Factoring and bounded arithmetic

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Czech Academy of Sciences, Prague

Symposium on 50 Years of Complexity Theory: A Celebration of the Work of Stephen Cook Toronto, May 2019

Outline

(1) Bounded arithmetic and witnessing theorems

2 Search problems and classes
(3) Quadratic reciprocity

4 Factoring and PPA

Bounded arithmetic and witnessing theorems

(1) Bounded arithmetic and witnessing theorems

2 Search problems and classes

3 Quadratic reciprocity
4. Factoring and PPA

Proof complexity

Background: [Cook\&Nguyen'10], [Krajíček'19]
The big picture: a loose 3-way correspondence between

- Propositional proof systems
- Complexity classes
- Theories of arithmetic

Proof complexity

Background: [Cook\&Nguyen'10], [Krajíček'19]
The big picture: a loose 3-way correspondence between

- Propositional proof systems
- proof systems P for classical propositional logic: a formula is a tautology \Longleftrightarrow it has a P-proof
- P-proofs recognizable in polynomial time
- main measure: length of proofs polynomial? exponential?
- examples: resolution, sequent calculus, polynomial calculus, ...
- Complexity classes
- Theories of arithmetic

Proof complexity

Background: [Cook\&Nguyen'10], [Krajíček'19]
The big picture: a loose 3-way correspondence between

- Propositional proof systems
- Complexity classes
- depending on setup, language or search problem classes
$-\mathrm{AC}^{0}, \mathrm{TC}^{0}, \mathrm{NC}^{1}, \mathrm{P}, \mathrm{NP}, \Sigma_{k}^{p}$, PSPACE,$\ldots$
- Theories of arithmetic

Proof complexity

Background: [Cook\&Nguyen'10], [Krajíček'19]
The big picture: a loose 3-way correspondence between

- Propositional proof systems
- Complexity classes
- Theories of arithmetic
- weak first-order theories, valid in $\langle\mathbb{N},+, \cdot\rangle$
- one-sorted (numbers) or two-sorted (1: unary/index numbers, 2 : sets \approx strings \approx binary numbers)
- induction/comprehension for restricted class of formulas
- bounded quantifiers: $\exists x<t \varphi(x), \forall x<t \varphi(x)$

Theories vs. classes

Theory T corresponds to complexity class C :

- C-problems definable in \mathbb{N} by formulas from Φ_{C}
- these definitions "provably total" in T
(and "well behaved")
- Φ_{C}-definable problems provably total in T are in C
- witnessing theorems
- T can "reason" with C-concepts
- it proves induction/comprehension schemata for Φ_{C}

Witnessing theorems

Theorem template:
If T proves $\forall x \exists y \varphi(x, y)$, where $\varphi \in \Phi$
$\Longrightarrow \exists$ a function $/$ search problem $f \in C$ s.t.

$$
\mathbb{N} \vDash \forall x \varphi(x, f(x))
$$

Prototypical example:
Theorem (Buss): If $S_{2}^{1} \vdash \forall x \exists y \varphi(x, y)$, where $\varphi \in \Sigma_{1}^{b}$, then there is $f \in \mathrm{FP}$ s.t. $\mathbb{N} \vDash \forall x \varphi(x, f(x))$

- S_{2}^{1} : a theory corresponding to P
- $\Sigma_{1}^{b}: \approx \mathrm{NP}$

Applications of witnessing theorems

Common argument: T does not prove XYZ

- Assume it does
- By FGH witnessing theorem, there is $f \in C$ that computes UVW
- UVW is not computable in C because...
\Longrightarrow contradiction
Typically, C is relativized or there are further assumptions

Constructive applications?

In principle, witnessing may work in the forward direction:

- Prove XYZ in T
- Infer the existence of a C-algorithm computing UVW

This is uncommon:

- Formalizing proofs in T is hard: to get anything done, we usually need to start with C-algorithms for the main steps, and then some ...
- Algorithms extracted by cut elimination from T-proofs tend to be crude and bloated
\Longrightarrow direct construction is usually more efficient
- More people work on algorithms than on bounded arithmetic \Rightarrow someone would have already thought of it

Room to make a difference

Bounded arithmetic offers one advantage: it supports (a little bit of) abstract reasoning

Illustration: two theories corresponding to P

- $P V_{1}$ (or VPV): bare-bones P-theory
- FP-function symbols
- defining equations, induction for P -predicates
- $S_{2}^{1}\left(\right.$ or $\left.V^{1}\right)$:
- + a form of NP-induction
- Both: provably total NP-search problems $=$ FP
- S_{2}^{1} proves: every integer has a prime factorization!

This talk

The complexity of integer factoring

- [Buresh-Oppenheim'06] Factoring of integers N s.t.

$$
N \equiv 1 \quad(\bmod 4), \quad-1 \not \equiv \square \quad(\bmod N)
$$

can be done in the class PPA

- [J'16] Factoring of general integers has a randomized reduction to PPA
- [J'10] Prove the quadratic reciprocity theorem in a theory corresponding to PPA
- Apply a witnessing theorem and an easy reduction

Search problems and classes

(1) Bounded arithmetic and witnessing theorems

2 Search problems and classes
(3) Quadratic reciprocity

4 Factoring and PPA

NP search problems

This talk: complexity of search problems, not languages NP search problems:

- defined by a poly-time relation $R(x, y),|y| \leq|x|^{c}$
- task: input $x \longmapsto$ output some y s.t. $R(x, y)$
- FNP = class of all NP search problems
- TFNP $=$ subclass of total problems: $\forall x \exists y R(x, y)$

Examples

- FACTORING: composite $N \in \mathbb{N} \longmapsto$ a proper factor of N
- Fullfactoring: $N \in \mathbb{N} \longmapsto N=\prod_{i<k} P_{i}, P_{i}$ primes
- ModSqRoot: $N, A \in \mathbb{N} \longmapsto B$ s.t. $B^{2} \equiv A(\bmod N)$

PPA

PPA [Papadimitriou'94]:
Class of TFNP problems total due to a "parity argument"
Complete problem LEAF:

- Succinct graph G of degree ≤ 2, leaf vertex v_{0} \longmapsto leaf vertex $v_{1} \neq v_{0}$
- Total because $\sum_{v} \operatorname{deg}(v)$ is even

Alternative PPA-complete problem:
Lonely [BCEIP'98]

- Succinct partial matching on $\{0,1\}^{n} \backslash\left\{0^{n}\right\}$ \longmapsto unmatched vertex

TFNP classes by counting arguments

TFNP classes by counting arguments

FActoring has randomized reductions to PPA and PWPP

A theory for PPA

Recall: theory S_{2}^{1} corresponds to FP
Axiom Count ${ }_{2}(f)$: variant of Lonely

$$
\forall a, p \exists x(f(x, p)>2 a \vee f(f(x, p), p) \neq x \vee f(x, p)=x)
$$

"If $f(-, p)$ is an involution on $[2 a+1]$, it has a fixpoint"
Theory TPPA $=S_{2}^{1}+$ Count $_{2}(P V)$ corresponds to PPA:
Theorem: If TPPA $\vdash \forall x \exists y \varphi(x, y)$, where $\varphi \in \Sigma_{1}^{b}$, then the search problem $x \longmapsto y$ s.t. $\varphi(x, y)$ is in PPA

Relies on [Buss\&Johnson'12]: $\mathrm{FP}^{\text {PPA }}=\mathrm{PPA}$

Quadratic reciprocity

(1) Bounded arithmetic and witnessing theorems

2 Search problems and classes
(3) Quadratic reciprocity
4) Factoring and PPA

Legendre symbol

$a \in \mathbb{Z}, p$ odd prime:

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{rll}
0 & \text { if } a \equiv 0 \quad(\bmod p) \\
1 & \text { if a quadratic residue } & (\bmod p) \\
-1 & \text { if a quadratic nonresidue } & (\bmod p)
\end{array}\right.
$$

$a \mapsto\left(\frac{a}{p}\right)$ is a Dirichlet character:
p-periodic and completely multiplicative

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)
$$

Euler's criterion:

$$
\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

Quadratic reciprocity theorem

Notation: $p^{*}=(-1)^{\frac{p-1}{2}} p \Longrightarrow p^{*}= \pm p$ and $p^{*} \equiv 1$ (4)
Theorem [Gauß 1801]:

- (quadratic reciprocity) If p, q are odd primes then

$$
\left(\frac{q}{p}\right)=\left(\frac{p^{*}}{q}\right)
$$

- (supplementary laws)

$$
\begin{aligned}
\left(\frac{-1}{p}\right) & =(-1)^{\frac{p-1}{2}}=\left\{\begin{array}{rll}
1 & p \equiv 1 & (\bmod 4) \\
-1 & p \equiv-1 & (\bmod 4)
\end{array}\right. \\
\left(\frac{2}{p}\right) & =(-1)^{\frac{p^{2}-1}{8}}=\left\{\begin{array}{rll}
1 & p \equiv \pm 1 & (\bmod 8) \\
-1 & p \equiv \pm 3 & (\bmod 8)
\end{array}\right.
\end{aligned}
$$

Reciprocity laws

- quadratic reciprocity conjectured by L. Euler
- incomplete proof attempt by A.-M. Legendre
- C. F. Gauß: gives 8 proofs of "aureum theorema" over 240 proofs published by now (cf. [Lemmermeyer'00])
- generalized and more abstract reciprocity laws central topic in algebraic number theory ever since (Hilbert r., Artin r., Langlands program, ...)

Jacobi symbol

$a \in \mathbb{Z}, n>0$ odd, $n=\prod_{i<k} p_{i}^{e_{i}}$ prime factorization:

$$
\left.\left({ }^{(0}\right)=\Pi_{1}^{(0)}\left(\frac{(}{a}\right)^{a}\right)
$$

- $a \mapsto\left(\frac{a}{n}\right)$ still n-periodic, completely multiplicative
- Euler's criterion, $\left(\frac{a}{n}\right)=1 \Longrightarrow a=\square(\bmod n)$
- $\left(\frac{a}{n}\right) \neq 0 \Longleftrightarrow \operatorname{gcd}(a, n)=1$
- quadratic reciprocity: $n, m>0$ odd \Longrightarrow

$$
\left(\frac{m}{n}\right)=\left(\frac{n^{*}}{m}\right)
$$

- supplementary laws

Efficient computation of $\left(\frac{A}{N}\right)$

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N
Reciprocity \Longrightarrow polynomial-time algorithm ($\approx \mathrm{gcd}$):
$r \leftarrow 1$
while $A \neq 0$ do:
if $A<0$ then:

$$
A \leftarrow-A
$$

$$
r \leftarrow-r \text { if } N \equiv-1(\bmod 4)
$$

while A is even do:

$$
\begin{aligned}
& A \leftarrow A / 2 \\
& r \leftarrow-r \text { if } N \equiv \pm 3(\bmod 8)
\end{aligned}
$$

swap A and N
$A \leftarrow-A$ if $A \equiv-1(\bmod 4)$
reduce A modulo N so that $|A|<N / 2$
if $N>1$ then output 0 else output r

Efficient computation of $\left(\frac{A}{N}\right)$

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N
Reciprocity \Longrightarrow polynomial-time algorithm ($\approx \mathrm{gcd}$):
$r \leftarrow 1$
while $A \neq 0$ do:
if $A<0$ then:

$$
A \leftarrow-A
$$

$$
r \leftarrow-r \text { if } N \equiv-1(\bmod 4)
$$

while A is even do:

$$
\begin{aligned}
& A \leftarrow A / 2 \\
& r \leftarrow-r \text { if } N \equiv \pm 3(\bmod 8)
\end{aligned}
$$

swap A and N
$A \leftarrow-A$ if $A \equiv-1(\bmod 4)$
reduce A modulo N so that $|A|<N / 2$
if $N>1$ then output 0 else output r

Efficient computation of $\left(\frac{A}{N}\right)$

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N
Reciprocity \Longrightarrow polynomial-time algorithm ($\approx \mathrm{gcd}$):
$r \leftarrow 1$
while $A \neq 0$ do:
if $A<0$ then:

$$
A \leftarrow-A
$$

$$
r \leftarrow-r \text { if } N \equiv-1(\bmod 4)
$$

while A is even do:

$$
\begin{aligned}
& A \leftarrow A / 2 \\
& r \leftarrow-r \text { if } N \equiv \pm 3(\bmod 8)
\end{aligned}
$$

swap A and N
$A \leftarrow-A$ if $A \equiv-1(\bmod 4)$
reduce A modulo N so that $|A|<N / 2$
if $N>1$ then output 0 else output r

Efficient computation of $\left(\frac{A}{N}\right)$

Definition of the Jacobi symbol $\left(\frac{A}{N}\right)$ requires factorization of N
Reciprocity \Longrightarrow polynomial-time algorithm ($\approx \mathrm{gcd}$):
$r \leftarrow 1$
while $A \neq 0$ do:
if $A<0$ then:

$$
A \leftarrow-A
$$

$$
r \leftarrow-r \text { if } N \equiv-1(\bmod 4)
$$

while A is even do:

$$
\begin{aligned}
& A \leftarrow A / 2 \\
& r \leftarrow-r \text { if } N \equiv \pm 3(\bmod 8)
\end{aligned}
$$

swap A and N
$A \leftarrow-A$ if $A \equiv-1(\bmod 4)$
reduce A modulo N so that $|A|<N / 2$
if $N>1$ then output 0 else output r

Gauß's lemma in TPPA

Several proofs of QRT (Gauß 3\&5, Eisenstein 3, ...) based on Gauß's lemma: p odd prime, $P^{+}=\left\{1, \ldots, \frac{p-1}{2}\right\} \Longrightarrow$

$$
\left(\frac{a}{p}\right)=(-1)^{\#\left\{m \in P^{+}:(\operatorname{ma} \bmod p) \notin P^{+}\right\}}
$$

- Only the parity of the set matters
- Key insight: One can witness the parity by explicit poly-time involutions!

Related work:

- [H-B'84], [Zag'90]: Fermat's 2- \square theorem by involutions
- [Bl'91]: Supplementary laws by mod 8 counting principles

Quadratic reciprocity in TPPA

Theorem [J'10]: TPPA proves

- Quadratic reciprocity theorem + supplementary laws, for Legendre and Jacobi symbols
- Multiplicativity of Legendre and Jacobi symbols

Corollary:
TPPA proves soundness of the poly-time algorithm
There is a $P V$-function $J(a, n)$ s.t.

$$
\text { TPPA } \vdash n>0 \text { odd } \Longrightarrow J(a, n)=\left(\frac{a}{n}\right)
$$

Factoring and PPA

(1) Bounded arithmetic and witnessing theorems

2 Search problems and classes
(3) Quadratic reciprocity
4) Factoring and PPA

Witnessing argument

Legendre symbol special case of Jacobi symbol
\Longrightarrow the poly-time algorithm applies to it:

$$
\text { TPPA } \vdash J(a, n)=1 \wedge n \text { prime } \Longrightarrow a \equiv \square \quad(\bmod n)
$$

Reformulate as a $\forall \sum_{1}^{b}$ statement:

$$
T P P A \vdash J(a, n)=1 \Longrightarrow \exists b\left(b \text { factor of } n \text { or } a \equiv b^{2}\right.
$$

\Longrightarrow can apply the witnessing theorem for TPPA

Witnessing argument (cont'd)

Corollary
The problem FacRoot is in PPA:

- given A and odd $N>0$ s.t. $\left(\frac{A}{N}\right)=1$, find
- a proper factor of N, or
- a square root of A modulo N

Note:

- direct construction possible, but complicated (messy dynamic programming)
- [Buresh-Oppenheim'06]: the special case $A=-1$

Randomized reduction

Lemma: $N>0$ odd, not a prime power \Longrightarrow with prob. $\geq \frac{1}{4}$: a random A is a quadratic nonresidue $\bmod N$ s.t. $\left(\frac{A}{N}\right)=1$

Corollary:

- Factoring has a randomized poly-time reduction to FacRoot \in PPA
- FullFactoring has a randomized poly-time reduction to $\mathrm{FP}^{\text {FAcRoot }} \subseteq \mathrm{PPA}$

Derandomization: FullFactoring \in PPA assuming a generalized/extended Riemann hypothesis (for quadratic Dirichlet L-functions)

Unconditional deterministic results

Theorem: The following problems are in PPA:

- $N, A \in \mathbb{N} \longmapsto B$ s.t. $B^{2} \equiv A(\bmod N)$ if it exists
$-N$ odd, not a perfect square $\longmapsto A$ s.t. $\left(\frac{A}{N}\right)=-1$
- $N \geq 3 \longmapsto$ quadratic nonresidue $A \in(\mathbb{Z} / N \mathbb{Z})^{\times}$

Definition: N is M-strongly composite if N is a product of two quadratic nonresidues modulo M

Factoring of M-strongly composite numbers is in PPA for

- M constant, or
- $M=(\log N)^{c}!_{\leftarrow \text { factorial, not }}$ exclamation

Open problems

- Full unconditional derandomization:
is FActoring in PPA?
- Other classes:
does FActoring reduce to PPA-3 or PPAD?

Thank you for attention!

References

- P. Beame, S. Cook, J. Edmonds, R. Impagliazzo, T. Pitassi: The relative complexity of NP search problems, J. Comput. System Sci. 57 (1998), 3-19
- A. Berarducci, B. Intrigila: Combinatorial principles in elementary number theory, Ann. Pure Appl. Logic 55 (1991), 35-50
- J. Buresh-Oppenheim: On the TFNP complexity of factoring, http://www.cs.toronto.edu/~bureshop/factor.pdf (2006)
- S. R. Buss, A. S. Johnson: Propositional proofs and reductions between NP search problems, Ann. Pure Appl. Logic 163 (2012), 1163-1182
- S. A. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press (2010)
- C. F. Gauß: Disquisitiones arithmeticae, Fleischer, Leipzig (1801)
- R. Heath-Brown: Fermat's two squares theorem, Invariant 11 (1984), 3-5

References

- E.J.: Abelian groups and quadratic residues in weak arithmetic, Math. Logic Quart. 56 (2010), 262-278
- E.J.: Integer factoring and modular square roots, J. Comput. System Sci. 82 (2016), 380-394
- J. Krajíček: Proof complexity, Cambridge Univ. Press (2019)
- F. Lemmermeyer: Reciprocity laws, Springer (2000)
- C. H. Papadimitriou: On the complexity of the parity argument and other inefficient proofs of existence, J. Comput. System Sci. 48 (1994), 498-532
- D. Zagier: A one-sentence proof that every prime $p \equiv 1(\bmod 4)$ is a sum of two squares, Amer. Math. Monthly 97 (1990), 144

