Root finding in TC^{0} and open induction

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Overview

Correspondence of theories of arithmetic T and complexity classes C :

- The provably total computable functions of T are $F C$
- T can reason using predicates from C (comprehension, induction, ...)

Feasible reasoning:

- Given a natural concept $P \in C$, what can we prove about P using only concepts from C ?
- That is: what T proves about P ?

Our P : elementary integer arithmetic operations $+, \cdot, \leq$

Small complexity classes

$$
\mathbf{A C}^{0} \subseteq \mathbf{A C C}^{0} \subseteq \mathbf{T C}^{0} \subseteq \mathbf{N C}^{1} \subseteq \mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{A C}^{1} \subseteq \cdots \subseteq \mathbf{P}
$$

All circuit classes are assumed uniform.

- AC^{0} : constant-depth poly-size unbounded fan-in circuits with \wedge, \vee, \neg gates
$=\mathrm{FO}=\log$ time, $O(1)$ alternations on an alternating TM
- $\mathbf{A C C}^{0}:+M O D_{m}$ gates, constant m
- TC^{0} : + majority gates
- NC^{1} : log-depth bounded fan-in circuits
= poly-size formulas = alternating log time
- L: log space on a deterministic TM

Complexity of arithmetic operations

For integers given in binary:
. + and \leq are in AC^{0}

- x is in TC^{0}
TC^{0}-complete under AC^{0} Turing reductions
$\mathrm{TC}^{0}=$ DLOGTIME-uniform $O(1)$-depth $n^{O(1)}$-size
threshold circuits
$=O(\log n)$ time, $O(1)$ thresholds on a threshold TM
$=$ FOM (first-order logic with majority quantifiers)

The power of TC^{0}

TC ${ }^{0}$ can do:

- integer multiplication and iterated addition $\sum_{i<n} x_{i}$
- [BCH'86,CDL'01,HAB'02] integer division and iterated multiplication
- the corresponding operations on $\mathbb{Q}, \mathbb{Q}(i)$
- approximate functions given by nice power series:
- $\sin x, \log x, \sqrt[k]{x}$
- sorting, ...
\Rightarrow the right class for basic arithmetic operations

The theory $V T C^{0}$

The most common theory corresponding to TC^{0} is $V T C^{0}$:

- Zambella-style two-sorted bounded arithmetic
. unary (auxiliary) integers x, y, \ldots with $0,1,+, \cdot, \leq$
- finite sets $X, Y, \ldots=$ binary integers $=$ binary strings
- $x \in X,|X|=\sup \{x+1: x \in X\}$
- Noteworthy axioms:
- Σ_{0}^{B}-comprehension ($\Sigma_{0}^{B}=$ bounded, w/o SO q'fiers)
- every set has a counting function
- Σ_{1}^{1}-definable functions are exactly FTC 0
- Has induction, minimization, ... for TC ${ }^{0}$-predicates

Arithmetic in $V T C^{0}$

$V T C^{0}$

- can define $+, \cdot, \leq$ on binary integers
- proves integers form a discretely ordered ring ($D O R$)

Basic question:
What other properties of $+, \cdot, \leq$ are provable in $V T C^{0}$?
More formally:
Let I be the interpretation of $D O R$ in $V T C^{0}$ by binary integers. What is the first-order theory

$$
\left\{\varphi \in \operatorname{Form}_{+,,, \leq}: V T C^{0} \vdash \varphi^{I}\right\}
$$

Annoying trouble: Unknown if $V T C^{0}$ can formalize the [HAB'02] algorithms for iterated multiplication and division

$$
V T C^{0} \stackrel{?}{\vdash} \forall X \forall Y>0 \exists Q \exists R<Y(X=Y \cdot Q+R)
$$

\Rightarrow Consider iterated multiplication as an additional axiom:
(IMUL) $\forall X, n \exists Y \forall i \leq j<n\left(Y^{[\langle i, i\rangle]}=1 \wedge Y^{[\langle i, j+1\rangle]}=Y^{[\langle i, j\rangle]} \cdot X^{[j]}\right)$
Think $Y^{[i, j\rangle]}=\prod_{k=i}^{j-1} X^{[k]}$
Note: $V T C^{0}+I M U L$ also corresponds to TC^{0}

Open induction

The weakest arithmetic theory with a nontrivial fragment of the induction schema:
$I O$ pen $=D O R+$ induction for open formulas φ in $\langle+, \cdot, \leq\rangle$

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x \geq 0 \varphi(x)
$$

[Shep'64]
Main question: Does $V T C^{0}$ or $V T C^{0}+$ IMUL prove IOpen for binary integers?
N.B.: IOpen is $\forall \exists$. Its universal fragment is included in the theory of \mathbb{Z}-rings ($D O R+\exists\lfloor x / n\rfloor$ for any standard $n>0$), provable in $V T C^{0}$
\Rightarrow we mainly care about witnesses to \exists in axioms of IOpen

IOpen algebraized

For a $D O R$, the following are equivalent [Shep'64]:

- $M \vDash$ IOpen
- M is an integer part of its real closure $R=\operatorname{rcl}(M)$
- $R=$ the maximal ordered field algebraic over M
- $\forall \alpha \in R \exists x \in M(x \leq \alpha<x+1)$
- If $u<v \in M$ and $f \in M[x]$ is such that $f(u) \leq 0<f(v)$, there is $u \leq x<v$ in M such that $f(x) \leq 0<f(x+1)$

One can also reformulate these conditions in terms of the algebraic closure acl $(M)=R(i)$

Open induction and root finding

Algebraic characterization of IOpen and Σ_{1}^{1}-witnessing theorem for $V T C^{0}$ yield
Lemma: The following are equivalent.

- $V T C^{0}$ proves IOpen
- For any constant $d>0$, there is a TC 0 algorithm for approximation of (real or complex) roots of degree d polynomials (over \mathbb{Z}, \mathbb{Q}, or $\mathbb{Q}(i)$) whose correctness is provable in $V T C^{0}$

The same holds also for $V T C^{0}+I M U L$ and extensions by true universal axioms

TC^{0} root finding

Root-finding algorithms

Goal: Given a polynomial f over $\mathbb{Q}(i)$ and t, compute t-bit approximations to complex roots of f

- Iterative approaches
- Find an initial approximation, and refine it iteratively
. Newton, Laguerre, Brent, Durand-Kerner, ...
. Eigenvalue algorithms: QR
- Divide and conquer
- Find a contour splitting the set of roots, approximate coefficients of $f_{1} f_{2}=f$ by numerical integration
- Root finding is in NC

New result

Theorem [J.]: For any constant d, there is a $\mathbf{T C}^{0}$ root-finding algorithm for degree- d polynomials
Corollary:

$$
V T C^{0}+\mathrm{Th}_{\forall \Sigma_{0}^{B}}(\mathbb{N}) \vdash \text { IOpen }
$$

The algorithm uses tools from complex analysis:
Polynomials are locally invertible, the inverse is a holomorphic function \Rightarrow locally expressible by a power series

Our algorithm in a nutshell

Given a constant-degree f, we do in $\mathbf{T C}^{0}$:

- (Preprocessing: \square-free)
- Compute recursively roots of f^{\prime}
- Use them to identify a poly-size set of sample points. For each sample point a, do in parallel:
- Let g be a power series inverting f with centre $b=f(a)$
- Output a partial sum of $g(0)$
- (Postprocessing: remove repeated roots)

Mathematical requirements

To make the algorithm work, we need:

- TC ${ }^{0}$-computability of the coefficients of g
- Bounds on the coefficients and on the radius of g 's image
- Polynomially many terms of the series are sufficient for the desired accuracy
- A particular root α is $g(0)$ if the sample point a is sufficiently close to α
\Rightarrow can devise a poly-size set of sample points

Lagrange inversion formula

Notation: $g(w)=\sum_{n} c_{n}(w-b)^{n} \Rightarrow\left[(w-b)^{n}\right] g(w):=c_{n}$
Lagrange inversion formula: If $f(0)=0 \neq f^{\prime}(0)$ and g is the inverse of f in a neighbourhood of 0 such that $g(0)=0$, then $\left[w^{n}\right] g(w)=\frac{1}{n}\left[z^{-1}\right](f(z))^{-n}$.
An explicit version of LIF: If WLOG $f^{\prime}(0)=[z] f(z)=1$, then

$$
\begin{aligned}
{\left[w^{n}\right] g(w) } & =\sum_{\sum_{i}(i-1) m_{i}=n-1} C_{m_{2}, \ldots, m_{d}} \prod_{i=2}^{d}\left(-\left[z^{i}\right] f(z)\right)^{m_{i}} \\
C_{m_{2}, \ldots, m_{d}} & =\frac{\left(\sum_{i=2}^{d} i m_{i}\right)!}{\left(\sum_{i=2}^{d}(i-1) m_{i}+1\right)!\prod_{i=2}^{d} m_{i}!}
\end{aligned}
$$

TC ${ }^{0}$-computable, given n in unary and coef's of f in binary

Bounds

For any d there are constants μ, ν, λ such that:
If $f \in \mathbb{C}[z]$ has degree $d, f(a)=b, g$ is f^{-1} around b s.t. $g(b)=a$, and $R>0$ distance from a to the nearest root u of f^{\prime} :

- g has radius of convergence $\rho \geq \rho_{0}=\nu R\left|f^{\prime}(a)\right|$
- $g\left[B\left(b, \rho_{0}\right)\right] \supseteq B(a, \lambda R)$
- $\left|\left[(w-b)^{n}\right] g(w)\right| \leq \mu R /\left(n \rho_{0}^{n}\right)$

Sample points

For each root u of f^{\prime} approximated by u^{\prime}, we take intersections of

- Circles around u^{\prime} with geometrically increasing radius
- $O(1)$ lines through u^{\prime}

Then: $\forall z \exists$ sample point a s.t. $|z-a|<\lambda|a-u|$ \Rightarrow if g inverts f around $b=f(a)$ and $f(z)=0$, then $g(0)=z$

Formalization in $V T C^{0}+I M U L$?

Root finding and open induction

TC ${ }^{0}$ constant-degree root-finding algorithms imply

$$
V T C^{0}+\mathrm{Th}_{\forall \Sigma_{0}^{B}}(\mathbb{N}) \vdash \text { IOpen }
$$

To bring it down to $V T C^{0} \pm I M U L$, need to formalize the soundness of the algorithm in the theory

Main issues

The proof of soundness relies on

- Lagrange inversion formula
- Bounds on coefficients of the inverse series and its image

The original proof heavily uses complex-analytic tools (Cauchy integral formula, ...) not available in bounded arithmetic

Lagrange inversion formula, revisited

Let $f(z)=\sum_{k=1}^{d} a_{k} z^{k}, a_{1}=1$, and consider $g(w)=\sum_{n=1}^{\infty} b_{n} w^{n}$,

$$
\begin{aligned}
b_{n} & =\sum_{\sum_{i}(i-1) m_{i}=n-1} C_{m_{2}, \ldots, m_{d}} \prod_{i=2}^{d}\left(-a_{i}\right)^{m_{i}} \\
C_{m_{2}, \ldots, m_{d}} & =\frac{\left(\sum_{i=2}^{d} i m_{i}\right)!}{\left(\sum_{i=2}^{d}(i-1) m_{i}+1\right)!\prod_{i=2}^{d} m_{i}!}
\end{aligned}
$$

LIF: $f(g(w))=w$ as formal power series

LIF, continued

Corollary of LIF: If $\left|b_{n}\right| \leq c r^{-n}$ and $g_{N}(w):=\sum_{n=1}^{N} b_{n} w^{n}$, then

$$
\left|f\left(g_{N}(w)\right)-w\right| \leq c^{\prime} N^{d}\left(\frac{|w|}{r}\right)^{N}
$$

for each $N>1$ and $|w| \leq r$

LIF, restated

Coefficients of $f(g(w))$: multivariate polynomials in a_{2}, \ldots, a_{d} Comparing their coefficients \Rightarrow LIF amounts to the identity

$$
C_{m}=\sum_{k=2}^{d} \sum_{m^{1}+\cdots+m^{k}=m-\delta^{k}} C_{m^{1}} \cdots C_{m^{k}} \quad(m \neq \overrightarrow{0})
$$

Here, m denotes the sequence $\left\langle m_{2}, \ldots, m_{d}\right\rangle$, similarly for $m^{i}=\left\langle m_{2}^{i}, \ldots, m_{d}^{i}\right\rangle$

Addition coordinate-wise
$\delta^{k}=\left\langle\delta_{2}^{k}, \ldots, \delta_{d}^{k}\right\rangle$ is Kronecker's delta

Combinatorial interpretation of LIF

$C_{m}=$ \# of unary terms with m_{j} occurrences of a single j-ary connective for each $j=2, \ldots, d$
= \# of ordered rooted trees with m_{j} nodes of in-degree $j=2, \ldots, d$ and no other inner nodes
LIF \approx a term is a variable or $f\left(t_{1}, \ldots, t_{k}\right)$, where f is k-ary and t_{j} are terms
\Rightarrow an easy bijective proof of LIF
But: based on counting of exponentially many objects
\Rightarrow useless in $V T C^{0}$
Need something more down-to-earth

Inductive proof of LIF

By induction on $m_{2}+\cdots+m_{d}$, we can prove simultaneously

$$
\begin{aligned}
C_{m} & =\sum_{k=2}^{d} \sum_{m^{1}+\cdots+m^{k}=m-\delta^{k}} C_{m^{1}} \cdots C_{m^{k}} \quad(m \neq \overrightarrow{0}) \\
\left(\sum_{i} i m_{i}+1\right) C_{m} & =\sum_{m^{\prime}+m^{\prime \prime}=m}\left(\sum_{i}(i-1) m_{i}^{\prime}+1\right) C_{m^{\prime}} C_{m^{\prime \prime}} \\
\sum_{m^{1}+\cdots+m^{k}=m} C_{m^{1}} \cdots C_{m^{k}} & =\frac{\left(\sum_{i} i m_{i}+k-1\right)!k}{\left(\sum_{i}(i-1) m_{i}+k\right)!\prod_{i} m_{i}!} \quad(k=1, \ldots, d)
\end{aligned}
$$

by direct manipulations of sums and products
Theorem: $V T C^{0}+I M U L$ proves LIF

Corollaries for root finding

Crude bound on coef's: $C_{m} \leq d^{\sum_{j} j m_{j}}$ (\because multinomial thm) Suffices to finish two special cases:

- $\sqrt[d]{x}(\because$ can first scale argument to be arbitrarily close to 1$)$ Theorem: For any constant $d>0$, $V T C^{0}+I M U L \vdash \forall X \exists Y\left(Y^{d} \leq X<(Y+1)^{d}\right)$
- Standard $f(\because$ local compactness of standard $\mathbb{R})$ Theorem (roughly): Every algebraic number α with a minimal polynomial f is computable by a $\mathbf{T C}^{0}$ algorithm such that $V T C^{0}+I M U L \vdash f(\alpha)=0$

Open problem

Does $V T C^{0}+I M U L$ prove IOpen?
Need: prove in $V T C^{0}+I M U L$ a lower bound on the radius of image of $g=f^{-1}$ as a constant fraction of the distance R to the nearest root of f^{\prime}.
(The crude bound gives $\Omega\left(1 /\|f\|_{\infty}\right)$, independent of R.)

Thank you for attention!

References

P. Beame, S. Cook, H. Hoover, Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994-1003.
A. Chiu, G. Davida, B. Litow, Division in logspace-uniform NC ${ }^{1}$, RAIRO - Theoret. Inf. Appl. 35 (2001), 259-275.
S. Cook, P. Nguyen, Logical foundations of proof complexity, CUP, 2010.
W. Hesse, E. Allender, D. Mix Barrington, Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695-716.
E. Jeřábek, Root finding with threshold circuits, arXiv:1112.3925 [cs.DS], 2011.
V. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Review 39 (1997), 187-220.
W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical recipes: The art of scientific computing, 3rd ed., CUP, 2007.
J. Shepherdson, A nonstandard model for a free variable fragment of number theory, Bull. Acad.

Polon. Sci. 12 (1964), 79-86.

