \leq|n|+1$, prove
(*) $\quad \exists\left\langle a_{i} \mid i<k\right\rangle$ such that $G(\vec{a}) \precsim \varepsilon\left\lfloor\frac{n}{2^{k}}(1+\varepsilon)^{8 k}\right\rfloor$.
For $k=|n|+1$, we get $G(\vec{a})=\varnothing$, i.e., \vec{a} is a dominating set of size $\leq|n|+1$. (We can remove the " +1 " using shameless trickery.)

Example: the tournament principle (cont'd)

Assume (*) for k. Find $s \leq n 2^{-k}(1+\varepsilon)^{8 k}$ s.t. $G(\vec{a}) \precsim \varepsilon\lfloor s(1+\varepsilon)\rfloor$, $G(\vec{a}) \mathscr{L}_{\varepsilon} s-1$. We have

$$
\left\{\langle x, y\rangle \in G(\vec{a})^{2} \mid x \neq y\right\} \precsim \varepsilon\left\lfloor s^{2}(1+\varepsilon)^{4}\right\rfloor,
$$

thus (omitting the " $\in G(\vec{a})^{2}$ ")

$$
\{\langle x, y\rangle \mid y \rightarrow x\} \precsim \varepsilon\left\lfloor\frac{s^{2}}{2}(1+\varepsilon)^{6}\right\rfloor \text { or }\{\langle x, y\rangle \mid x \rightarrow y\} \precsim \varepsilon\left\lfloor\frac{s^{2}}{2}(1+\varepsilon)^{6}\right\rfloor .
$$

WLOG the former. Then there exists $x \in G(\vec{a})$ s.t.

$$
G(\vec{a}, x)=\{y \in G(\vec{a}) \mid y \rightarrow x\} \precsim \varepsilon\left\lfloor\frac{s}{2}(1+\varepsilon)^{8}\right\rfloor \leq\left\lfloor\frac{N}{2^{k+1}}(1+\varepsilon)^{8(k+1)}\right\rfloor .
$$

QED

Application: collapse of hierarchies

A variant of the tournament principle is used in the proof by [KPT '91] that collapse of the T_{2}^{i} hierarchy implies collapse of the polynomial hierarchy.

Previously known: $T_{2}^{i}=S_{2}^{i+1}$ iff $T_{2}^{i}=T_{2}$, and implies

- $\Sigma_{i+1}^{P} \subseteq \Delta_{i+1}^{P} /$ poly, thus $P H=\Sigma_{i+2}^{P}=\Pi_{i+2}^{P}$ [KPT '91]
- T_{2}^{i} proves $\Sigma_{i+1}^{b} \subseteq \Pi_{i+1}^{b} /$ poly and $\Sigma_{\infty}^{b}=\mathcal{B}\left(\Sigma_{i+2}^{b}\right)$ [Buss '95, Zambella '96]

Approximate counting gives:

- T_{2}^{i} proves $\Sigma_{i+1}^{b} \subseteq \Delta_{i+1}^{b} /$ poly and $\Sigma_{\infty}^{b}=\mathcal{B}\left(\Sigma_{i+1}^{b}\right)$
(using also [CK '07])

Other applications

- intervals on models of T_{2} admit nontrivial totally ordered approximate Euler characteristic (in the sense of [Krajíček '04])
- $T_{2}^{1}+r W P H P\left(P V_{2}\right)$ proves Ramsey's theorem (but we should have already known that)
- $T_{2}^{1}+r W P H P\left(P V_{2}\right)$ proves $S_{2}^{P} \subseteq Z P P^{N P}$
- $T_{2}^{1}+r W P H P\left(P V_{2}\right)$ proves $G I \in \operatorname{coAM}$

Thank you for attention!

References

S. Buss, Bounded arithmetic, Bibliopolis, Naples, 1986.
___, Relating the bounded arithmetic and polynomial time hierarchies, APAL 75 (1995), 67-77.
S. Cook, J. Krajíček, Consequences of the provability of NP $\subseteq \mathbf{P} /$ poly, JSL 72 (2007), 1353-1371.
E. Jeřábek, Dual weak pigeonhole principle, Boolean complexity, and derandomization, APAL 129 (2004), 1-37.
__ Approximate counting in bounded arithmetic, JSL 72 (2007), 959-993.
___ Approximate counting by hashing in bounded arithmetic, JSL 74 (2009), 829-860.

References (cont'd)

J. Krajíček, Bounded arithmetic, propositional logic, and complexity theory, Cambridge University Press, 1995.
__, Approximate Euler characteristic, dimension, and weak pigeonhole principles, JSL 69 (2004), 201-214.
J. Krajíček, P. Pudlák, G. Takeuti, Bounded arithmetic and the polynomial hierarchy, APAL 52 (1991), 143-153.
A. Maciel, T. Pitassi, A. Woods, A new proof of the weak pigeonhole principle, JCSS 64 (2002), 843-872.
N. Nisan, A. Wigderson, Hardness vs. randomness, JCSS 49 (1994), 149-167.
J. Paris, A. Wilkie, A. Woods, Provability of the pigeonhole principle and the existence of infinitely many primes, JSL 53 (1988), 1235-1244.

Emil Jeřábek|Approximate counting in bounded arithmetic|JAF 29 Warszawa

References (cont'd)

P. Pudlák, Ramsey's theorem in bounded arithmetic, Proc. CSL '90, LNCS 533, Springer, 1991, 308-317.
M. Sipser, A complexity theoretic approach to randomness, Proc. 15th STOC, 1983, 330-335.
N. Thapen, The weak pigeonhole principle in models of bounded arithmetic, Ph.D. thesis, Oxford University, 2002.
S. Toda, On the computational power of $P P$ and $\oplus P$, Proc. 30th FOCS, 1989, 514-519.
D. Zambella, Notes on polynomially bounded arithmetic, JSL 61 (1996), 942-966.

[^0]: *and the $x \bmod 2^{y}(L S P)$ function in the case of Σ_{0}^{b}-schemas

[^1]: *I'm cheating a bit

