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Proof complexity

Background: [Cook&Nguyen'10], [Krajitek'19]

The big picture: a loose 3-way correspondence between

» Propositional proof systems

» proof systems P for classical propositional logic:
a formula is a tautology <= it has a P-proof

» P-proofs recognizable in polynomial time

» main measure: length of proofs
polynomial? exponential?

> examples: resolution, sequent calculus, polynomial
calculus, ...

» Complexity classes

» Theories of arithmetic
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Proof complexity

Background: [Cook&Nguyen'10], [Krajitek'19]

The big picture: a loose 3-way correspondence between

» Propositional proof systems
» Complexity classes
» Theories of arithmetic

> weak first-order theories, valid in (N, +, )

> one-sorted (numbers) or two-sorted (1: unary/index
numbers, 2: sets & strings &~ binary numbers)

» induction/comprehension for restricted class of formulas

> bounded quantifiers: 3x < t p(x), Vx < t p(x)
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Theories vs. classes

Theory T corresponds to complexity class C:

» C-problems definable in N by formulas from ¢,
» these definitions “provably total” in T
(and “well behaved")
» & -definable problems provably total in T are in C
» witnessing theorems
» T can “reason” with C-concepts
> it proves induction/comprehension schemata for ® ¢
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Witnessing theorems

Theorem template:
If T proves Vx Jy o(x,y), where p € ®
— 3 a function/search problem f € C s.t.

N E Vx o(x, f(x))

Prototypical example:

Theorem (Buss): If S} F Vx 3y ¢(x,y), where ¢ € T2, then
there is f € FP s.t. NFE Vxo(x, f(x))

» SJ: a theory corresponding to P
> b~ NP
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Applications of witnessing theorems

Common argument: T does not prove XYZ

» Assume it does

» By FGH witnessing theorem, there is f € C
that computes UVW

» UVW is not computable in C because ...
= contradiction

Typically, C is relativized or there are further assumptions
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Constructive applications?

In principle, witnessing may work in the forward direction:

» Prove XYZin T
» Infer the existence of a C-algorithm computing UVW

This is uncommon:

» Formalizing proofs in T is hard:
to get anything done, we usually need to start with
C-algorithms for the main steps, and then some ...

» Algorithms extracted by cut elimination from T-proofs
tend to be crude and bloated
—> direct construction is usually more efficient

» More people work on algorithms than on bounded
arithmetic = someone would have already thought of it
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Room to make a difference

Bounded arithmetic offers one advantage:
it supports (a little bit of) abstract reasoning

[llustration: two theories corresponding to P

» PV; (or VPV): bare-bones P-theory

» FP-function symbols
» defining equations, induction for P-predicates

> S3 (or V1):
> + a form of NP-induction
» Both: provably total NP-search problems = FP
> S) proves: every integer has a prime factorization!
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This talk

The complexity of integer factoring

» [Buresh-Oppenheim'06] Factoring of integers N s.t.
N=1 (mod4), —1#£0 (mod N),
can be done in the class PPA

» [J'16] Factoring of general integers
has a randomized reduction to PPA

» [J'10] Prove the quadratic reciprocity theorem in a
theory corresponding to PPA
> Apply a witnessing theorem and an easy reduction
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NP search problems

This talk: complexity of search problems, not languages
NP search problems:
> defined by a poly-time relation R(x, y), |y| < |x|¢
» task: input x — output some y s.t. R(x,y)

» FNP = class of all NP search problems
» TFNP = subclass of total problems: Vx 3y R(x,y)

Examples

» FACTORING: composite N € N —— a proper factor of N
» FULLFACTORING: N € N+— N =[], Pi, P; primes
» MopSQRooT: N,AeN+—— Bst. B2=A (mod N)
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PPA

PPA [Papadimitriou'94]:
Class of TENP problems total due to a “parity argument”

Complete problem LEAF:

» Succinct graph G of degree < 2, leaf vertex vy
— leaf vertex v # v

» Total because ) deg(v) is even

Alternative PPA-complete problem:
LoNELY [BCEIP'98]

» Succinct partial matching on {0,1}” ~ {07}
—— unmatched vertex
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FACTORING has randomized reductions to PPA and PWPP




A theory for PPA

Recall: theory S5 corresponds to FP
Axiom Count,(f): variant of LONELY

Va,p3x (f(x,p) > 2aV f(f(x,p),p) # x V f(x,p) = x)
“If f(—, p) is an involution on [2a + 1], it has a fixpoint”
Theory TPPA = S3 + Count,(PV') corresponds to PPA:

Theorem: If TPPA Vx Jy ¢(x,y), where ¢ € T2, then the
search problem x — y s.t. ¢(x,y) is in PPA

Relies on [Buss&Johnson'12]: FPPP* = PPA
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Legendre symbol

a € Z, p odd prime:

0 ifa=0 (modp)
<i) = 1 if a quadratic residue (mod p)

P —1 if a quadratic nonresidue (mod p)

a— (%) is a Dirichlet character:
p-periodic and completely multiplicative

GG =)

Euler's criterion:
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Quadratic reciprocity theorem

Notation: p* = (—l)pT_lp = p*=+pand p*=1 (4)
Theorem [GauB 1801]:

» (quadratic reciprocity) If p, g are odd primes then

p q
> (Supp|enle |ta|y |aWS)

N e ) 1 op=E 1 (mod 4)
(p>_( D {—1 p=-1 (mod 4)

2\ 2o | 1 p=+1 (mod 8)
(_>_(_1) _{—1 p==+3 (mod 8)
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Reciprocity laws

v

quadratic reciprocity conjectured by L. Euler

v

incomplete proof attempt by A.-M. Legendre

» C. F. GauB: gives 8 proofs of “aureum theorema”
over 240 proofs published by now (cf. [Lemmermeyer'00])
» generalized and more abstract reciprocity laws
central topic in algebraic number theory ever since
(Hilbert r., Artin r., Langlands program, ...)
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Jacobi symbol

ae€Z, n>0o0dd, n= H,.<k p,-e" prime factorization:
a a\®
(-1

> a (2) still n-periodic, completely multiplicative

~ Euler's criterion, (%élé)—a%g—émed—ﬁ)
> (2) #0 < gcd(a,n) =1
» quadratic reciprocity: n,m > 0 odd —

()= ()
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Efficient computation of (ﬁ)

Definition of the Jacobi symbol (ﬁ) requires factorization of N

Reciprocity = polynomial-time algorithm (= gcd):

r<1
while A # 0 do:
if A< 0 then:
A+ —A
r+ —rif N=-1 (mod 4)
while A is even do:
A+ AJ2
r<+ —rif N =43 (mod 8)
swap A and N
A+ —Aif A= -1 (mod 4)
reduce A modulo N so that |A| < N/2
if N > 1 then output 0 else output r
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GaulB3’s lemma in TPPA

Several proofs of QRT (GauB 3&5, Eisenstein 3, ...) based on

GauB's lemma: p odd prime, P* = {1,..., 25!} —
(3) _ (—1)#{m € P : (mamod p) ¢ P*}
p

» Only the parity of the set matters
» Key insight: One can witness the parity by explicit
poly-time involutions!

Related work:

» [H-B'84], [Zag'90]: Fermat's 2-(J theorem by involutions
» [BI'91]: Supplementary laws by mod 8 counting principles
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Quadratic reciprocity in TPPA

Theorem [J'10]: TPPA proves

» Quadratic reciprocity theorem + supplementary laws,
for Legendre and Jacobi symbols

» Multiplicativity of Legendre and Jacobi symbols

Corollary:
TPPA proves soundness of the poly-time algorithm

There is a PV-function J(a, n) s.t.

TPPAF n>0o0dd = J(a,n) = G)
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Witnessing argument

Legendre symbol special case of Jacobi symbol
—> the poly-time algorithm applies to it:

TPPAF J(a,n)=1Anprime = a=01 (mod n)

Reformulate as a V3% statement:

TPPA\ J(a,n) =1 = 3b (b factor of nor a=b*> (n))

= can apply the witnessing theorem for TPPA
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Witnessing argument (cont’d)

Corollary
The problem FACROOT is in PPA:

> given Aand odd N > 0s.t. (4) =1, find

» a proper factor of IV, or
» a square root of A modulo N
Note:

» direct construction possible, but complicated
(messy dynamic programming)
» [Buresh-Oppenheim’06]: the special case A = —1
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Randomized reduction

Bl

a random A is a quadratic nonresidue mod N s.t. (%)

Lemma: N > 0 odd, not a prime power = with prob. >
1

Corollary:
» FACTORING has a randomized poly-time reduction to

FacRoot € PPA

» FULLFACTORING has a randomized poly-time reduction
to PO C PPA

Derandomization: FULLFACTORING € PPA

assuming a generalized /extended Riemann hypothesis
(for quadratic Dirichlet L-functions)
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Unconditional deterministic results

Theorem: The following problems are in PPA:

» NAeN+— Bst B?>=A (mod N) if it exists
> N odd, not a perfect square —» Asit. (§) = —1
» N >3+ quadratic nonresidue A € (Z/NZ)*

Definition: N is M-strongly composite if N is a product of two
quadratic nonresidues modulo M

Factoring of M-strongly composite numbers is in PPA for

» M constant, or
> M = (log N)C!<——factoria|. not exclamation
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» Full unconditional derandomization:
is FACTORING in PPA?

» Other classes:
does FACTORING reduce to PPA-3 or PPAD?
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