Admissible rules and their complexity

Emil Jeřábek

jerabek@math.cas.cz

http://math.cas.cz/~jerabek/

Institute of Mathematics of the Czech Academy of Sciences, Prague

24th Applications of Logic in Philosophy and the Foundations of Mathematics Szklarska Poręba, May 2019

Outline of the talks

- 1 Logics and admissibility
- 2 Transitive modal logics
- **3** Toy model: logics of bounded depth
- 4 Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Logics and admissibility

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- 4 Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Propositional logics

Propositional logic L:

Language: formulas built from atoms $x_0, x_1, x_2, ...$ using a fixed set of finitary connectives

Consequence relation: a relation $\Gamma \vdash_L \varphi$ between sets of formulas and formulas s.t.

$$\blacktriangleright \varphi \vdash_L \varphi$$

- $\blacktriangleright \ \Gamma \vdash_L \varphi \text{ implies } \Gamma, \Delta \vdash_L \varphi$
- $\blacktriangleright \ \ \Gamma, \Delta \vdash_L \varphi \text{ and } \forall \psi \in \Delta \ \Gamma \vdash_L \psi \text{ imply } \Gamma \vdash_L \varphi$
- ► $\Gamma \vdash_L \varphi$ implies $\sigma(\Gamma) \vdash_L \sigma(\varphi)$ for every substitution σ

Unifiers and admissible rules

- $\Gamma, \Delta:$ finite sets of formulas
- *L*-unifier of Γ : substitution σ s.t. $\vdash_L \sigma(\varphi)$ for all $\varphi \in \Gamma$
- Single-conclusion rule: Γ / φ

Multiple-conclusion rule: Γ / Δ

- Γ / Δ is *L*-derivable (or valid) if Γ ⊢_L δ for some δ ∈ Δ
 Γ / Δ is *L*-admissible (written as Γ ⊢_L Δ) if every *L*-unifier of Γ also unifies some δ ∈ Δ
- NB: Γ is *L*-unifiable iff $\Gamma \nvDash_L \varnothing$

Examples

- CPC: admissible = derivable (structural completeness)
- IPC and intermediate logics admit Kreisel–Putnam rule:

$$\neg x \rightarrow y \lor z \vdash (\neg x \rightarrow y) \lor (\neg x \rightarrow z)$$

- $\Box x / x$ admissible in K, K4, derivable in KT, S4
- **•** Löb's rule $\Box x \rightarrow x / x$ admissible in **K**, derivable in **GL**
- $\diamond x \land \diamond \neg x / \perp$ admissible in all normal modal logics
- ▶ $\bot \vdash_L \emptyset$ iff *L* is consistent
- L has the (modal) disjunction property iff

$$\Box x_1 \vee \cdots \vee \Box x_n \vdash_L x_1, \ldots, x_n \qquad (n \ge 0)$$

• Rule of margins $x \to \Box x / x, \neg x$ admissible in **KT**, **KTB**

What rules are L-admissible?

- ▶ NB: \vdash_L forms a (multiple-conclusion) consequence relation
- Semantic characterization of ~_L by a class of models (algebras, Kripke models, ...)
- ► Syntactic presentation of \vdash_L :
 - ▶ Basis of admissible rules = axiomatization of \vdash_L over \vdash_L
 - Can we describe an explicit basis?
 - Are there finite bases? Independent bases?

How to check $\Gamma \vdash_L \Delta$?

- Is admissibility algorithmically decidable?
- What is its computational complexity?

Algebraizable logics

L a logic, K a class of algebras (quasivariety)

L is (finitely) algebraizable wrt K if there are

such that

In modal logic: $T(x) = \{x \approx 1\}$, $E(x, y) = \{x \leftrightarrow y\}$, K is a variety of modal algebras

Emil Jerábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poręba

Elementary equational unification

 Θ : equational theory (or a class of algebras) $\Sigma = \{t_1 \approx s_1, \dots, t_n \approx s_n\}$ finite set of equations Θ -unifier of Σ : a substitution σ s.t.

$$\sigma(t_1) =_{\Theta} \sigma(s_1), \ldots, \sigma(t_n) =_{\Theta} \sigma(s_n)$$

 $U_{\Theta}(\Sigma) = \text{set of } \Theta \text{-unifiers of } \Sigma$

If L is a logic algebraizable wrt a quasivariety K:

- L-unifier of φ = K-unifier of $T(\varphi)$
- *K*-unifier of $t \approx s = L$ -unifier of E(t, s)

Properties of unifiers

Preorder on substitutions:

 σ more general than τ ($\sigma \preceq_{\Theta} \tau$) if $\exists v \ v \circ \sigma =_{\Theta} \tau$

Complete set of unifiers (csu) of Σ : $S \subseteq U_{\Theta}(\Sigma)$ s.t. $\forall \tau \in U_{\Theta}(\Sigma) \exists \sigma \in S (\sigma \preceq_{\Theta} \tau)$

Most general unifier (mgu) of Σ : σ s.t. { σ } csu

Basic questions:

- Is Σ unifiable?
- Does every Σ a finite csu? Or even mgu (if unifiable)?
- ls it decidable if Σ is unifiable? Can we compute a csu?
- What is the computational complexity?

Rules \rightarrow algebraic clauses

L logic algebraizable wrt a quasivarety *K* For simplicity: assume |E(x, y)| = |T(x)| = 1Clause: (universally quantified) disjunction of atomic (= equations) and negated atomic formulas Quasi-identity: clause with 1 positive literal Rule Γ / Δ translates to a clause $T(\Gamma / \Delta)$:

$$\bigwedge_{\varphi\in \mathsf{\Gamma}} T(\varphi) \to \bigvee_{\psi\in \mathbf{\Delta}} T(\psi)$$

 Γ / Δ single-conclusion rule $\implies T(\Gamma / \Delta)$ quasi-identity

$\mathsf{Clauses} \to \mathsf{rules}$

Conversely: clause $C = \bigwedge_{i < n} t_i \approx t'_i \rightarrow \bigvee_{j < m} s_j \approx s'_j$ translates to a rule E(C):

$$\{E(t_i, t_i') : i < n\} / \{E(s_j, s_j') : j < m\}$$

C quasi-identity $\implies E(C)$ single-conclusion rule

•
$$(\Gamma / \Delta) \twoheadrightarrow_L E(T(\Gamma / \Delta))$$

• $C \eqqcolon_K T(E(C))$

(abusing the notation)

Admissible rules algebraically

Derivability:

 $\Gamma \vdash_L \Delta \iff T(\Gamma/\Delta)$ holds in all *K*-algebras

Admissibility:

$$\begin{array}{l} \Gamma \vdash_{L} \Delta \iff T(\Gamma/\Delta) \text{ holds in free } K\text{-algebras} \\ \iff F_{\mathcal{K}}(\omega) \vDash T(\Gamma/\Delta) \\ \iff F_{\mathcal{K}}(n) \vDash T(\Gamma/\Delta) \text{ for all } n \in \omega \end{array}$$

Parameters

In applications, propositional atoms model both "variables" and "constants"

We don't want substitution for constants

Example (description logic):

- (i) \forall child.(\neg HasSon $\sqcap \exists$ spouse. \top)
- (ii) \forall child. \forall child. \neg Male $\sqcap \forall$ child.Married
- $\textcircled{iii} \quad \forall child. \forall child. \neg Female \sqcap \forall child. Married$

Good: Unify (i) with (ii) by HasSon $\mapsto \exists$ child.Male, Married $\mapsto \exists$ spouse. \top

Bad: Unify (ii) with (iii) by Male \mapsto Female

Admissibility with parameters

In unification theory, it is customary to consider unification with unconstrained constants

We consider setup with two kinds of atoms:

variables x₀, x₁, x₂, ··· ∈ Var (countable infinite set)
 parameters (constants) p₀, p₁, p₂, ··· ∈ Par (countable, possibly finite)

Substitutions only modify variables, we require $\sigma(p_n) = p_n$

Adapt accordingly other notions:

L-unifier, L-admissible rule, ...

Exception: logics are always assumed to be closed under substitution for parameters

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Parameters as signature expansion

Admissibility/unification with parameters in L \iff plain admissibility/unification in L^{Par} :

- ▶ language expanded with nullary connectives $p \in Par$
- ▶ $\vdash_{L^{Par}}$ = least consequence relation that contains \vdash_{L}
- *L* algebraizable wrt $K \implies L^{\operatorname{Par}}$ algebraizable wrt K^{Par} :

▶ arbitrary expansions of *K*-algebras with the new constants

L-admissibility with parameters \iff validity in free K^{Par} -algebras

 $\mathsf{NB}: |\mathsf{Par}| = m \implies$

 $F_{K^{\operatorname{Par}}}(n)\simeq F_K(n+m)$ with fixed valuation of m generators

Transitive modal logics

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- **4** Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Transitive modal logics

We consider axiomatic extensions of the logic K4:

- ▶ Language: Boolean connectives, □
- Consequence relation:
 - axioms of CPC

$$\blacktriangleright \ \varphi, \varphi \to \psi \vdash \psi$$

$$\blacktriangleright \vdash \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

$$\blacktriangleright \vdash \Box \varphi \to \Box \Box \varphi$$

$$\blacktriangleright \varphi \vdash \Box \varphi$$

Algebraizable wrt the variety of K4-algebras: Boolean algebras with operator \Box satisfying $\Box 1 = 1$, $\Box (a \land b) = \Box a \land \Box b$, $\Box a \leq \Box \Box a$

Frame semantics

Kripke frames: $\langle W, < \rangle$, $\langle \subseteq W \times W$ transitive \implies dual K4-algebra $\langle \mathcal{P}(W), \Box \rangle$, $\Box X = W \setminus (W \setminus X) \downarrow$ General frames: $\langle W, <, A \rangle$, A subalgebra of $\langle \mathcal{P}(W), \Box \rangle$ \implies dual K4-algebra A Back: K4-algebra A \implies dual frame $\langle St(A), <, CO(St(A)) \rangle$ duals of K4-algebras \simeq descriptive frames

We will use frame semantics as it is more convenient, but the general algebraic theory still applies

```
Convention: frame = general frame,
but finite frame = finite Kripke frame
```

Notation & terminology

 $\langle W, <
angle$ transitive frame, $u, v \in W$

• *u* reflexive $\iff u < u$, otherwise irreflexive

 $\blacktriangleright \ u \leq v \iff u < v \text{ or } u = v \text{ preorder}$

• $u \sim v \iff u \leq v$ and $v \leq u$ equivalence relation equivalence classes = clusters:

reflexive/irreflexive

• $u \lesssim v \iff u < v$ and $v \not< u$ strict order

$$\blacktriangleright X \downarrow = \{ u : \exists v \in X \ u < v \}, \ X \downarrow = \{ \dots u \le v \}, \ X \uparrow, \ X \uparrow$$

Examples of transitive logics

logic	axiom (on top of K4)	finite rooted frames
S4	$\Box x ightarrow x$	reflexive
D4	$\diamond \top$	final clusters reflexive
GL	$\Box(\Box x o x) o \Box x$	irreflexive
K4Grz	$\Box(\Box(x ightarrow \Box x) ightarrow x) ightarrow \Box x$	no proper clusters
K4.1	$\Box \Diamond x \to \Diamond \Box x$	no proper final clusters
K4.2	$\Diamond \boxdot x \to \Box \Diamond x$	unique final cluster
K4.3	$\Box(\boxdot x \to y) \lor \Box(\Box y \to x)$	linear (chain of clusters)
K4B	$x ightarrow \Box \diamondsuit x$	lone cluster
S5	$=$ S4 \oplus B	lone reflexive cluster

and their various combinations

Shorthands: $\Diamond \varphi = \neg \Box \neg \varphi$, $\Box \varphi = \varphi \land \Box \varphi$, $\Diamond \varphi = \neg \Box \neg \varphi$

Emil Jerábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poręba

Frame measures

A frame $\langle W, <, A \rangle$ has various invariants in $\mathbb{N} \cup \{\infty\}$:

- depth = maximal length of strict chains
- cluster size = maximal size of clusters
- width = maximal size of antichains in rooted subframes
- branching = maximal number of immediate successor clusters of any point

A logic *L* has depth (cl. size, width) $\leq k$ \iff all descriptive *L*-frames have depth (cl. size, width) $\leq k$ $\iff L \supseteq K4BD_k (K4BC_k, K4BW_k)$

Branching:

more complicated (directly works only for finite frames) $L \supseteq \mathbf{K4BB}_k$

Frames for rules

$$M = \langle W, <, \vDash \rangle \text{ Kripke model:}$$

$$M \vDash \varphi \iff u \vDash \varphi \text{ for all } u \in W$$

$$M \vDash \Gamma / \Delta \iff$$

$$M \vDash \varphi \text{ for all } \varphi \in \Gamma \implies M \vDash \psi \text{ for some } \psi \in \Delta$$

$$\langle W, <, A \rangle \text{ frame:}$$

$$W \vDash \Gamma / \Delta \iff \langle W, <, \vDash \rangle \vDash \Gamma / \Delta \text{ for all admissible} \vDash$$

Validity of rules preserved by p-morphic images, but not by generated subframes

Only single-conclusion rules preserved by disjoint sums

Emil Jerábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poręba

Parametric frames

K4-algebras are dual to frames K4^{Par}-algebras are dual to parametric frames $\langle W, <, A, \vDash_{Par} \rangle$

• $\langle W, <, A \rangle$ frame

▶ $\models_{\operatorname{Par}}$ fixed admissible valuation of parameters $p \in \operatorname{Par}$

 $\begin{array}{l} \mbox{Model based on } \langle W, <, A, \vDash_{\rm Par} \rangle \\ \langle W, <, \vDash \rangle \ \mbox{s.t.} \end{array}$

▶ \models admissible valuation in the frame $\langle W, <, A \rangle$

 $\blacktriangleright \models \mathsf{extends} \models_{\operatorname{Par}}$

Free *L*-algebras $F_L(V)$ are dual to canonical *L*-frames $C_L(V)$:

- points: maximal L-consistent subsets of Form(V)
- $\blacktriangleright X < Y \iff \forall \varphi (\Box \varphi \in X \Rightarrow \varphi \in Y)$
- $A = \text{definable sets: } \{X : \varphi \in X\}, \varphi \in \text{Form}(V)$

Free L^{Par} -algebras $F_{L^{\text{Par}}}(V)$ are dual to canonical parametric frames $C_L(\text{Par}, V)$:

• underlying frame
$$C_L(Par \cup V)$$

$$\blacktriangleright X \vDash p \iff p \in X$$

Universal frames of finite rank (1)

Canonical frames are too large But: their top parts have an explicit description

Universal model $M_{\mathbf{K4}}(V)$, $V \subseteq$ Var finite:

- start with empty model
- for each finite rooted model F with C = rcl(F): if
 - points of C are distinguished by valuation of V,
 - $F \setminus C$ is a generated submodel of $M_{\mathbf{K4}}(V)$, and
 - ▶ \neg ($F \setminus C$ is rooted, $rcl(F \setminus C)$ is reflexive, and includes a copy of C wrt valuation)

then extend $M_{K4}(V)$ with a copy of C below $F \smallsetminus C$ (unless there already is one)

Universal frames of finite rank (2)

Characterization:

 $M_{K4}(V)$ = unique model with valuation for V s.t.

- *M*_{K4}(*V*) is locally finite
 (= rooted generated submodels are finite)
- each finite model with valuation for V has a unique p-morphism to M_{K4}(V)

Universal frame $U_{K4}(V)$ = underlying frame of $M_{K4}(V)$

 $P \subseteq Par$ finite: Universal parametric frame $U_{K4}(P, V) =$ underlying frame of $M_{K4}(P \cup V)$ with its valuation of P

Universal frames of finite rank (3)

Generalization to $L \supseteq K4$ with finite model property (fmp): $M_L(V)$ = the part of $M_{K4}(V)$ that's based on an *L*-frame

 $\implies U_L(V), U_L(P, V)$

Properties:

- ▶ all finite subsets of $M_L(P, V)$ definable
- the dual of $U_L(P, V)$ is $F_{L^P}(V)$
- $U_L(P, V)$ is the top part of $C_L(P, V)$:
 - U_L(P, V) generated subframe of C_L(P, V) (the points of finite depth)
 - all remaining points of C_L(P, V) see points of U_L(P, V) of arbitrarily large depth

▶ all $\neq \emptyset$ admissible subsets of $C_L(P, V)$ intersect $U_L(P, V)$

Admissibility using universal frames

 $P \subseteq Par$ finite, $\Gamma, \Delta \subseteq Form(P, Var)$ finite, $L \supseteq K4$ fmp

Summary:

$$\begin{split} \Gamma \vdash_{L} \Delta &\iff \forall V \subseteq \mathsf{Var} \; \mathsf{finite:} \; F_{L^{P}}(V) \vDash \Gamma \; / \; \Delta \\ &\iff \forall V \subseteq \mathsf{Var} \; \mathsf{finite:} \; C_{L}(P, V) \vDash \Gamma \; / \; \Delta \\ &\iff \forall V \subseteq \mathsf{Var} \; \mathsf{finite:} \; \langle U_{L}(P, V), <, D, \vDash_{P} \rangle \vDash \Gamma \; / \; \Delta \end{split}$$

where D = subsets definable in $M_L(P, V)$

Typically:

Validity in $U_L(P, V)$ is not difficult to characterize, but the restriction to D seriously complicates it

Toy model: logics of bounded depth

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- **4** Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Avoid the difficulties . . .

If *L* is a logic of bounded depth:

- $\blacktriangleright C_L(P,V) = U_L(P,V)$
- $C_L(P, V)$ is a finite frame
- \implies admissibility easy to analyze

Teaser: Let L be a logic of bounded depth. If

- Par is finite, or
- the set of finite L-frames is decidable,

then L-unifiability is decidable.

Proof: $\Gamma \subseteq \text{Form}(P, \text{Var})$ is unifiable iff

 $\exists \vDash \langle U_L(P, \varnothing), \vDash \rangle \vDash \Gamma.$

We can compute $U_L(P, \emptyset)$. QED

Emil Jerábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poręba

The characterization

 $\Gamma \vdash_L \Delta \iff U_L(P, V) \vDash \Gamma / \Delta \quad \forall V \text{ finite}$

is not quite useful:

- $U_L(P, V)$ are too rigidly specified
- $U_L(P, V)$ are too large: $\approx 2^{2^{|P \cup V|}}$ (height \approx depth of L)
- we have no control over V, anyway
- \implies need more convenient semantical description

L-extensible models

- L logic of bounded depth, fix $P \subseteq Par$ finite
- *F* finite rooted parametric *L*-frame, C = rcl(F):
 - F has loosely separated root if points of C are distinguished by valuation of parameters
 - F has separated root if moreover ¬(F \ C is rooted, rcl(F \ C) is reflexive, and includes a copy of C wrt valuation)
- W finite parametric L-frame:
 - ▶ W is L-extensible if $\forall F$ with a separated root: if $F \setminus \operatorname{rcl}(F) \subseteq W$, it extends to $F \subseteq W$
 - W is strongly L-extensible if ∀F with a loosely separated root ...

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Extensibility and canonical frames

Example: $C_L(P, \emptyset)$ is the minimal *L*-extensible frame

More generally: $C_L(P, V)$ is *L*-extensible for any finite $V \subseteq$ Var Converse: W *L*-extensible \implies p-morphic image of some $C_L(P, V)$ Corollary: If W *L*-extensible,

$$\Gamma \vdash_L \Delta \implies W \vDash \Gamma \ / \ \Delta$$

for all $\Gamma, \Delta \subseteq \mathsf{Form}(P, \mathsf{Var})$

Injectivity of extensible frames

W finite parametric L-frame

W is *L*-injective if \forall finite par. *L*-frames $F_0 \subseteq \cdot F_1$: any p-morphism $F_0 \rightarrow W$ extends to a p-morphism $F_1 \rightarrow W$

Proposition: The following are equivalent:

- W is L-extensible
- ► W is L-injective
- W is a retract of some $C_L(P, V)$: there are p-morphisms

$$C_L(P,V) \xrightarrow{f} W$$

s.t.
$$f \circ g = \mathrm{id}_W$$

Connections among the properties

Proposition: The following are equivalent:

W is a p-morphic image of some C_L(P, V)
 Γ ⊢_I Δ ⇒ W ⊨ Γ / Δ for all Γ, Δ ⊂ Form(P, Var)

Warning: In general, $C_L(P, V)$ are not strongly L-extensible

strongly L-ext. $\xrightarrow{}$ L-ext. $\xrightarrow{}$ image of $C_L(P, V)$

Proposition: Any finite par. *L*-frame is a generated subframe of a strongly *L*-extensible frame

Corollary: Any *L*-extensible frame is a retract of a strongly *L*-extensible frame

Extensibility and admissible rules

Recall: *L* logic of bounded depth, $P \subseteq Par$ finite Theorem: For any $\Gamma, \Delta \subseteq Form(P, Var)$, TFAE:

- \blacktriangleright $\Gamma \vdash_L \Delta$
- Γ / Δ holds in all *L*-extensible frames
- \blacktriangleright Γ / Δ holds in all strongly L-extensible frames

L-extensible frames are structurally important

strongly L-extensible frames are simpler to define and a bit more robust to work with

Application

What to do next depends on the logic

Logics of bounded depth can still be quite wild

Tame subclass: logics of bounded depth and width

- finitely axiomatizable
- polynomial-size model property
- frames recognizable in polynomial time

Theorem: Let *L* be a logic of bounded depth and width, $P \subseteq Par$ finite and $\Gamma, \Delta \subseteq Form(P, Var)$ of size *n*.

If $\Gamma \nvDash_L \Delta$, then Γ / Δ fails in a strongly *L*-extensible model of size at most $poly(n2^{2^{|P|}})$.

In particular, \vdash_L is decidable.

Addendum: smaller models

For fixed finite P, the models are polynomial-size, but in general doubly-exponential

Let $\Sigma \subseteq$ Form finite, closed under subformulas

 Σ -pruned *L*-extensible model: Like *L*-extensible, but when extending with a cluster *C*, allow it to shrink to a subset if satisfaction of Σ -formulas is preserved

Theorem: Let *L* be logic of bounded depth and width, $\Gamma \cup \Delta \subseteq \Sigma$. TFAE:

 \blacktriangleright $\Gamma \vdash_L \Delta$

 \triangleright Γ / Δ holds in Σ-pruned *L*-extensible models of size 2^{O(n²)}

Projective formulas

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- 4 Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Projective formulas introduced by [Ghilardi'00]:

- semantical characterization of projective formulas
- existence of projective approximations for extensible logics
 unification finitary
- parameter-free case only

We generalize it to the setup with parameters

Motivation

In the case of logics of bounded depth, we saw:

Admissibility closely connected to injective L-frames

These are dual to projective *L*-algebras

Finitely presented projective *L*-algebras are described by projective formulas:

Definition: φ is *L*-projective if it has an *L*-unifier σ s.t.

 $\varphi \vdash_L \sigma(\psi) \leftrightarrow \psi \qquad \forall \psi \in \mathsf{Form}$

- ▶ it suffices to check $\psi \in Var$
- general algebraizable logics: $x \leftrightarrow y$ stands for E(x, y)
- $\blacktriangleright \sigma$ is a mgu of φ

Emil Jerábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Löwenheim substitutions

If $\sigma_1, \ldots, \sigma_m$ are substitutions s.t.

$$\varphi \vdash_L \sigma_i(\psi) \leftrightarrow \psi \qquad \forall \psi \in \mathsf{Form}, \tag{(*)}$$

then this also holds for $\sigma_m \circ \cdots \circ \sigma_1$ \implies build projective unifier inductively by small steps

Löwenheim subtitutions satisfy (*):

Fix $\varphi \in \text{Form}(P, V)$, where $P \subseteq \text{Par}$ and $V \subseteq \text{Var}$ finite

Let $F = \langle f_x : x \in V \rangle$, each $f_x : \mathbf{2}^P \to \mathbf{2}$ Boolean function of the parameters:

$$\theta_{\varphi,\mathsf{F}}(x) = (\boxdot \varphi \land x) \lor (\neg \boxdot \varphi \land f_x(\vec{p}))$$

 $\theta_{\varphi} = \text{composition of all } \theta_{\varphi,F} \text{ (in any order)}$

Emil Jerábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Characterization of projectivity

Theorem: Let $L \supseteq K4$ fmp, $\varphi \in Form(P, V)$. TFAE:

- $\blacktriangleright \varphi$ is projective
- θ_{φ}^{N} is a unifier of φ , where $N = (2^{|P|} + 1)|\varphi|$
- φ has the model extension property:

Definition:

- Mod_L = finite rooted *L*-models
- ► F, F' ∈ Mod_L are variants if they only differ in valuation of variables in root cluster
- M ⊆ Mod_L has the model extension property if any F ∈ Mod_L has a variant in M whenever its proper rooted submodels belong to M

▶ φ has m.e.p. iff $Mod_L(\varphi) = \{F \in Mod_L : F \vDash \varphi\}$ does

Emil Jerábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poręba

Projective approximations

NB: projective formulas π are admissibly saturated:

$$\pi \vdash_L \Delta \iff \pi \vdash_L \Delta$$

 Π is a projective approximation of a formula φ if

- Π finite set of projective formulas
- $\blacktriangleright \varphi \vdash_L \Pi$
- $\pi \vdash_L \varphi$ for each $\pi \in \Pi$

If φ has a projective approximation Π :

• the set of proj. unifiers of $\pi \in \Pi$ is a finite csu of φ

 $\blacktriangleright \varphi \vdash_L \Delta \iff \pi \vdash_L \Delta \text{ for all } \pi \in \Pi$

Price: existence of proj. apx. needs strong assumptions on *L* Emil Jeřábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poręba

39.78

Cluster-extensible logics

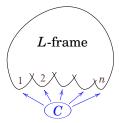
 $L \supseteq K4$ fmp, $n \in \omega$, C finite cluster type: irreflexive •, k-element reflexive (k)

A finite rooted frame F is of type $\langle C, n \rangle$ if

rcl(F) is of type C
rcl(F) has n immediate successor clusters (= branching n)

 $L \langle C, n \rangle$ -extensible: For each type- $\langle C, n \rangle$ frame *F*, if $F \smallsetminus rcl(F)$ is an *L*-frame, then so is *F*

L cluster-extensible (clx): $\langle C, n \rangle$ -extensible whenever it has some type- $\langle C, n \rangle$ frame



Properties of clx logics

Examples: Any combinations of K4, S4, GL, D4, K4Grz, K4.1, K4.3, K4B, S5, K4BB_k, K4BC_k

Closed under joins and directed intersections (countable complete lattice)

Nonexamples: K4.2, S4.2, ...

Theorem: Every clx logic L

- ▶ is finitely axiomatizable
- has the exponential-size model property
- ▶ is $\forall \exists$ -definable on finite frames
- ▶ is described by finitely many forbidden types $\langle C, n \rangle$
- ▶ is described by finitely many extension conditions: (C, n) where $n \in \omega \cup \{\infty\}$, C cluster type or \bigotimes

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Projective approximation in clx logics

Theorem: L clx logic \implies every formula φ has a projective approximation Π s.t.

each π ∈ Π is a Boolean combination of subformulas of φ
 |Π| ≤ 2^{2ⁿ}, |π| = O(n2ⁿ) for each π ∈ Π

Corollary:

- \blacktriangleright each φ has a finite csu
- we can compute it
- L-admissibility and L-unifiability are decidable

Admissibility in clx logics

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- **4** Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Historical note

Admissibility in transitive modal logics studied in depth by [Rybakov'97]

- semantical characterizations
- decidability results
- many results include parameters

We follow a different route, based on Ghilardi's work on projectivity

Tight predecessors

 $P \subseteq Par$ finite, C finite cluster type, $n \in \omega$

L clx logic, W parametric L-frame:

$$\begin{array}{l} \blacktriangleright W \text{ is } \langle C, n \rangle \text{-extensible } \Leftrightarrow \\ \forall E \subseteq 2^{P}, \ 0 < |E| \leq |C| \\ \forall X = \{w_{i} : i < n\} \subseteq W \\ \exists \text{ tight predecessor (tp) } T = \{u_{e} : e \in E\} \subseteq W \text{:} \\ u_{e} \vDash P^{e}, \qquad u_{e} \uparrow = \begin{cases} X \uparrow \qquad C = \bullet \\ X \uparrow \cup T \qquad C \text{ reflexive} \end{cases} \end{aligned}$$

• W is L-extensible if it is (C, n)-extensible whenever L is

Extension rules

 $P \subseteq Par$ finite, C finite cluster type, $n \in \omega$ $\langle C, n \rangle$ -extensible frames axiomatized by extension rules $Ext_{C,n}^{P}$:

• $C = \bullet$: for each $e \in 2^P$,

$$P^{e} \land \Box y \to \bigvee_{i < n} \Box x_i / \{ \Box y \to x_i : i < n \}$$

• C = (k): for each $E \subseteq 2^P$ and $e_0 \in E$, where $|E| \le k$,

$$\frac{\left[\begin{array}{c}P^{e_{0}}\wedge \boxdot \left(y \rightarrow \bigvee_{e \in E} \Box (P^{e} \rightarrow y)\right)\\ \land \bigwedge_{e \in E} \boxdot \left(\Box (P^{e} \rightarrow \Box y) \rightarrow y\right)\end{array}\right] \rightarrow \bigvee_{i < n} \Box x_{i}}{\left\{\boxdot y \rightarrow x_{i} : i < n\right\}}$$

Emil Jerábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poręba

Semantics of extension rules

Theorem: Let W be a parametric frame

▶ If *W* is
$$\langle C, n \rangle$$
-extensible, then $W \vDash \operatorname{Ext}_{C,n}^P$

▶ If $W \vDash \text{Ext}_{C,n}^P$, then W is $\langle C, n \rangle$ -extensible, provided W is descriptive or Kripke

Moreover: If *L* has fmp, then $L + \text{Ext}_{C,n}^{P}$ is complete wrt locally finite $\langle C, n \rangle$ -extensible Kripke frames

Theorem: If $L \supseteq K4$ has fmp, TFAE:

L is (C, n)-extensible
 Ext_C n is L-admissible

Characterization of admissibility

Theorem: If *L* is clx logic, TFAE:

- \blacktriangleright $\Gamma \vdash_L \Delta$
- Γ / Δ holds in all *L*-extensible parametric frames
- Γ / Δ holds in all locally finite *L*-extensible parametric Kripke frames
- Γ / Δ is derivable in $L + \{ Ext_{C,n}^{Par} : L \text{ is } \langle C, n \rangle \text{-extensible} \}$

NB: To pass from a locally finite *L*-extensible countermodel to a definable valuation, use projective formulas

Bases of admissible rules

Corollary: If L is clx, the rules $Ext_{C,n}$ are a basis of L-admissible rules

Variation:

- Explicit single-conclusion bases
- ▶ If Par is finite:

 - L has explicit independent bases (mc or sc)
- If Par is infinite:
 - No consistent logic has a finite basis
 - Open problem: independent bases?

Smaller models

L-extensible frames are usually infinite

Let $\Sigma \subseteq$ Form finite, closed under subformulas

Finite models *L*-pseudoextensible wrt Σ : Like *L*-extensible, but instead of tp's, have tight pseudopredecessors wrt Σ \approx behave as tp as concerns satisfaction of Σ -formulas

Theorem: If *L* clx logic and $\Gamma, \Delta \subseteq \Sigma$, TFAE:

- \blacktriangleright $\Gamma \vdash_L \Delta$
- $\blacktriangleright~\Gamma~/~\Delta$ holds in all L-pseudoextensible models wrt Σ
- Γ / Δ holds in all L-pseudoextensible models wrt Σ of size 2^{O(n)}

Variants of clx logics

Tweak the definition to cover other kinds of logics:

- Logics with a single top cluster (extensions of K4.2)
 - Top-restricted cluster-extensible (tclx) logics: extension conditions only for frames with a single top cluster
 - Examples: joins of K4.2 with clx logics
- Superintuitionistic logics
 - Behave much like their largest modal companions (Blok-Esakia isomorphism)
 - The only (t)clx si logics are IPC, T_n, KC, KC + T_n (NB: T₁ = LC, T₀ = CPC)

Problems and complexity classes

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- 4 Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Main questions

For a fixed logic L, what is the computational complexity of:

- Given Γ , Δ , is Γ / Δ *L*-admissible?
- ls a given Γ *L*-unifiable?

Here, Γ and Δ may be sets of formulas

- without parameters
- with parameters
- ▶ with O(1) parameters

Recall: unifiability is a special case of inadmissibility \implies typically, admissibility and unifiability captured by dual complexity classes

Ideally:

- Iower bounds for unifiability
- upper bounds for admissibility

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Complexity classes

Common classes of languages:

- P = deterministic polynomial time
- NP = nondeterministic polynomial time
- ► $\operatorname{co} X = \{ \Sigma^* \smallsetminus L : L \in X \}$, e.g. coNP
- ▶ P^X = polynomial time with oracle from X, etc.
- polynomial hierarchy: $\Sigma_0^p = \Delta_0^p = \Pi_0^p = P$,

$$\Sigma_k^p = \mathsf{NP}^{\Sigma_{k-1}^p}, \qquad \Delta_k^p = \mathsf{P}^{\Sigma_{k-1}^p}, \qquad \Pi_k^p = \mathsf{co}\mathsf{NP}^{\Sigma_{k-1}^p}$$

- PSPACE = polynomial space
- EXP = deterministic exponential (2^{n^c}) time
- NEXP = nondeterministic exponential time
- exponential hierarchy:

 $\boldsymbol{\Sigma}_{k}^{\text{exp}} = \mathsf{NEXP}^{\boldsymbol{\Sigma}_{k-1}^{p}}, \quad \boldsymbol{\Delta}_{k}^{\text{exp}} = \mathsf{EXP}^{\boldsymbol{\Sigma}_{k-1}^{p}}, \quad \boldsymbol{\Pi}_{k}^{\text{exp}} = \mathsf{coNEXP}^{\boldsymbol{\Sigma}_{k-1}^{p}}$

Emil Jerábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Alternating Turing machines

alternating Turing machine (ATM):

- multiple transitions from a given configuration (\approx NTM)
- states labelled existential or universal
- acceptance defined inductively:
 - Configuration in an ∃ state is accepting ↔
 ∃ transition to an accepting configuration
 - ► configuration in a ∀ state is accepting ↔ ∀ transitions lead to accepting configurations
- ▶ alternation: go from \exists state to \forall state or vice versa
- Σ_k-TIME(f(n)): computable by ATM in time f(n), start in ∃ state, make ≤ k − 1 alternations
- ▶ Π_k -TIME(f(n)): start in \forall state
 - Σ_1 -TIME = NTIME, Π_1 -TIME = coNTIME

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Expressing classes with ATMs

polynomial and exponential hierarchies:

$$\begin{split} \Sigma_k^p &= \Sigma_k \text{-}\mathsf{TIME}\big(\mathsf{poly}(n)\big) & \Pi_k^p &= \Pi_k \text{-}\mathsf{TIME}\big(\mathsf{poly}(n)\big) \\ \Sigma_k^{\mathsf{exp}} &= \Sigma_k \text{-}\mathsf{TIME}\big(2^{\mathsf{poly}(n)}\big) & \Pi_k^{\mathsf{exp}} &= \Pi_k \text{-}\mathsf{TIME}\big(2^{\mathsf{poly}(n)}\big) \end{split}$$

- PSPACE = AP (alternating polynomial time)
- EXP = APSPACE (alternating polynomial space)

Reductions and completeness

• Y (many-one) reducible to X if there is $f: \Sigma^* \to \Sigma^*$ s.t.

$$w \in Y \iff f(w) \in X,$$

- f efficiently computable:
 - polynomial-time
 - logspace: in space O(log n), excluding input tape (read-only) and output tape (write-only)
- C a class: X is C-hard if every $Y \in C$ reduces to X
- ▶ *X C*-complete if $X \in C$ and *C*-hard

Examples:

- ► SAT is NP-complete, TAUT (ie, CPC) is coNP-complete
- ▶ QSAT is complete for AP = PSPACE

Emil Jerábek Admissible rules and their complexity ALPFM 2019, Szklarska Poreba

Completeness in exponential hierarchy

Theorem: Fix $k \ge 1$. The set of true Σ_k^2 sentences

 $\exists X_1 \subseteq \mathbf{2}^n \; \forall X_2 \subseteq \mathbf{2}^n \; \dots \; QX_k \subseteq \mathbf{2}^n \; \overline{Q}t_1, \dots, t_m \in \mathbf{2}^n \; \varphi$

is a \sum_{k}^{exp} -complete problem, where

2 = {0,1}
Q = ∃ for k odd, ∀ for k ever
$$\overline{Q}$$
 = dual of Q

n given in unary

 φ Boolean combination of atomic formulas t_α ∈ X_j, t_α(i) (i < n constant)

Complexity of derivability

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- 4 Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability

8 Complexity of admissibility

Derivability and tautologicity

Before admissibility, let's consider a baseline problem:

• Given
$$\Gamma$$
, Δ , is Γ / Δ *L*-derivable?

In transitive logics, this is equivalent to *L*-tautologicity:

• Given
$$\varphi$$
, is $\vdash_L \varphi$?

NB: Special case of *L*-admissibility, but also of *L*-unifiability with parameters:

$$\varphi \in \mathsf{Form}(\operatorname{Par}, \varnothing) \implies (\vdash_L \varphi \iff \varphi \text{ unifiable})$$

coNP cases

Lower bound: By reduction from CPC, *L*-derivability is coNP-hard for any consistent *L*

Upper bound: L-derivability is in coNP if:

- L has a polynomial-size model property
- ▶ finite *L*-frames are recognizable in P (or NP)

Corollary: L-derivability coNP-complete for:

- consistent linear (= width 1) clx logics
- consistent logics of bounded depth and width

Theorem [Ladner'77] Derivability in K, T, S4 is PSPACE-complete For any $K \subseteq L \subseteq$ S4, it is PSPACE-hard

Upper bound:

 \approx explore proof tree/countermodel one branch a time Can be adapted (bounded branching little tricky): Theorem: Derivability in any (t)clx logic is in PSPACE

Lower bound:

- reduction from QSAT
- easily adapted to all logics with the disjunction property
 - reference?
 - superintuitionistic logics with DP: [Chagrov'85]

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

PSPACE lower bound

We give another generalization, using reduction from IPC Theorem: Derivability is PSPACE-hard for all logics $L \supseteq K4$ that are subframe-universal for trees

- subreduction: \approx p-morphism from a subframe
- weak subreduction: ignore reflexivity
- L subframe-universal for trees if ∀ finite tree T ∃ weak subreduction from an L-frame onto T
- cofinal subreduction: dom(f)↑ ⊆ dom(f)↓
 ⇒ cofinal weak subreduction, cofinally subframe-universal for trees

Applications of the lower bound

Theorem: All logics $L \supseteq K4$ with the disjunction property are cofinally subframe-universal for trees

Corollary:

- Derivability in $L \supseteq K4$ with DP is PSPACE-hard
- Derivability in nonlinear clx logics is PSPACE-complete
- Derivability is also PSPACE-complete in nonlinear tclx logics: K4.2, S4.2, …

Complexity of admissibility

- 1 Logics and admissibility
- 2 Transitive modal logics
- 3 Toy model: logics of bounded depth
- 4 Projective formulas
- 5 Admissibility in clx logics
- 6 Problems and complexity classes
- 7 Complexity of derivability
- 8 Complexity of admissibility

Summary: clx logics

Completeness results for complexity of clx logics:

logic			unifiability, ⊮ _L			
bran-	clust.	⊬ _L pa		parame	ters:	examples
ching	size		no†	O(1)	any	
0	$<\infty$				Π_2^p	$S5 \oplus Alt_k$, CPC
	∞	NP			coNEXP	S5, K4B
1	$<\infty$		PSPAG		CE	GL.3, LC
	∞				coNEXP	S4.3, K4.3
≥ 2	$<\infty$	PSPACE	NEXP			GL, S4Grz, IPC
	∞				Σ_2^{exp}	K4, S4

[†] The parameter-free case is for \nvdash_L only

Summary: tclx logics

Completeness results for complexity of tclx logics:

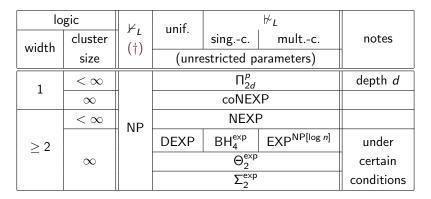
logic			unifiability, ⊭ _L			
cluster size:		⊬ _L	parameters:		rs:	examples
inner	top		no†	O(1)	any	
$<\infty$	$<\infty$		NEXP Θ_2^{exp} Σ_2^{exp}			GL.2, Grz.2, KC
	∞	PSPACE			Θ_2^{exp}	S4.1.4 ⊕ S4.2
∞					Σ_2^{exp}	K4.2, S4.2

[†] The parameter-free case is for \nvdash_L only

NB: branching ≥ 2 by definition

Summary: bounded depth and width

Complexity results for logics of bounded depth and width:



(†) also the complexity of unifiability and ${\mathbb M}_L$ with O(1) parameters

Upper bounds

Semantic characterization:

pseudoextensible / pruned extensible models (size $2^{\text{poly}(n)}$) \implies inadmissibility in (t)clx or bd-dp-wd logics is in Σ_2^{\exp} :

$$\exists \mathsf{model} \forall E \subseteq \mathbf{2}^P \dots$$

Optimization in certain cases:

- bounded cluster size:
 - $\forall E \subseteq \mathbf{2}^{P}$, $|E| \leq k$ becomes a poly-size quantifier
- constant number of parameters: same reason
- width 1:
 - the model is an upside-down tree of clusters
 - an ATM can explore it while keeping only one branch

Lower bound conditions

Basic tenet: Hardness of *L*-unifiability stems from finite patterns that occur as subframes in *L*-frames

That is, study conditions of the form:

 \exists an *L*-frame that subreduces to $F \implies L$ -unifiability *C*-hard

Example conditions:

- L has unbounded depth:
 L-frames weakly subreduce to arbitrary finite chains
- L has unbounded cluster size:
 L-frames subreduce to arbitrary reflexive clusters
- ► L is nonlinear (= width ≥ 2 = branching ≥ 2): an L-frame subreduces to a 2-prong fork

Lower bound technique

Reduce a *C*-complete problem to *L*-unifiability:

- ► PSPACE, Σ_k^p/Π_k^p : QSAT, Σ_k/Π_k -SAT
- $\Sigma_k^{\exp}/\Pi_k^{\exp}$: special Σ_k^2/Π_k^2 -sentences as above

Encode quantifiers:

- ▶ \exists simulated by variables, \forall by parameters
- $t \in 2^n$: directly by *n*-tuple of atoms
- ▶ $\forall X \subseteq 2^n$: parameter assignments realized in a cluster
- ▶ $\exists X \subseteq \mathbf{2}^n$: single variable x
 - use antichains to enforce consistency:
 - $u \vDash \sigma(x)$ unaffected by a change of parameters in $v \not\geq u$

Σ_2^{exp} bounds

Lower bound:

If $\forall n$ an *L*-frame subreduces to a rooted frame containing

an n-element cluster, and

- an incomparable point
- \implies *L*-unifiability is Σ_2^{exp} -hard

Upper bound: L (t)clx or bd-dp-wd logic \implies L-inadmissibility is in Σ_2^{exp} Examples: K4, S4, S4.1, S4.2, K4BB₂, S4BB₂BD₂, ...

NEXP bounds

Lower bound: L nonlinear \implies L-unifiability is NEXP-hard (O(1) parameters? next slide)

Upper bounds:

- L (t)clx logic of bounded cluster size, or a tabular logic
 ⇒ L-inadmissibility is in NEXP
- ► L (t)clx logic ⇒ L-inadmissibility with O(1) parameters is in NEXP

Examples: GL, K4Grz, S4Grz, S4Grz.2, IPC, KC, ... (± bounded branching)

NEXP lower bounds w/ O(1) parameters

Need stronger hypothesis (cf. logics of bounded depth)

Theorem: The following problems are NEXP-hard

- L-unifiability with 2 parameters
 - if L subframe-universal for trees
- L-unifiability with 1 parameter
 - if L cofinally subframe-universal for trees (includes: logics with disjunction property)
 - if L subframe-universal respecting reflexivity
- L-unifiability with 0 parameters
 - if $K4 \subseteq L \subseteq K4.2GrzBB_2$
- single-conclusion L-inadmissibility with 0 parameters
 - if L has a certain weak extension property
 - this includes: nonlinear clx logics

Emil Jeřábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

coNEXP bounds

Lower bound: *L* unbounded cluster size → *L*-unifiability is coNEXP-hard

Upper bound: *L* linear clx or bd-dp logic ⇒ *L*-inadmissibility is in coNEXP

Examples: S5, K4.3, S4.3, ...

PSPACE bounds

Lower bound: *L* unbounded depth ⇒ *L*-unifiability with 2 parameters is PSPACE-hard Corollary: *L*-unifiability is PSPACE-hard unless *L* linear tabular logic

Upper bound: *L* linear clx logic of bounded cluster size \implies *L*-admissibility is in PSPACE

Examples: GL.3, K4Grz.3, S4Grz.3, LC, ...

Polynomial hierarchy

Recall: L-unifiability PSPACE-hard unless L linear tabular

Remaining case: *L* linear tabular logic of depth $d \implies$ *L*-unification and *L*-inadmissibility are \prod_{2d}^{p} -complete

Examples: CPC, G_{d+1} , S5 \oplus Alt_k, K4 $\oplus \Box \bot$, ...

L unbounded depth \implies PSPACE-hard with 2 parameters Theorem:

L bd-dp-wd logic \implies

L-inadmissibility with O(1) parameters is NP-complete

More exotic classes

Exponential version of Θ_2^p :

 $\Theta_2^{exp} = \mathsf{EXP}^{\mathsf{NP}[\mathsf{poly}]} = \mathsf{EXP}^{||\mathsf{NP}|} = \mathsf{P}^{\mathsf{NEXP}} = \mathsf{PSPACE}^{\mathsf{NEXP}}$

Exponential version of the Boolean hierarchy:

BH^{exp} = closure of NEXP under Boolean operations
 Stratified into levels:

 BH^{exp}₁ = NEXP
 BH^{exp}_{k+1} = {A \ B : A ∈ NEXP, B ∈ BH^{exp}_k}

 Special case:

 DEXP = BH^{exp}₂ = {A ∩ B : A ∈ NEXP, B ∈ coNEXP}
 NEXP, coNEXP ⊆ BH^{exp} ⊆ Θ^{exp}₂ ⊆ Δ^{exp}₂

Θ_2^{exp} bounds

Lower bound: $\forall n \exists g_{raph}$ -connected *L*-frame of cluster size $\geq n$ and width ≥ 2 $\implies L$ -unifiability is Θ_2^{exp} -hard

```
Upper bound:
L-admissibility is in \Theta_2^{exp} if
```

- L is a tclx logic of bounded inner cluster size, or
- L is a bd-dp-wd logic, doesn't satisfy the Σ₂^{exp} LB condition

Example: $S4.2 \oplus S4.1.4$

The NEXP and coNEXP lower bounds imply:

Lower bound:

L nonlinear logic of unbounded cluster size

 \implies *L*-unifiability is DEXP-hard

Rare case where unifiability and inadmissibility (with parameters) have different complexity:

Upper bound:

L bd-dp-wd logic, doesn't satisfy the Θ_2^{exp} LB condition \implies

- L-unifiability is in DEXP
- ▶ single-conclusion *L*-inadmissibility is in BH₄^{exp}
- multiple-conclusion L-inadmissibility is in EXP^{NP[log n]}

Full classification?

Known: complexity of unifiability for (t)clx, bd-dp-wd logics Could it be determined for all logics $L \supseteq K4$?

- ► Hopeless:
 - already \vdash_L can be undecidable, arbitrary Turing degree
- The form of results that we've seen:
 - Upper bounds: tame, nicely-behaved logics
 - Lower bounds: logics allowing certain frame patterns
 downward-closed classes of logics
- Determine minimal complexity of unifiability among sublogics of L?

Definition: Unifiability has hereditary hardness C below L if

- L'-unifiability is C-hard for all $L' \subseteq L$
- L'-unifiability is in C for some $L' \subseteq L$

Emil Jerábek Admissible rules and their complexity ALPFM 2019, Szklarska Poręba

Hereditary hardness

Theorem: Below any $L \supseteq K4$, one of the following applies:

	logic	L	hereditary	witness			
width	cluster	extra	hardness	$L' \subseteq L$			
	size	condition	of unifiability				
1	$< \infty$	depth <i>d</i>	Π^{p}_{2d}	= L			
		depth ∞	PSPACE	K4.3BC _k			
	∞		coNEXP	K4.3			
≥ 2	$<\infty$		NEXP	K4BC _k			
	∞	certain conditions	DEXP	$\begin{array}{c} K4BC_k \cap K4.3BIC_k \\ D4.3 \cap \overline{D4BC}_k \\ D4BC_k \cap D4.3BIC_k \cap \overline{D4.3} \end{array}$			
		conditions	Θ_2^{exp}				
		(as before)	Σ_2^{exp}	K4			
$(\overline{\mathbf{D}}\mathbf{A} - \mathbf{K}\mathbf{A} \oplus \otimes \Box \mid \mathbf{B}\mathbf{I}\mathbf{C} = \mathbf{bounded in per cluster size})$							

 $(D4 = K4 \oplus \Diamond \Box \bot, BIC_k = bounded inner cluster size)$

Except for DEXP, also applies to inadmissibility

Emil Jerábek | Admissible rules and their complexity | ALPFM 2019, Szklarska Poreba

Thank you for attention!

References

- F. Baader, W. Snyder: Unification theory, in: Handbook of Automated Reasoning vol. I, Elsevier, 2001, 445–533
- S. Arora, B. Barak: Computational complexity: A modern approach, Cambridge Univ. Press, 2009
- A. V. Chagrov: On the complexity of propositional logics, in: Complexity problems in Mathematical Logic, Kalinin State Univ., 1985, 80–90, in Russian
- A. V. Chagrov, M. Zakharyaschev: Modal logic, Oxford Univ. Press, 1997
- S. Ghilardi: Best solving modal equations, Ann. Pure Appl. Log. 102 (2000), 183–198

References

- E. J.: Complexity of admissible rules, Arch. Math. Log. 46 (2007), 73–92
- E. J.: Rules with parameters in modal logic I, Ann. Pure Appl. Log. 166 (2015), 881–933
- E. J.: Rules with parameters in modal logic II, coming soon
- E. J.: Rules with parameters in modal logic III, planned
- R. E. Ladner: The computational complexity of provability in systems of modal propositional logic, SIAM J. Comput. 6 (1977), 467–480
- V. V. Rybakov: Admissibility of logical inference rules, Elsevier, 1997

Emil Jerábek Admissible rules and their complexity I ALPFM 2019, Szklarska Poręba