Factoring and bounded arithmetic

Emil Jeřábek

jerabek@math.cas.cz

http://math.cas.cz/~jerabek/

Institute of Mathematics of the Czech Academy of Sciences, Prague

Symposium on 50 Years of Complexity Theory: A Celebration of the Work of Stephen Cook Toronto, May 2019

Outline

- **1** Bounded arithmetic and witnessing theorems
- 2 Search problems and classes
- **3** Quadratic reciprocity
- **4** Factoring and PPA

Bounded arithmetic and witnessing theorems

1 Bounded arithmetic and witnessing theorems

- 2 Search problems and classes
- **3** Quadratic reciprocity
- **4** Factoring and PPA

Proof complexity

Background: [Cook&Nguyen'10], [Krajíček'19]

- Propositional proof systems
- Complexity classes
- Theories of arithmetic

Background: [Cook&Nguyen'10], [Krajíček'19]

- Propositional proof systems
 - proof systems P for classical propositional logic: a formula is a tautology \leftarrow it has a P-proof
 - P-proofs recognizable in polynomial time
 - main measure: length of proofs polynomial? exponential?
 - examples: resolution, sequent calculus, polynomial calculus, ...
- Complexity classes
- Theories of arithmetic

Background: [Cook&Nguyen'10], [Krajíček'19]

- Propositional proof systems
- Complexity classes
 - depending on setup, language or search problem classes
 - AC⁰, TC⁰, NC¹, P, NP, Σ_k^p , PSPACE, ...
- Theories of arithmetic

Background: [Cook&Nguyen'10], [Krajíček'19]

- Propositional proof systems
- Complexity classes
- Theories of arithmetic
 - weak first-order theories, valid in $\langle \mathbb{N}, +, \cdot \rangle$
 - one-sorted (numbers) or two-sorted (1: unary/index numbers, 2: sets ≈ strings ≈ binary numbers)
 - induction/comprehension for restricted class of formulas
 - ▶ bounded quantifiers: $\exists x < t \varphi(x), \forall x < t \varphi(x)$

Theory T corresponds to complexity class C:

- *C*-problems definable in \mathbb{N} by formulas from Φ_C
- these definitions "provably total" in T (and "well behaved")
- Φ_C -definable problems provably total in T are in C
 - witnessing theorems
- ► T can "reason" with C-concepts
 - it proves induction/comprehension schemata for Φ_C

Witnessing theorems

Theorem template:

If T proves $\forall x \exists y \varphi(x, y)$, where $\varphi \in \Phi$ $\implies \exists$ a function/search problem $f \in C$ s.t.

$$\mathbb{N} \vDash \forall x \varphi(x, f(x))$$

Prototypical example:

Theorem (Buss): If $S_2^1 \vdash \forall x \exists y \varphi(x, y)$, where $\varphi \in \Sigma_1^b$, then there is $f \in FP$ s.t. $\mathbb{N} \vDash \forall x \varphi(x, f(x))$

Applications of witnessing theorems

Common argument: T does not prove XYZ

- Assume it does
- ▶ By FGH witnessing theorem, there is f ∈ C that computes UVW
- ► UVW is not computable in C because ...
 ⇒ contradiction

Typically, C is relativized or there are further assumptions

Constructive applications?

In principle, witnessing may work in the forward direction:

- Prove XYZ in T
- Infer the existence of a C-algorithm computing UVW

This is uncommon:

Formalizing proofs in T is hard: to get anything done, we usually need to start with C-algorithms for the main steps, and then some ...

- Algorithms extracted by cut elimination from *T*-proofs tend to be crude and bloated
 - \implies direct construction is usually more efficient
- More people work on algorithms than on bounded arithmetic ⇒ someone would have already thought of it

Room to make a difference

Bounded arithmetic offers one advantage: it supports (a little bit of) abstract reasoning

Illustration: two theories corresponding to P

- ▶ *PV*₁ (or *VPV*): bare-bones P-theory
 - FP-function symbols
 - defining equations, induction for P-predicates
- ► S_2^1 (or V^1):

► + a form of NP-induction

- Both: provably total NP-search problems = FP
- S_2^1 proves: every integer has a prime factorization!

This talk

The complexity of integer factoring

[Buresh-Oppenheim'06] Factoring of integers N s.t.

$$N \equiv 1 \pmod{4}, \quad -1 \not\equiv \Box \pmod{N},$$

can be done in the class PPA

- [J'16] Factoring of general integers has a randomized reduction to PPA
 - [J'10] Prove the quadratic reciprocity theorem in a theory corresponding to PPA
 - Apply a witnessing theorem and an easy reduction

Search problems and classes

1 Bounded arithmetic and witnessing theorems

2 Search problems and classes

- **3** Quadratic reciprocity
- **4** Factoring and PPA

NP search problems

This talk: complexity of search problems, not languages NP search problems:

- defined by a poly-time relation R(x, y), $|y| \le |x|^c$
- ▶ task: input $x \mapsto$ output some y s.t. R(x, y)
- ▶ FNP = class of all NP search problems
- ▶ TFNP = subclass of total problems: $\forall x \exists y R(x, y)$

Examples

- ▶ FACTORING: composite $N \in \mathbb{N} \mapsto$ a proper factor of N
- ▶ FULLFACTORING: $N \in \mathbb{N} \mapsto N = \prod_{i < k} P_i$, P_i primes
- ▶ MODSQROOT: $N, A \in \mathbb{N} \mapsto B$ s.t. $B^2 \equiv A \pmod{N}$

PPA

PPA [Papadimitriou'94]:

Class of TFNP problems total due to a "parity argument"

Complete problem LEAF:

- Succinct graph G of degree ≤ 2, leaf vertex v₀ → leaf vertex v₁ ≠ v₀
- Total because $\sum_{v} \deg(v)$ is even

Alternative PPA-complete problem:

LONELY [BCEIP'98]

► Succinct partial matching on {0,1}ⁿ \ {0ⁿ} → unmatched vertex

TFNP classes by counting arguments

TFNP classes by counting arguments

FACTORING has randomized reductions to PPA and PWPP

Emil Jeřábek | Factoring and bounded arithmetic | Cook Symposium 2019

A theory for PPA

Recall: theory S_2^1 corresponds to FP

Axiom $Count_2(f)$: variant of LONELY

$$\forall a, p \exists x (f(x, p) > 2a \lor f(f(x, p), p) \neq x \lor f(x, p) = x)$$

"If f(-, p) is an involution on [2a + 1], it has a fixpoint"

Theory $TPPA = S_2^1 + Count_2(PV)$ corresponds to PPA:

Theorem: If $TPPA \vdash \forall x \exists y \varphi(x, y)$, where $\varphi \in \Sigma_1^b$, then the search problem $x \mapsto y$ s.t. $\varphi(x, y)$ is in PPA

Relies on [Buss&Johnson'12]: FP^{PPA} = PPA

Quadratic reciprocity

- **1** Bounded arithmetic and witnessing theorems
- 2 Search problems and classes
- **3** Quadratic reciprocity
- **4** Factoring and PPA

Legendre symbol

 $a \in \mathbb{Z}$, *p* odd prime:

$$\begin{pmatrix} \frac{a}{p} \\ p \end{pmatrix} = \begin{cases} 0 & \text{if } a \equiv 0 \pmod{p} \\ 1 & \text{if } a \text{ quadratic} & \text{residue} \pmod{p} \\ -1 & \text{if } a \text{ quadratic nonresidue} \pmod{p} \end{cases}$$

 $a \mapsto \left(\frac{a}{p}\right)$ is a Dirichlet character: *p*-periodic and completely multiplicative

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$$

Euler's criterion:

$$\binom{a}{p} \equiv a^{\frac{p-1}{2}} \pmod{p}$$

Quadratic reciprocity theorem

Notation:
$$p^* = (-1)^{\frac{p-1}{2}}p \implies p^* = \pm p$$
 and $p^* \equiv 1$ (4)

Theorem [Gauß 1801]:

(quadratic reciprocity) If p, q are odd primes then

$$\left(\frac{q}{p}\right) = \left(\frac{p^*}{q}\right)$$

(supplementary laws)

$$\begin{pmatrix} -1\\ p \end{pmatrix} = (-1)^{\frac{p-1}{2}} = \begin{cases} 1 & p \equiv 1 \pmod{4} \\ -1 & p \equiv -1 \pmod{4} \end{cases}$$
$$\begin{pmatrix} 2\\ p \end{pmatrix} = (-1)^{\frac{p^2-1}{8}} = \begin{cases} 1 & p \equiv \pm 1 \pmod{8} \\ -1 & p \equiv \pm 3 \pmod{8} \end{cases}$$

Reciprocity laws

- quadratic reciprocity conjectured by L. Euler
- incomplete proof attempt by A.-M. Legendre
- C. F. Gauß: gives 8 proofs of "aureum theorema" over 240 proofs published by now (cf. [Lemmermeyer'00])
- generalized and more abstract reciprocity laws central topic in algebraic number theory ever since (Hilbert r., Artin r., Langlands program, ...)

Jacobi symbol

 $a \in \mathbb{Z}$, n > 0 odd, $n = \prod_{i < k} p_i^{e_i}$ prime factorization:

$$\left(\frac{a}{n}\right) = \prod_{i < k} \left(\frac{a}{p_i}\right)^{e_i}$$

a → (^a/_n) still *n*-periodic, completely multiplicative
 Euler's criterion, (^a/_n) = 1 ⇒ a ≡ □ (mod n)
 (^a/_n) ≠ 0 ⇔ gcd(a, n) = 1
 quadratic reciprocity: n, m > 0 odd ⇒
 (^m/_n) = (^{n*}/_m)

supplementary laws

Emil Jeřábek | Factoring and bounded arithmetic | Cook Symposium 2019

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N

Reciprocity \implies polynomial-time algorithm (\approx gcd):

```
r \leftarrow 1
while A \neq 0 do:
     if A < 0 then
           A \leftarrow -A
           r \leftarrow -r if N \equiv -1 \pmod{4}
     while A is even do.
           A \leftarrow A/2
           r \leftarrow -r if N \equiv \pm 3 \pmod{8}
     swap A and N
     A \leftarrow -A if A \equiv -1 \pmod{4}
     reduce A modulo N so that |A| < N/2
if N > 1 then output 0 else output r
```

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N

```
Reciprocity \implies polynomial-time algorithm (\approx gcd):
```

```
r \leftarrow 1
while A \neq 0 do:
     if A < 0 then
           A \leftarrow -A
           r \leftarrow -r if N \equiv -1 \pmod{4}
     while A is even do.
           A \leftarrow A/2
           r \leftarrow -r if N \equiv \pm 3 \pmod{8}
     swap A and N
     A \leftarrow -A if A \equiv -1 \pmod{4}
     reduce A modulo N so that |A| < N/2
if N > 1 then output 0 else output r
```

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N

Reciprocity \implies polynomial-time algorithm (\approx gcd):

```
r \leftarrow 1
while A \neq 0 do:
     if A < 0 then
           A \leftarrow -A
           r \leftarrow -r if N \equiv -1 \pmod{4}
     while A is even do.
           A \leftarrow A/2
           r \leftarrow -r if N \equiv \pm 3 \pmod{8}
     swap A and N
     A \leftarrow -A if A \equiv -1 \pmod{4}
     reduce A modulo N so that |A| < N/2
if N > 1 then output 0 else output r
```

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N

Reciprocity \implies polynomial-time algorithm (\approx gcd):

```
r \leftarrow 1
while A \neq 0 do:
     if A < 0 then
           A \leftarrow -A
           r \leftarrow -r if N \equiv -1 \pmod{4}
     while A is even do.
           A \leftarrow A/2
           r \leftarrow -r if N \equiv \pm 3 \pmod{8}
     swap A and N
     A \leftarrow -A if A \equiv -1 \pmod{4}
     reduce A modulo N so that |A| < N/2
if N > 1 then output 0 else output r
```

Gauß's lemma in TPPA

Several proofs of QRT (Gauß 3&5, Eisenstein 3, ...) based on Gauß's lemma: p odd prime, $P^+ = \{1, \dots, \frac{p-1}{2}\} \implies$

$$\left(\frac{a}{p}\right) = (-1)^{\#\{m \in P^+ : (ma \bmod p) \notin P^+\}}$$

- Only the parity of the set matters
- Key insight: One can witness the parity by explicit poly-time involutions!

Related work:

[H-B'84], [Zag'90]: Fermat's 2 theorem by involutions
 [BI'91]: Supplementary laws by mod 8 counting principles

Quadratic reciprocity in TPPA

Theorem [J'10]: TPPA proves

- Quadratic reciprocity theorem + supplementary laws, for Legendre and Jacobi symbols
- Multiplicativity of Legendre and Jacobi symbols

Corollary:

TPPA proves soundness of the poly-time algorithm

There is a *PV*-function J(a, n) s.t.

$$TPPA \vdash n > 0 \text{ odd} \implies J(a, n) = \left(\frac{a}{n}\right)$$

Factoring and PPA

- **1** Bounded arithmetic and witnessing theorems
- 2 Search problems and classes
- **3** Quadratic reciprocity
- **4** Factoring and PPA

Witnessing argument

Legendre symbol special case of Jacobi symbol \implies the poly-time algorithm applies to it:

 $TPPA \vdash J(a, n) = 1 \land n \text{ prime} \implies a \equiv \Box \pmod{n}$

Reformulate as a $\forall \Sigma_1^b$ statement:

 $TPPA \vdash J(a, n) = 1 \implies \exists b (b \text{ factor of } n \text{ or } a \equiv b^2 (n))$

 \implies can apply the witnessing theorem for TPPA

Witnessing argument (cont'd)

Corollary

The problem FACROOT is in PPA:

- given A and odd N > 0 s.t. $\left(\frac{A}{N}\right) = 1$, find
 - ► a proper factor of *N*, or
 - a square root of A modulo N

Note:

- direct construction possible, but complicated (messy dynamic programming)
- [Buresh-Oppenheim'06]: the special case A = -1

Randomized reduction

Lemma: N > 0 odd, not a prime power \implies with prob. $\ge \frac{1}{4}$: a random A is a quadratic nonresidue mod N s.t. $\binom{A}{N} = 1$

Corollary:

- ► FACTORING has a randomized poly-time reduction to FACROOT ∈ PPA
- ► FULLFACTORING has a randomized poly-time reduction to FP^{FACROOT} ⊆ PPA

Derandomization: FULLFACTORING \in PPA assuming a generalized/extended Riemann hypothesis (for quadratic Dirichlet *L*-functions)

Unconditional deterministic results

Theorem: The following problems are in PPA:

- ▶ $N, A \in \mathbb{N} \mapsto B$ s.t. $B^2 \equiv A \pmod{N}$ if it exists
- ▶ N odd, not a perfect square $\mapsto A$ s.t. $\left(\frac{A}{N}\right) = -1$
- ▶ $N \ge 3 \mapsto$ quadratic nonresidue $A \in (\mathbb{Z}/N\mathbb{Z})^{\times}$

Definition: N is M-strongly composite if N is a product of two quadratic nonresidues modulo M

Factoring of *M*-strongly composite numbers is in PPA for

•
$$M = (\log N)^{c}!_{\leftarrow \text{factorial, not exclamation}}$$

Open problems

- Full unconditional derandomization: is FACTORING in PPA?
- Other classes: does FACTORING reduce to PPA-3 or PPAD?

Thank you for attention!

References

- P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, T. Pitassi: The relative complexity of NP search problems, J. Comput. System Sci. 57 (1998), 3–19
- A. Berarducci, B. Intrigila: Combinatorial principles in elementary number theory, Ann. Pure Appl. Logic 55 (1991), 35–50
- J. Buresh-Oppenheim: On the TFNP complexity of factoring, http://www.cs.toronto.edu/~bureshop/factor.pdf (2006)
- S. R. Buss, A. S. Johnson: Propositional proofs and reductions between NP search problems, Ann. Pure Appl. Logic 163 (2012), 1163–1182
- S. A. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press (2010)
- C. F. Gauß: Disquisitiones arithmeticae, Fleischer, Leipzig (1801)
- R. Heath-Brown: Fermat's two squares theorem, Invariant 11 (1984), 3–5

Emil Jeřábek | Factoring and bounded arithmetic | Cook Symposium 2019

References

- E.J.: Abelian groups and quadratic residues in weak arithmetic, Math. Logic Quart. 56 (2010), 262–278
- E.J.: Integer factoring and modular square roots, J. Comput. System Sci. 82 (2016), 380–394
- J. Krajíček: Proof complexity, Cambridge Univ. Press (2019)
- ► F. Lemmermeyer: Reciprocity laws, Springer (2000)
- C. H. Papadimitriou: On the complexity of the parity argument and other inefficient proofs of existence, J. Comput. System Sci. 48 (1994), 498–532
- D. Zagier: A one-sentence proof that every prime p ≡ 1 (mod 4) is a sum of two squares, Amer. Math. Monthly 97 (1990), 144