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Proof complexity

Background: [Cook&Nguyen’10], [Kraj́ıček’19]

The big picture: a loose 3-way correspondence between

I Propositional proof systems
I proof systems P for classical propositional logic:

a formula is a tautology ⇐⇒ it has a P-proof
I P-proofs recognizable in polynomial time
I main measure: length of proofs

polynomial? exponential?
I examples: resolution, sequent calculus, polynomial

calculus, . . .

I Complexity classes

I Theories of arithmetic
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Proof complexity

Background: [Cook&Nguyen’10], [Kraj́ıček’19]

The big picture: a loose 3-way correspondence between

I Propositional proof systems

I Complexity classes
I depending on setup, language or search problem classes
I AC0, TC0, NC1, P, NP, Σp

k , PSPACE, . . .

I Theories of arithmetic
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Proof complexity

Background: [Cook&Nguyen’10], [Kraj́ıček’19]

The big picture: a loose 3-way correspondence between

I Propositional proof systems

I Complexity classes

I Theories of arithmetic
I weak first-order theories, valid in 〈N,+, ·〉
I one-sorted (numbers) or two-sorted (1: unary/index

numbers, 2: sets ≈ strings ≈ binary numbers)
I induction/comprehension for restricted class of formulas
I bounded quantifiers: ∃x < t ϕ(x), ∀x < t ϕ(x)
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Theories vs. classes

Theory T corresponds to complexity class C :

I C -problems definable in N by formulas from ΦC

I these definitions “provably total” in T
(and “well behaved”)

I ΦC -definable problems provably total in T are in C
I witnessing theorems

I T can “reason” with C -concepts
I it proves induction/comprehension schemata for ΦC
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Witnessing theorems

Theorem template:
If T proves ∀x ∃y ϕ(x , y), where ϕ ∈ Φ
=⇒ ∃ a function/search problem f ∈ C s.t.

N � ∀x ϕ(x , f (x))

Prototypical example:

Theorem (Buss): If S1
2 ` ∀x ∃y ϕ(x , y), where ϕ ∈ Σb

1, then
there is f ∈ FP s.t. N � ∀x ϕ(x , f (x))

I S1
2 : a theory corresponding to P

I Σb
1: ≈ NP

Emil Jěrábek Factoring and bounded arithmetic Cook Symposium 2019 3:23



Applications of witnessing theorems

Common argument: T does not prove XYZ

I Assume it does

I By FGH witnessing theorem, there is f ∈ C
that computes UVW

I UVW is not computable in C because . . .
=⇒ contradiction

Typically, C is relativized or there are further assumptions
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Constructive applications?

In principle, witnessing may work in the forward direction:

I Prove XYZ in T

I Infer the existence of a C -algorithm computing UVW

This is uncommon:

I Formalizing proofs in T is hard:
to get anything done, we usually need to start with
C -algorithms for the main steps, and then some . . .

I Algorithms extracted by cut elimination from T -proofs
tend to be crude and bloated
=⇒ direct construction is usually more efficient

I More people work on algorithms than on bounded
arithmetic ⇒ someone would have already thought of it
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Room to make a difference

Bounded arithmetic offers one advantage:
it supports (a little bit of) abstract reasoning

Illustration: two theories corresponding to P

I PV1 (or VPV ): bare-bones P-theory
I FP-function symbols
I defining equations, induction for P-predicates

I S1
2 (or V 1):
I + a form of NP-induction

I Both: provably total NP-search problems = FP

I S1
2 proves: every integer has a prime factorization!
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This talk

The complexity of integer factoring

I [Buresh-Oppenheim’06] Factoring of integers N s.t.

N ≡ 1 (mod 4), −1 6≡ � (mod N),

can be done in the class PPA

I [J’16] Factoring of general integers
has a randomized reduction to PPA

I [J’10] Prove the quadratic reciprocity theorem in a
theory corresponding to PPA

I Apply a witnessing theorem and an easy reduction
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NP search problems

This talk: complexity of search problems, not languages

NP search problems:

I defined by a poly-time relation R(x , y), |y | ≤ |x |c

I task: input x 7−→ output some y s.t. R(x , y)

I FNP = class of all NP search problems

I TFNP = subclass of total problems: ∀x ∃y R(x , y)

Examples

I Factoring: composite N ∈ N 7−→ a proper factor of N

I FullFactoring: N ∈ N 7−→ N =
∏

i<k Pi , Pi primes

I ModSqRoot: N ,A ∈ N 7−→ B s.t. B2 ≡ A (mod N)
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PPA

PPA [Papadimitriou’94]:
Class of TFNP problems total due to a “parity argument”

Complete problem Leaf:

I Succinct graph G of degree ≤ 2, leaf vertex v0
7−→ leaf vertex v1 6= v0

I Total because
∑

v deg(v) is even

Alternative PPA-complete problem:

Lonely [BCEIP’98]

I Succinct partial matching on {0, 1}n r {0n}
7−→ unmatched vertex
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TFNP classes by counting arguments

PPAD

0 6= 1
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x < x + 1
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x < 2x

Factoring has randomized reductions to PPA and PWPP
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A theory for PPA

Recall: theory S1
2 corresponds to FP

Axiom Count2(f ): variant of Lonely

∀a, p ∃x
(
f (x , p) > 2a ∨ f (f (x , p), p) 6= x ∨ f (x , p) = x

)
“If f (−, p) is an involution on [2a + 1], it has a fixpoint”

Theory TPPA = S1
2 + Count2(PV ) corresponds to PPA:

Theorem: If TPPA ` ∀x ∃y ϕ(x , y), where ϕ ∈ Σb
1, then the

search problem x 7−→ y s.t. ϕ(x , y) is in PPA

Relies on [Buss&Johnson’12]: FPPPA = PPA
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Legendre symbol

a ∈ Z, p odd prime:

(
a

p

)
=


0 if a ≡ 0 (mod p)

1 if a quadratic residue (mod p)

−1 if a quadratic nonresidue (mod p)

a 7→
(
a
p

)
is a Dirichlet character:

p-periodic and completely multiplicative(
a

p

)(
b

p

)
=

(
ab

p

)
Euler’s criterion: (

a

p

)
≡ a

p−1
2 (mod p)
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Quadratic reciprocity theorem

Notation: p∗ = (−1)
p−1
2 p =⇒ p∗ = ±p and p∗ ≡ 1 (4)

Theorem [Gauß 1801]:

I (quadratic reciprocity) If p, q are odd primes then(
q

p

)
=

(
p∗

q

)
I (supplementary laws)(

−1

p

)
= (−1)

p−1
2 =

{
1 p ≡ 1 (mod 4)

−1 p ≡ −1 (mod 4)(
2

p

)
= (−1)

p2−1
8 =

{
1 p ≡ ±1 (mod 8)

−1 p ≡ ±3 (mod 8)
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Reciprocity laws

I quadratic reciprocity conjectured by L. Euler

I incomplete proof attempt by A.-M. Legendre

I C. F. Gauß: gives 8 proofs of “aureum theorema”
over 240 proofs published by now (cf. [Lemmermeyer’00])

I generalized and more abstract reciprocity laws
central topic in algebraic number theory ever since
(Hilbert r., Artin r., Langlands program, . . . )
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Jacobi symbol

a ∈ Z, n > 0 odd, n =
∏

i<k p
ei
i prime factorization:(

a

n

)
=
∏
i<k

(
a

pi

)ei

I a 7→
(
a
n

)
still n-periodic, completely multiplicative

I Euler’s criterion,
(
a
n

)
= 1 =⇒ a ≡ � (mod n)

I
(
a
n

)
6= 0 ⇐⇒ gcd(a, n) = 1

I quadratic reciprocity: n,m > 0 odd =⇒(
m

n

)
=

(
n∗

m

)
I supplementary laws
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Efficient computation of
(
A
N

)
Definition of the Jacobi symbol

(
A
N

)
requires factorization of N

Reciprocity =⇒ polynomial-time algorithm (≈ gcd):

r ← 1
while A 6= 0 do:

if A < 0 then:
A← −A
r ← −r if N ≡ −1 (mod 4)

while A is even do:
A← A/2
r ← −r if N ≡ ±3 (mod 8)

swap A and N
A← −A if A ≡ −1 (mod 4)
reduce A modulo N so that |A| < N/2

if N > 1 then output 0 else output r
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Gauß’s lemma in TPPA

Several proofs of QRT (Gauß 3&5, Eisenstein 3, . . . ) based on

Gauß’s lemma: p odd prime, P+ = {1, . . . , p−1
2
} =⇒(

a

p

)
= (−1)#{m ∈ P+ : (ma mod p) /∈ P+}

I Only the parity of the set matters

I Key insight: One can witness the parity by explicit
poly-time involutions!

Related work:

I [H-B’84], [Zag’90]: Fermat’s 2-� theorem by involutions

I [BI’91]: Supplementary laws by mod 8 counting principles
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Quadratic reciprocity in TPPA

Theorem [J’10]: TPPA proves

I Quadratic reciprocity theorem + supplementary laws,
for Legendre and Jacobi symbols

I Multiplicativity of Legendre and Jacobi symbols

Corollary:
TPPA proves soundness of the poly-time algorithm

There is a PV -function J(a, n) s.t.

TPPA ` n > 0 odd =⇒ J(a, n) =

(
a

n

)
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Witnessing argument

Legendre symbol special case of Jacobi symbol
=⇒ the poly-time algorithm applies to it:

TPPA ` J(a, n) = 1 ∧ n prime =⇒ a ≡ � (mod n)

Reformulate as a ∀Σb
1 statement:

TPPA ` J(a, n) = 1 =⇒ ∃b
(
b factor of n or a ≡ b2 (n)

)
=⇒ can apply the witnessing theorem for TPPA
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Witnessing argument (cont’d)

Corollary
The problem FacRoot is in PPA:

I given A and odd N > 0 s.t.
(
A
N

)
= 1, find

I a proper factor of N, or
I a square root of A modulo N

Note:

I direct construction possible, but complicated
(messy dynamic programming)

I [Buresh-Oppenheim’06]: the special case A = −1
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Randomized reduction

Lemma: N > 0 odd, not a prime power =⇒ with prob. ≥ 1
4
:

a random A is a quadratic nonresidue mod N s.t.
(
A
N

)
= 1

Corollary:

I Factoring has a randomized poly-time reduction to
FacRoot ∈ PPA

I FullFactoring has a randomized poly-time reduction
to FPFacRoot ⊆ PPA

Derandomization: FullFactoring ∈ PPA
assuming a generalized/extended Riemann hypothesis
(for quadratic Dirichlet L-functions)
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Unconditional deterministic results

Theorem: The following problems are in PPA:

I N ,A ∈ N 7−→ B s.t. B2 ≡ A (mod N) if it exists

I N odd, not a perfect square 7−→ A s.t.
(
A
N

)
= −1

I N ≥ 3 7−→ quadratic nonresidue A ∈ (Z/NZ)×

Definition: N is M-strongly composite if N is a product of two
quadratic nonresidues modulo M

Factoring of M-strongly composite numbers is in PPA for

I M constant, or

I M = (logN)c !←−factorial, not exclamation
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Open problems

I Full unconditional derandomization:
is Factoring in PPA?

I Other classes:
does Factoring reduce to PPA-3 or PPAD?
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Thank you for attention!
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