Root finding in $\mathbf{T}\mathbf{C}^0$ and open induction

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Logical Approaches to Barriers in Complexity II | Cambridge | March 2012

Overview

Correspondence of theories of arithmetic *T* and complexity classes *C*:

- The provably total computable functions of T are FC
- T can reason using predicates from C
 (comprehension, induction, ...)

Feasible reasoning:

- Given a natural concept $P \in C$, what can we prove about P using only concepts from C?
- That is: what T proves about P?

Our *P*: elementary integer arithmetic operations $+, \cdot, \leq$

 $\mathbf{A}\mathbf{C}^0 \subseteq \mathbf{A}\mathbf{C}\mathbf{C}^0 \subseteq \mathbf{T}\mathbf{C}^0 \subseteq \mathbf{N}\mathbf{C}^1 \subseteq \mathbf{L} \subseteq \mathbf{N}\mathbf{L} \subseteq \mathbf{A}\mathbf{C}^1 \subseteq \cdots \subseteq \mathbf{P}$

All circuit classes are assumed uniform.

- AC⁰: constant-depth poly-size unbounded fan-in circuits with ∧, ∨, ¬ gates
 FO = log time, O(1) alternations on an alternating TM
- **ACC**⁰: + MOD_m gates, constant m
- TC^0 : + majority gates
- NC¹: log-depth bounded fan-in circuits
 = poly-size formulas = alternating log time
- **L**: log space on a deterministic TM

Complexity of arithmetic operations

For integers given in binary:

- + and \leq are in AC^0
- \times is in \mathbf{TC}^0 \mathbf{TC}^0 -complete under \mathbf{AC}^0 Turing reductions

 $TC^0 = DLOGTIME$ -uniform O(1)-depth $n^{O(1)}$ -size

threshold circuits

 $= O(\log n)$ time, O(1) thresholds on a threshold TM

= FOM (first-order logic with majority quantifiers)

The power of $\mathbf{T}\mathbf{C}^0$

 \mathbf{TC}^0 can do:

- integer multiplication and iterated addition $\sum_{i < n} x_i$
- [BCH'86,CDL'01,HAB'02] integer division and iterated multiplication
- the corresponding operations on \mathbb{Q} , $\mathbb{Q}(i)$
- approximate functions given by nice power series:
 - $\sin x$, $\log x$, $\sqrt[k]{x}$
- sorting, ...

 \Rightarrow the right class for basic arithmetic operations

The theory VTC⁰

The most common theory corresponding to TC^0 is VTC^0 :

- Zambella-style two-sorted bounded arithmetic
 - unary (auxiliary) integers x, y, \ldots with $0, 1, +, \cdot, \leq$
 - finite sets X, Y, \ldots = binary integers = binary strings
 - $x \in X$, $|X| = \sup\{x + 1 : x \in X\}$
- Noteworthy axioms:
 - Σ_0^B -comprehension (Σ_0^B = bounded, w/o SO q'fiers)
 - every set has a counting function
- Σ_1^1 -definable functions are exactly \mathbf{FTC}^0
- Has induction, minimization, ... for \mathbf{TC}^0 -predicates

Arithmetic in VTC^0

 VTC^0

- can define $+, \cdot, \le$ on binary integers
- proves integers form a discretely ordered ring (DOR)

Basic question:

What other properties of $+, \cdot, \leq$ are provable in VTC^0 ?

More formally:

Let *I* be the interpretation of DOR in VTC^0 by binary integers. What is the first-order theory

$$\{\varphi \in \operatorname{Form}_{+,\cdot,\leq} : VTC^0 \vdash \varphi^I\}$$

Annoying trouble: Unknown if VTC^0 can formalize the [HAB'02] algorithms for iterated multiplication and division

$$VTC^0 \stackrel{?}{\vdash} \forall X \forall Y > 0 \exists Q \exists R < Y (X = Y \cdot Q + R)$$

⇒ Consider iterated multiplication as an additional axiom: (*IMUL*) $\forall X, n \exists Y \forall i \leq j < n \left(Y^{[\langle i,i \rangle]} = 1 \land Y^{[\langle i,j+1 \rangle]} = Y^{[\langle i,j \rangle]} \cdot X^{[j]} \right)$ Think $Y^{[\langle i,j \rangle]} = \prod_{k=i}^{j-1} X^{[k]}$ Note: $VTC^0 + IMUL$ also corresponds to \mathbf{TC}^0

Open induction

The weakest arithmetic theory with a nontrivial fragment of the induction schema:

IOpen = DOR + induction for open formulas φ in $\langle +, \cdot, \leq \rangle$

$$\varphi(0) \land \forall x \, (\varphi(x) \to \varphi(x+1)) \to \forall x \ge 0 \, \varphi(x)$$

[Shep'64]

Main question: Does VTC^0 or $VTC^0 + IMUL$ prove IOpen for binary integers?

N.B.: *IOpen* is $\forall \exists$. Its universal fragment is included in the theory of \mathbb{Z} -rings ($DOR + \exists \lfloor x/n \rfloor$ for any standard n > 0), provable in VTC^0

 \Rightarrow we mainly care about witnesses to \exists in axioms of IOpen

Emil Jeřábek | Root finding in TC^0 and open induction | Logical Approaches to Barriers in Complexity II 8:26

For a *DOR M*, the following are equivalent [Shep'64]:

- $M \vDash IOpen$
- *M* is an integer part of its real closure R = rcl(M)
 - R = the maximal ordered field algebraic over M
 - $\forall \alpha \in R \exists x \in M \ (x \le \alpha < x+1)$
- If $u < v \in M$ and $f \in M[x]$ is such that $f(u) \le 0 < f(v)$, there is $u \le x < v$ in M such that $f(x) \le 0 < f(x+1)$

One can also reformulate these conditions in terms of the algebraic closure acl(M) = R(i)

Open induction and root finding

Algebraic characterization of IOpen and Σ_1^1 -witnessing theorem for VTC^0 yield

Lemma: The following are equivalent.

- VTC^0 proves IOpen
- For any constant d > 0, there is a TC⁰ algorithm for approximation of (real or complex) roots of degree d polynomials (over Z, Q, or Q(i)) whose correctness is provable in VTC⁰

The same holds also for $VTC^0 + IMUL$ and extensions by true universal axioms

$\mathbf{T}\mathbf{C}^0$ root finding

Emil Jeřábek | Root finding in ${f TC}^0$ and open induction | Logical Approaches to Barriers in Complexity II

Root-finding algorithms

Goal: Given a polynomial f over $\mathbb{Q}(i)$ and t, compute t-bit approximations to complex roots of f

- Iterative approaches
 - Find an initial approximation, and refine it iteratively
 - Newton, Laguerre, Brent, Durand–Kerner, ...
 - Eigenvalue algorithms: QR
- Divide and conquer
 - Find a contour splitting the set of roots, approximate coefficients of $f_1f_2 = f$ by numerical integration
- Root finding is in NC

New result

Theorem [J.]: For any constant d, there is a TC^0 root-finding algorithm for degree-d polynomials

Corollary:

$$VTC^0 + Th_{\forall \Sigma_0^B}(\mathbb{N}) \vdash IOpen$$

The algorithm uses tools from complex analysis:

Polynomials are locally invertible, the inverse is a holomorphic function \Rightarrow locally expressible by a power series

Our algorithm in a nutshell

Given a constant-degree f, we do in TC^0 :

- (Preprocessing: □-free)
- Compute recursively roots of f'
- Use them to identify a poly-size set of sample points.
 For each sample point *a*, do in parallel:
 - Let g be a power series inverting f with centre b = f(a)
 - Output a partial sum of $g(\boldsymbol{0})$
- (Postprocessing: remove repeated roots)

Mathematical requirements

To make the algorithm work, we need:

- TC^0 -computability of the coefficients of g
- **Bounds** on the coefficients and on the radius of g's image
 - Polynomially many terms of the series are sufficient for the desired accuracy
 - . A particular root α is g(0) if the sample point a is sufficiently close to α
 - \Rightarrow can devise a poly-size set of sample points

Lagrange inversion formula

Notation:
$$g(w) = \sum_{n} c_n (w - b)^n \implies [(w - b)^n]g(w) := c_n$$

Lagrange inversion formula: If $f(0) = 0 \neq f'(0)$ and g is the inverse of f in a neighbourhood of 0 such that g(0) = 0, then $[w^n]g(w) = \frac{1}{n}[z^{-1}](f(z))^{-n}$.

An explicit version of LIF: If WLOG f'(0) = [z]f(z) = 1, then

$$[w^{n}]g(w) = \sum_{\sum_{i}(i-1)m_{i}=n-1} C_{m_{2},...,m_{d}} \prod_{i=2}^{d} (-[z^{i}]f(z))^{m_{i}}$$
$$C_{m_{2},...,m_{d}} = \frac{\left(\sum_{i=2}^{d} im_{i}\right)!}{\left(\sum_{i=2}^{d} (i-1)m_{i}+1\right)! \prod_{i=2}^{d} m_{i}!}$$

 TC^0 -computable, given n in unary and coef's of f in binary

Emil Jeřábek | Root finding in TC^0 and open induction | Logical Approaches to Barriers in Complexity II 15:26

Bounds

For any *d* there are constants μ, ν, λ such that:

If $f \in \mathbb{C}[z]$ has degree d, f(a) = b, g is f^{-1} around b s.t. g(b) = a, and R > 0 distance from a to the nearest root u of f':

• g has radius of convergence $\rho \ge \rho_0 = \nu R |f'(a)|$

• $g[B(b,\rho_0)] \supseteq B(a,\lambda R)$

•
$$|[(w-b)^n]g(w)| \le \mu R/(n\rho_0^n)$$

Sample points

For each root u of f' approximated by u', we take intersections of

- Circles around u' with geometrically increasing radius
- O(1) lines through u'

Then: $\forall z \exists$ sample point *a* s.t. $|z - a| < \lambda |a - u|$

 \Rightarrow if g inverts f around b = f(a) and f(z) = 0, then g(0) = z

Formalization in $VTC^0 + IMUL$?

Emil Jeřábek | Root finding in ${f TC}^0$ and open induction | Logical Approaches to Barriers in Complexity II

Root finding and open induction

 \mathbf{TC}^0 constant-degree root-finding algorithms imply

 $VTC^0 + \operatorname{Th}_{\forall \Sigma_0^B}(\mathbb{N}) \vdash IOpen$

To bring it down to $VTC^0 \pm IMUL$, need to formalize the soundness of the algorithm in the theory

Main issues

The proof of soundness relies on

- Lagrange inversion formula
- Bounds on coefficients of the inverse series and its image

The original proof heavily uses complex-analytic tools (Cauchy integral formula, ...) not available in bounded arithmetic

Lagrange inversion formula, revisited

Let $f(z) = \sum_{k=1}^{d} a_k z^k$, $a_1 = 1$, and consider $g(w) = \sum_{n=1}^{\infty} b_n w^n$,

$$b_n = \sum_{\sum_i (i-1)m_i = n-1} C_{m_2,...,m_d} \prod_{i=2}^d (-a_i)^{m_i}$$
$$C_{m_2,...,m_d} = \frac{\left(\sum_{i=2}^d im_i\right)!}{\left(\sum_{i=2}^d (i-1)m_i + 1\right)! \prod_{i=2}^d m_i!}$$

LIF: f(g(w)) = w as formal power series

LIF, continued

Corollary of LIF: If $|b_n| \leq cr^{-n}$ and $g_N(w) := \sum_{n=1}^N b_n w^n$, then

$$|f(g_N(w)) - w| \le c' N^d \left(\frac{|w|}{r}\right)^N$$

for each N > 1 and $|w| \le r$

LIF, restated

Coefficients of f(g(w)): multivariate polynomials in a_2, \ldots, a_d Comparing their coefficients \Rightarrow LIF amounts to the identity

$$C_{m} = \sum_{k=2}^{d} \sum_{m^{1} + \dots + m^{k} = m - \delta^{k}} C_{m^{1}} \cdots C_{m^{k}} \qquad (m \neq \vec{0})$$

Here, m denotes the sequence $\langle m_2,\ldots,m_d\rangle$, similarly for $m^i=\langle m_2^i,\ldots,m_d^i\rangle$

Addition coordinate-wise

 $\delta^k = \langle \delta^k_2, \dots, \delta^k_d \rangle$ is Kronecker's delta

Combinatorial interpretation of LIF

 $C_m = \#$ of unary terms with m_j occurrences of a single *j*-ary connective for each j = 2, ..., d

= # of ordered rooted trees with m_j nodes of in-degree

 $j = 2, \ldots, d$ and no other inner nodes

LIF \approx a term is a variable or $f(t_1, \ldots, t_k)$, where f is k-ary and t_j are terms

 \Rightarrow an easy bijective proof of LIF

But: based on counting of exponentially many objects \Rightarrow useless in VTC^0

Need something more down-to-earth

Inductive proof of LIF

By induction on $m_2 + \cdots + m_d$, we can prove simultaneously

$$C_{m} = \sum_{k=2}^{d} \sum_{m^{1}+\dots+m^{k}=m-\delta^{k}} C_{m^{1}} \cdots C_{m^{k}} \quad (m \neq \vec{0})$$
$$\left(\sum_{i} im_{i}+1\right) C_{m} = \sum_{m'+m''=m} \left(\sum_{i} (i-1)m'_{i}+1\right) C_{m'} C_{m''}$$
$$\sum_{m^{1}+\dots+m^{k}=m} C_{m^{1}} \cdots C_{m^{k}} = \frac{\left(\sum_{i} im_{i}+k-1\right)! k}{\left(\sum_{i} (i-1)m_{i}+k\right)! \prod_{i} m_{i}!} \quad (k=1,\dots,d)$$

by direct manipulations of sums and products Theorem: $VTC^0 + IMUL$ proves LIF

Corollaries for root finding

Crude bound on coef's: $C_m \leq d^{\sum_j j m_j}$ (\because multinomial thm) Suffices to finish two special cases:

- $\sqrt[d]{x}$ (:: can first scale argument to be arbitrarily close to 1) Theorem: For any constant d > 0, $VTC^0 + IMUL \vdash \forall X \exists Y (Y^d \leq X < (Y+1)^d)$
- Standard f (: local compactness of standard \mathbb{R}) Theorem (roughly): Every algebraic number α with a minimal polynomial f is computable by a \mathbf{TC}^0 algorithm such that $VTC^0 + IMUL \vdash f(\alpha) = 0$

Does $VTC^0 + IMUL$ prove IOpen?

Need: prove in $VTC^0 + IMUL$ a lower bound on the radius of image of $g = f^{-1}$ as a constant fraction of the distance R to the nearest root of f'.

(The crude bound gives $\Omega(1/||f||_{\infty})$, independent of *R*.)

Thank you for attention!

Emil Jeřábek | Root finding in ${f TC}^0$ and open induction | Logical Approaches to Barriers in Complexity II

References

P. Beame, S. Cook, H. Hoover, *Log depth circuits for division and related problems*, SIAM J. Comp. 15 (1986), 994–1003.

A. Chiu, G. Davida, B. Litow, *Division in logspace-uniform* NC¹, RAIRO – Theoret. Inf. Appl. 35 (2001), 259–275.

S. Cook, P. Nguyen, Logical foundations of proof complexity, CUP, 2010.

W. Hesse, E. Allender, D. Mix Barrington, *Uniform constant-depth threshold circuits for division and iterated multiplication*, J. Comp. System Sci. 65 (2002), 695–716.

E. Jeřábek, Root finding with threshold circuits, arXiv:1112.3925 [cs.DS], 2011.

V. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Review 39 (1997), 187–220.

W. Press, S. Teukolsky, W. Vetterling, B. Flannery, *Numerical recipes: The art of scientific computing*, 3rd ed., CUP, 2007.

J. Shepherdson, *A nonstandard model for a free variable fragment of number theory*, Bull. Acad. Polon. Sci. 12 (1964), 79–86.

Emil Jeřábek | Root finding in ${f TC}^0$ and open induction | Logical Approaches to Barriers in Complexity II