Admissible rules and their complexity

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Czech Academy of Sciences, Prague

24th Applications of Logic in Philosophy and the Foundations of Mathematics
Szklarska Poręba, May 2019

Outline of the talks

(1) Logics and admissibility
(2) Transitive modal logics
(3) Toy model: logics of bounded depth
(4) Projective formulas
(5) Admissibility in clx logics
(6) Problems and complexity classes
(7) Complexity of derivability
(8) Complexity of admissibility

Logics and admissibility

(1) Logics and admissibility

2 Transitive modal logics
3 Toy model: logics of bounded depth
a Projective formulas
5 Admissibility in clx logics
6 Problems and complexity classes
7 Complexity of derivability

- Complexity of admissibility

Propositional logics

Propositional logic L:
Language: formulas built from atoms $x_{0}, x_{1}, x_{2}, \ldots$ using a fixed set of finitary connectives

Consequence relation: a relation $\Gamma \vdash_{L} \varphi$ between sets of formulas and formulas s.t.

- $\varphi \vdash_{L} \varphi$
- $\Gamma \vdash_{L} \varphi$ implies $\Gamma, \Delta \vdash_{L} \varphi$
- $\Gamma, \Delta \vdash_{L} \varphi$ and $\forall \psi \in \Delta \Gamma \vdash_{L} \psi$ imply $\Gamma \vdash_{L} \varphi$
- $\Gamma \vdash_{L} \varphi$ implies $\sigma(\Gamma) \vdash_{L} \sigma(\varphi)$ for every substitution σ

Unifiers and admissible rules

Γ, Δ : finite sets of formulas
L-unifier of Γ : substitution σ s.t. $\vdash_{L} \sigma(\varphi)$ for all $\varphi \in \Gamma$
Single-conclusion rule: Γ / φ
Multiple-conclusion rule: Γ / Δ

- Γ / Δ is L-derivable (or valid) if $\Gamma \vdash_{L} \delta$ for some $\delta \in \Delta$
- Γ / Δ is L-admissible (written as $\Gamma r_{L} \Delta$) if every L-unifier of Γ also unifies some $\delta \in \Delta$
$N B: \Gamma$ is L-unifiable iff $\Gamma \not{ }_{L} \varnothing$

Examples

- CPC: admissible $=$ derivable (structural completeness)
- IPC and intermediate logics admit Kreisel-Putnam rule:

$$
\neg x \rightarrow y \vee z \vdash(\neg x \rightarrow y) \vee(\neg x \rightarrow z)
$$

- $\square x / x$ admissible in K, K4, derivable in KT, S4
- Löb's rule $\square x \rightarrow x / x$ admissible in K , derivable in GL
$-\diamond x \wedge \diamond \neg x / \perp$ admissible in all normal modal logics
$-\perp r_{L} \varnothing$ iff L is consistent
- L has the (modal) disjunction property iff

$$
\square x_{1} \vee \cdots \vee \square x_{n} \vdash_{L} x_{1}, \ldots, x_{n} \quad(n \geq 0)
$$

- Rule of margins $x \rightarrow \square x / x, \neg x$ admissible in KT, KTB

Basic questions

What rules are L-admissible?

- NB: \vdash_{L} forms a (multiple-conclusion) consequence relation
- Semantic characterization of r_{L} by a class of models (algebras, Kripke models, ...)
- Syntactic presentation of μ_{L} :
- Basis of admissible rules $=$ axiomatization of r_{L} over \vdash_{L}
- Can we describe an explicit basis?
- Are there finite bases? Independent bases?

How to check $\Gamma \vdash_{L} \Delta$?

- Is admissibility algorithmically decidable?
- What is its computational complexity?

Algebraizable logics

L a logic, K a class of algebras (quasivariety)
L is (finitely) algebraizable wrt K if there are

- formulas $E(x, y)=\left\{\varepsilon_{1}(x, y), \ldots, \varepsilon_{n}(x, y)\right\}$
- equations $T(x)=\left\{t_{1}(x) \approx s_{1}(x), \ldots, t_{m}(x) \approx s_{m}(x)\right\}$
such that
- $\Gamma \vdash_{L} \varphi \Leftrightarrow T(\Gamma) \vDash_{K} T(\varphi)$
- $\Sigma \vDash_{K} t \approx s \Leftrightarrow E(\Sigma) \vdash_{L} E(t, s)$
- $x \vdash_{L} E(T(x))$
- $x \approx y \|_{k} T(E(x, y))$

In modal logic: $T(x)=\{x \approx 1\}, E(x, y)=\{x \leftrightarrow y\}$,
K is a variety of modal algebras

Elementary equational unification

Θ : equational theory (or a class of algebras)
$\Sigma=\left\{t_{1} \approx s_{1}, \ldots, t_{n} \approx s_{n}\right\}$ finite set of equations
Θ-unifier of Σ : a substitution σ s.t.

$$
\sigma\left(t_{1}\right)={ }_{\Theta} \sigma\left(s_{1}\right), \ldots, \sigma\left(t_{n}\right)={ }_{\Theta} \sigma\left(s_{n}\right)
$$

$U_{\Theta}(\Sigma)=$ set of Θ-unifiers of Σ

If L is a logic algebraizable wrt a quasivariety K :

- L-unifier of $\varphi=K$-unifier of $T(\varphi)$
- K-unifier of $t \approx s=L$-unifier of $E(t, s)$

Properties of unifiers

Preorder on substitutions:
σ more general than $\tau\left(\sigma \preceq_{\Theta} \tau\right)$ if $\exists v v \circ \sigma={ }_{\Theta} \tau$
Complete set of unifiers (csu) of $\Sigma: S \subseteq U_{\Theta}(\Sigma)$ s.t.
$\forall \tau \in U_{\Theta}(\Sigma) \exists \sigma \in S(\sigma \preceq \Theta \tau)$
Most general unifier (mgu) of $\Sigma: \sigma$ s.t. $\{\sigma\}$ csu
Basic questions:

- Is Σ unifiable?
- Does every Σ a finite csu? Or even mgu (if unifiable)?
- Is it decidable if Σ is unifiable? Can we compute a csu?
- What is the computational complexity?

Rules \rightarrow algebraic clauses

L logic algebraizable wrt a quasivarety K
For simplicity: assume $|E(x, y)|=|T(x)|=1$
Clause: (universally quantified) disjunction of atomic (= equations) and negated atomic formulas

Quasi-identity: clause with 1 positive literal
Rule Γ / Δ translates to a clause $T(\Gamma / \Delta)$:

$$
\bigwedge_{\varphi \in \Gamma} T(\varphi) \rightarrow \bigvee_{\psi \in \Delta} T(\psi)
$$

Γ / Δ single-conclusion rule $\Longrightarrow T(\Gamma / \Delta)$ quasi-identity

Clauses \rightarrow rules

Conversely: clause $C=\bigwedge_{i<n} t_{i} \approx t_{i}^{\prime} \rightarrow \bigvee_{j<m} s_{j} \approx s_{j}^{\prime}$ translates to a rule $E(C)$:

$$
\left\{E\left(t_{i}, t_{i}^{\prime}\right): i<n\right\} /\left\{E\left(s_{j}, s_{j}^{\prime}\right): j<m\right\}
$$

C quasi-identity $\Longrightarrow E(C)$ single-conclusion rule

- $(\Gamma / \Delta) \vdash_{\llcorner } E(T(\Gamma / \Delta))$
- $C=\#_{K} T(E(C))$
(abusing the notation)

Admissible rules algebraically

Derivability:

- Single-concl. rules \Longleftrightarrow quasiequational theory of K
- Multiple-concl. rules \Longleftrightarrow clausal/universal theory of K

$$
\Gamma \vdash_{L} \Delta \Longleftrightarrow T(\Gamma / \Delta) \text { holds in all } K \text {-algebras }
$$

Admissibility:
$\Gamma \vdash_{L} \Delta \Longleftrightarrow T(\Gamma / \Delta)$ holds in free K-algebras
$\Longleftrightarrow F_{K}(\omega) \vDash T(\Gamma / \Delta)$
$\Longleftrightarrow F_{K}(n) \vDash T(\Gamma / \Delta)$ for all $n \in \omega$

Parameters

In applications, propositional atoms model both "variables" and "constants"

We don't want substitution for constants
Example (description logic):
(i) \forall child. $(\neg$ HasSon $\sqcap \exists$ spouse. T)
(ii) \forall child. \forall child. \neg Male $\sqcap \forall$ child.Married
(iii) \forall child. \forall child. \neg Female $\sqcap \forall$ child.Married

Good: Unify (i) with (ii) by HasSon \mapsto ヨchild.Male, Married $\mapsto \exists$ spouse. T
Bad: Unify (ii) with (iii) by Male \mapsto Female

Admissibility with parameters

In unification theory, it is customary to consider unification with unconstrained constants

We consider setup with two kinds of atoms:

- variables $x_{0}, x_{1}, x_{2}, \cdots \in \operatorname{Var}$ (countable infinite set)
- parameters (constants) $p_{0}, p_{1}, p_{2}, \cdots \in \operatorname{Par}$ (countable, possibly finite)

Substitutions only modify variables, we require $\sigma\left(p_{n}\right)=p_{n}$
Adapt accordingly other notions:

- L-unifier, L-admissible rule, ...

Exception: logics are always assumed to be closed under substitution for parameters

Parameters as signature expansion

Admissibility/unification with parameters in L \Longleftrightarrow plain admissibility/unification in $L^{\text {Par }}$:

- language expanded with nullary connectives $p \in \operatorname{Par}$
$-\vdash_{L \text { Par }}=$ least consequence relation that contains \vdash_{L}
L algebraizable wrt $K \Longrightarrow L^{\text {Par }}$ algebraizable wrt $K^{\text {Par }}$:
- arbitrary expansions of K-algebras with the new constants

L-admissibility with parameters
\Longleftrightarrow validity in free $K^{\text {Par-algebras }}$
NB: $|\operatorname{Par}|=m \Longrightarrow$
$F_{K^{\text {Par }}}(n) \simeq F_{K}(n+m)$ with fixed valuation of m generators

Transitive modal logics

1) Logics and admissibility
(2) Transitive modal logics
(3) Toy model: logics of bounded depth
4. Projective formulas

5 Admissibility in clx logics
6 Problems and complexity classes
7 Complexity of derivability
8 Complexity of admissibility

Transitive modal logics

We consider axiomatic extensions of the logic K4:

- Language: Boolean connectives, \square
- Consequence relation:
- axioms of CPC
- $\varphi, \varphi \rightarrow \psi \vdash \psi$
$-\vdash \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$
$\rightarrow \vdash \square \varphi \rightarrow \square \square \varphi$
- $\varphi \vdash \square \varphi$

Algebraizable wrt the variety of K4-algebras: Boolean algebras with operator \square satisfying $\square 1=1$, $\square(a \wedge b)=\square a \wedge \square b, \square a \leq \square \square a$

Frame semantics

Kripke frames: $\langle W,<\rangle,<\subseteq W \times W$ transitive \Longrightarrow dual K4-algebra $\langle\mathcal{P}(W), \square\rangle, \square X=W \backslash(W \backslash X) \downarrow$
General frames: $\langle W,<, A\rangle, A$ subalgebra of $\langle\mathcal{P}(W), \square\rangle$ \Longrightarrow dual K4-algebra A

Back: K4-algebra $A \Longrightarrow$ dual frame $\langle\operatorname{St}(A),<, \mathrm{CO}(\operatorname{St}(A))\rangle$ duals of K4-algebras \simeq descriptive frames

We will use frame semantics as it is more convenient, but the general algebraic theory still applies

Convention: frame $=$ general frame, but finite frame $=$ finite Kripke frame

Notation \& terminology

$\langle W,<\rangle$ transitive frame, $u, v \in W$

- u reflexive $\Longleftrightarrow u<u$, otherwise irreflexive
- $u \leq v \Longleftrightarrow u<v$ or $u=v \quad$ preorder
- $u \sim v \Longleftrightarrow u \leq v$ and $v \leq u \quad$ equivalence relation equivalence classes $=$ clusters:
- reflexive/irreflexive
- proper: size ≥ 2 (\Longrightarrow reflexive)
$-\mathrm{cl}(u)=$ the cluster containing u
$\triangleright u \lesssim v \Longleftrightarrow u<v$ and $v \nless u \quad$ strict order
- $X \downarrow=\{u: \exists v \in X u<v\}, X \downarrow=\{\ldots u \leq v\}, X \uparrow, X \uparrow$
- W rooted if $W=r \uparrow$ for some $r \in W$
$\operatorname{rcl}(W)=\mathrm{cl}(r)$ root cluster

Examples of transitive logics

logic	axiom (on top of K4)	finite rooted frames
S4	$\square x \rightarrow x$	reflexive
D4	$\diamond \top$	final clusters reflexive
GL	$\square(\square x \rightarrow x) \rightarrow \square x$	irreflexive
K4Grz	$\square(\square(x \rightarrow \square x) \rightarrow x) \rightarrow \square x$	no proper clusters
K4.1	$\square \diamond x \rightarrow \diamond \square x$	no proper final clusters
K4.2	$\diamond \square x \rightarrow \square \odot x$	unique final cluster
K4.3	$\square(\square x \rightarrow y) \vee \square(\square y \rightarrow x)$	linear (chain of clusters)
K4B	$x \rightarrow \square \diamond x$	lone cluster
S5	$=\mathrm{S} 4 \oplus \mathrm{~B}$	lone reflexive cluster

and their various combinations
Shorthands: $\diamond \varphi=\neg \square \neg \varphi, \boxtimes \varphi=\varphi \wedge \square \varphi, \diamond \varphi=\neg \boxtimes \neg \varphi$

Frame measures

A frame $\langle W,<, A\rangle$ has various invariants in $\mathbb{N} \cup\{\infty\}$:

- depth = maximal length of strict chains
- cluster size $=$ maximal size of clusters
- width = maximal size of antichains in rooted subframes
- branching = maximal number of immediate successor clusters of any point

A logic L has depth (cl. size, width) $\leq k$
\Longleftrightarrow all descriptive L-frames have depth (cl. size, width) $\leq k$ $\Longleftrightarrow L \supseteq$ K4BD $_{k}\left(\mathrm{~K}_{4} \mathrm{BC}_{k}, \mathrm{~K}_{4} \mathrm{BW}_{k}\right)$

Branching:

more complicated (directly works only for finite frames) $L \supseteq \mathrm{~K}^{2} \mathrm{BB}_{k}$

Frames for rules

$M=\langle W,<, \equiv\rangle$ Kripke model:

- $M \vDash \varphi \Longleftrightarrow u \vDash \varphi$ for all $u \in W$
- $M \vDash \Gamma / \Delta \Longleftrightarrow$

$$
M \vDash \varphi \text { for all } \varphi \in \Gamma \Longrightarrow M \vDash \psi \text { for some } \psi \in \Delta
$$

$\langle W,<, A\rangle$ frame:
$W \vDash \Gamma / \Delta \Longleftrightarrow\langle W,<, \vDash\rangle \vDash \Gamma / \Delta$ for all admissible \vDash
Validity of rules preserved by p-morphic images, but not by generated subframes
Only single-conclusion rules preserved by disjoint sums

Parametric frames

K4-algebras are dual to frames
$\mathrm{K} 4{ }^{\text {Par }}$-algebras are dual to parametric frames $\left\langle W,<, A, \models_{\text {Par }}\right\rangle$

- $\langle W,<, A\rangle$ frame
- $\vDash_{\text {Par }}$ fixed admissible valuation of parameters $p \in \operatorname{Par}$

Model based on $\left\langle W,<, A, \models_{\text {Par }}\right\rangle$:
$\langle W,<, \models\rangle$ s.t.

- \vDash admissible valuation in the frame $\langle W,<, A\rangle$
- \vDash extends $\vDash_{\text {Par }}$

Canonical frames

Free L-algebras $F_{L}(V)$ are dual to canonical L-frames $C_{L}(V)$:

- points: maximal L-consistent subsets of Form (V)
- $X<Y \Longleftrightarrow \forall \varphi(\square \varphi \in X \Rightarrow \varphi \in Y)$
- $A=$ definable sets: $\{X: \varphi \in X\}, \varphi \in$ Form (V)

Free $L^{\text {Par-algebras }} F_{L^{\mathrm{Par}}}(V)$ are dual to
canonical parametric frames $C_{L}(\operatorname{Par}, V)$:

- underlying frame $C_{L}(\operatorname{Par} \cup V)$
- $X \vDash p \Longleftrightarrow p \in X$

Universal frames of finite rank (1)

Canonical frames are too large
But: their top parts have an explicit description
Universal model $M_{\mathrm{K} 4}(V), V \subseteq$ Var finite:

- start with empty model
- for each finite rooted model F with $C=\operatorname{rcl}(F)$: if
- points of C are distinguished by valuation of V,
- $F \backslash C$ is a generated submodel of $M_{\mathrm{K4}}(V)$, and
$-\neg(F \backslash C$ is rooted, $\operatorname{rcl}(F \backslash C)$ is reflexive, and includes a copy of C wrt valuation)
then extend $M_{\mathrm{K} 4}(V)$ with a copy of C below $F \backslash C$ (unless there already is one)

Universal frames of finite rank (2)

Characterization:
$M_{\mathrm{K} 4}(V)=$ unique model with valuation for V s.t.

- $M_{\mathrm{K} 4}(V)$ is locally finite
($=$ rooted generated submodels are finite)
- each finite model with valuation for V has a unique p-morphism to $M_{\mathrm{K} 4}(V)$

Universal frame $U_{K 4}(V)=$ underlying frame of $M_{K 4}(V)$
$P \subseteq$ Par finite:
Universal parametric frame $U_{\mathrm{K} 4}(P, V)=$ underlying frame of $M_{\mathrm{K} 4}(P \cup V)$ with its valuation of P

Universal frames of finite rank (3)

Generalization to $L \supseteq \mathbf{K} 4$ with finite model property (fmp): $M_{L}(V)=$ the part of $M_{K 4}(V)$ that's based on an L-frame $\Longrightarrow U_{L}(V), U_{L}(P, V)$

Properties:

- all finite subsets of $M_{L}(P, V)$ definable
- the dual of $U_{L}(P, V)$ is $F_{L^{P}}(V)$
- $U_{L}(P, V)$ is the top part of $C_{L}(P, V)$:
- $U_{L}(P, V)$ generated subframe of $C_{L}(P, V)$ (the points of finite depth)
- all remaining points of $C_{L}(P, V)$ see points of $U_{L}(P, V)$ of arbitrarily large depth
- all $\neq \varnothing$ admissible subsets of $C_{L}(P, V)$ intersect $U_{L}(P, V)$

Admissibility using universal frames

$P \subseteq$ Par finite, $\Gamma, \Delta \subseteq \operatorname{Form}(P$, Var $)$ finite, $L \supseteq \mathrm{~K} 4 \mathrm{fmp}$
Summary:
$\Gamma \sim_{L} \Delta \Longleftrightarrow \forall V \subseteq$ Var finite: $F_{L^{p}}(V) \vDash \Gamma / \Delta$
$\Longleftrightarrow \forall V \subseteq \operatorname{Var}$ finite: $C_{L}(P, V) \vDash \Gamma / \Delta$
$\Longleftrightarrow \forall V \subseteq \operatorname{Var}$ finite: $\left\langle U_{L}(P, V),<, D, \vDash_{P}\right\rangle \vDash \Gamma / \Delta$
where $D=$ subsets definable in $M_{L}(P, V)$

Typically:
Validity in $U_{L}(P, V)$ is not difficult to characterize, but the restriction to D seriously complicates it

Toy model: logics of bounded depth

(1) Logics and admissibility
(2 Transitive modal logics
(3) Toy model: logics of bounded depth
(4) Projective formulas

5 Admissibility in clx logics
(6) Problems and complexity classes
(7) Complexity of derivability
(3) Complexity of admissibility

Avoid the difficulties

If L is a logic of bounded depth:

- $C_{L}(P, V)=U_{L}(P, V)$
- $C_{L}(P, V)$ is a finite frame
\Longrightarrow admissibility easy to analyze
Teaser: Let L be a logic of bounded depth. If
- Par is finite, or
- the set of finite L-frames is decidable,
then L-unifiability is decidable.
Proof: $\Gamma \subseteq \operatorname{Form}(P$, Var $)$ is unifiable iff

$$
\exists \vDash\left\langle U_{L}(P, \varnothing), \vDash\right\rangle \vDash \Gamma .
$$

We can compute $U_{L}(P, \varnothing)$.

but some remain

The characterization

$$
\Gamma \vdash_{L} \Delta \Longleftrightarrow U_{L}(P, V) \vDash \Gamma / \Delta \quad \forall V \text { finite }
$$

is not quite useful:

- $U_{L}(P, V)$ are too rigidly specified
$U_{L}(P, V)$.|PuV|
- $U_{L}(P, V)$ are too large: $\approx 2^{2} \quad$ (height \approx depth of L)
- we have no control over V, anyway
\Longrightarrow need more convenient semantical description

L-extensible models

L logic of bounded depth, fix $P \subseteq$ Par finite
F finite rooted parametric L-frame, $C=\operatorname{rcl}(F)$:

- F has loosely separated root if points of C are distinguished by valuation of parameters
- F has separated root if moreover $\neg(F \backslash C$ is rooted, $\operatorname{rcl}(F \backslash C)$ is reflexive, and includes a copy of C wrt valuation)

W finite parametric L-frame:

- W is L-extensible if $\forall F$ with a separated root: if $F \backslash \operatorname{rcl}(F) \subseteq \cdot W$, it extends to $F \subseteq \cdot W$
- W is strongly L-extensible if $\forall F$ with a loosely separated root . . .

Extensibility and canonical frames

Example: $C_{L}(P, \varnothing)$ is the minimal L-extensible frame
More generally:
$C_{L}(P, V)$ is L-extensible for any finite $V \subseteq V a r$
Converse:
W L-extensible \Longrightarrow p-morphic image of some $C_{L}(P, V)$
Corollary: If W L-extensible,

$$
\Gamma r_{L} \Delta \Longrightarrow W \vDash \Gamma / \Delta
$$

for all $\Gamma, \Delta \subseteq$ Form (P, Var)

Injectivity of extensible frames

W finite parametric L-frame
W is L-injective if \forall finite par. L-frames $F_{0} \subseteq \cdot F_{1}$:
any p-morphism $F_{0} \rightarrow W$ extends to a p-morphism $F_{1} \rightarrow W$
Proposition: The following are equivalent:

- W is L-extensible
- W is L-injective
- W is a retract of some $C_{L}(P, V)$: there are p-morphisms

$$
C_{L}(P, V) \stackrel{f}{\rightleftarrows} \stackrel{g}{\longleftrightarrow} W
$$

s.t. $f \circ g=\mathrm{id}_{W}$

Connections among the properties

Proposition: The following are equivalent:

- W is a p-morphic image of some $C_{L}(P, V)$
- $\Gamma r_{L} \Delta \Longrightarrow W \vDash \Gamma / \Delta$ for all $\Gamma, \Delta \subseteq$ Form($\left.P, \operatorname{Var}\right)$

Warning: In general, $C_{L}(P, V)$ are not strongly L-extensible strongly L-ext. $\rightleftarrows \quad$ L-ext. \rightleftarrows, image of $C_{L}(P, V)$

Proposition: Any finite par. L-frame is a generated subframe of a strongly L-extensible frame

Corollary: Any L-extensible frame is a retract of a strongly L-extensible frame

Extensibility and admissible rules

Recall: L logic of bounded depth, $P \subseteq$ Par finite
Theorem: For any $\Gamma, \Delta \subseteq$ Form (P, Var), TFAE:
$-\Gamma r_{L} \Delta$

- 「 / Δ holds in all L-extensible frames- 「 / Δ holds in all strongly L-extensible frames

L-extensible frames are structurally important strongly L-extensible frames are simpler to define and a bit more robust to work with

Application

What to do next depends on the logic
Logics of bounded depth can still be quite wild
Tame subclass: logics of bounded depth and width

- finitely axiomatizable
- polynomial-size model property
- frames recognizable in polynomial time

Theorem: Let L be a logic of bounded depth and width, $P \subseteq$ Par finite and $\Gamma, \Delta \subseteq \operatorname{Form}(P, \operatorname{Var})$ of size n.
If $\Gamma \not \psi_{L} \Delta$, then Γ / Δ fails in a strongly L-extensible model of size at most poly $\left(n 2^{|P|}\right)$. In particular, r_{L} is decidable.

Addendum: smaller models

For fixed finite P, the models are polynomial-size, but in general doubly-exponential
Let $\Sigma \subseteq$ Form finite, closed under subformulas
Σ-pruned L-extensible model: Like L-extensible, but when extending with a cluster C, allow it to shrink to a subset if satisfaction of Σ-formulas is preserved

Theorem: Let L be logic of bounded depth and width, $\Gamma \cup \Delta \subseteq \Sigma$. TFAE:

- $\Gamma \vdash_{L} \Delta$
$\checkmark \Gamma / \Delta$ holds in Σ-pruned L-extensible models of size $2^{O\left(n^{2}\right)}$

Projective formulas

(1) Logics and admissibility
(2) Transitive modal logics
(3) Toy model: logics of bounded depth
(4) Projective formulas
(5) Admissibility in clx logics
(6) Problems and complexity classes

7 Complexity of derivability
8 Complexity of admissibility

Historical note

Projective formulas introduced by [Ghilardi'00]:

- semantical characterization of projective formulas
- existence of projective approximations for extensible logics
\Longrightarrow unification finitary
- parameter-free case only

We generalize it to the setup with parameters

Motivation

In the case of logics of bounded depth, we saw:
Admissibility closely connected to injective L-frames
These are dual to projective L-algebras
Finitely presented projective L-algebras are described by projective formulas:
Definition: φ is L-projective if it has an L-unifier σ s.t.

$$
\varphi \vdash_{\llcorner } \sigma(\psi) \leftrightarrow \psi \quad \forall \psi \in \text { Form }
$$

- it suffices to check $\psi \in \operatorname{Var}$
- general algebraizable logics: $x \leftrightarrow y$ stands for $E(x, y)$
- σ is a mgu of φ

Löwenheim substitutions

If $\sigma_{1}, \ldots, \sigma_{m}$ are substitutions s.t.

$$
\varphi \vdash_{L} \sigma_{i}(\psi) \leftrightarrow \psi \quad \forall \psi \in \text { Form }
$$

then this also holds for $\sigma_{m} \circ \cdots \circ \sigma_{1}$
\Longrightarrow build projective unifier inductively by small steps
Löwenheim subtitutions satisfy ($*$):
Fix $\varphi \in \operatorname{Form}(P, V)$, where $P \subseteq \operatorname{Par}$ and $V \subseteq \operatorname{Var}$ finite Let $F=\left\langle f_{x}: x \in V\right\rangle$, each $f_{x}: 2^{P} \rightarrow 2$ Boolean function of the parameters:

$$
\theta_{\varphi, F}(x)=(\boxminus \varphi \wedge x) \vee\left(\neg 凹 \varphi \wedge f_{x}(\vec{p})\right)
$$

$\theta_{\varphi}=$ composition of all $\theta_{\varphi, F}$ (in any order)

Characterization of projectivity

Theorem: Let $L \supseteq \mathbf{K} 4 \mathrm{fmp}, \varphi \in \operatorname{Form}(P, V)$. TFAE:

- φ is projective
- θ_{φ}^{N} is a unifier of φ, where $N=\left(2^{|P|}+1\right)|\varphi|$
- φ has the model extension property:

Definition:

- $\operatorname{Mod}_{L}=$ finite rooted L-models
- $F, F^{\prime} \in \operatorname{Mod}_{L}$ are variants
if they only differ in valuation of variables in root cluster
- $M \subseteq \operatorname{Mod}_{L}$ has the model extension property if any $F \in \operatorname{Mod}_{L}$ has a variant in M whenever its proper rooted submodels belong to M
- φ has m.e.p. iff $\operatorname{Mod}_{L}(\varphi)=\left\{F \in \operatorname{Mod}_{L}: F \vDash \varphi\right\}$ does

Projective approximations

NB: projective formulas π are admissibly saturated:

$$
\pi \vdash_{L} \Delta \Longleftrightarrow \pi \vdash_{L} \Delta
$$

Π is a projective approximation of a formula φ if

- Π finite set of projective formulas
- $\varphi r_{L} \Pi$
- $\pi \vdash_{L} \varphi$ for each $\pi \in \Pi$

If φ has a projective approximation Π :

- the set of proj. unifiers of $\pi \in \Pi$ is a finite csu of φ
- $\varphi \vdash_{L} \Delta \Longleftrightarrow \pi \vdash_{L} \Delta$ for all $\pi \in \Pi$

Price: existence of proj. apx. needs strong assumptions on L

Cluster-extensible logics

$L \supseteq \mathrm{~K} 4 \mathrm{fmp}, n \in \omega, C$ finite cluster type:
irreflexive •, k-element reflexive © \circledR
A finite rooted frame F is of type $\langle C, n\rangle$ if
$-\operatorname{rcl}(F)$ is of type C
$-\operatorname{rcl}(F)$ has n immediate successor clusters ($=$ branching n)
$L\langle C, n\rangle$-extensible:
For each type- $\langle C, n\rangle$ frame F, if $F \backslash \operatorname{rcl}(F)$ is an L-frame, then so is F
L cluster-extensible (clx):
$\langle C, n\rangle$-extensible whenever it has some type- $\langle C, n\rangle$ frame

Properties of clx logics

Examples: Any combinations of K4, S4, GL, D4, K4Grz, K4.1, K4.3, K4B, S5, K4BB ${ }_{k}$, K4BC ${ }_{k}$

Closed under joins and directed intersections (countable complete lattice)

Nonexamples: K4.2, S4.2, ...
Theorem: Every clx logic L

- is finitely axiomatizable
- has the exponential-size model property
\checkmark is $\forall \exists$-definable on finite frames
- is described by finitely many forbidden types $\langle C, n\rangle$
- is described by finitely many extension conditions: $\langle C, n\rangle$ where $n \in \omega \cup\{\infty\}, C$ cluster type or ∞

Projective approximation in clx logics

Theorem: L clx logic \Longrightarrow every formula φ has a projective approximation Π s.t.

- each $\pi \in \Pi$ is a Boolean combination of subformulas of φ
- $|\Pi| \leq 2^{2^{n}},|\pi|=O\left(n 2^{n}\right)$ for each $\pi \in \Pi$

Corollary:

- each φ has a finite csu
- we can compute it
- L-admissibility and L-unifiability are decidable

Admissibility in clx logics

(1) Logics and admissibility
(2) Transitive modal logics
(3) Toy model: logics of bounded depth
4. Projective formulas
(5) Admissibility in clx logics
(6) Problems and complexity classes
(7) Complexity of derivability

8 Complexity of admissibility

Historical note

Admissibility in transitive modal logics studied in depth by [Rybakov' 97]

- semantical characterizations
- decidability results
- many results include parameters

We follow a different route, based on Ghilardi's work on projectivity

Tight predecessors

$P \subseteq$ Par finite, C finite cluster type, $n \in \omega$
L clx logic, W parametric L-frame:

- W is $\langle C, n\rangle$-extensible

$\forall E \subseteq 2^{P}, 0<|E| \leq|C|$
$\forall X=\left\{w_{i}: i<n\right\} \subseteq W$
\exists tight predecessor (tp) $T=\left\{u_{e}: e \in E\right\} \subseteq W$:

$$
u_{e} \vDash P^{e}, \quad u_{e} \uparrow= \begin{cases}X \uparrow & C=\bullet \\ X \uparrow \cup T & C \text { reflexive }\end{cases}
$$

- W is L-extensible if it is $\langle C, n\rangle$-extensible whenever L is

Extension rules

$P \subseteq$ Par finite, C finite cluster type, $n \in \omega$
$\langle C, n\rangle$-extensible frames axiomatized by extension rules Ext ${ }_{C, n}^{P}$:

- $C=\bullet$: for each $e \in 2^{P}$,

$$
P^{e} \wedge \square y \rightarrow \bigvee_{i<n} \square x_{i} /\left\{\boxminus y \rightarrow x_{i}: i<n\right\}
$$

- $C=®$: for each $E \subseteq 2^{P}$ and $e_{0} \in E$, where $|E| \leq k$,

$$
\frac{\left[\begin{array}{c}
P^{e_{0}} \wedge \boxminus\left(y \rightarrow \underset{e \in E}{\left.\bigvee \square\left(P^{e} \rightarrow y\right)\right)}\right. \\
\wedge \wedge_{e \in E} \boxminus\left(\square\left(P^{e} \rightarrow \square y\right) \rightarrow y\right)
\end{array}\right] \rightarrow \bigvee_{i<n}^{\bigvee_{i}} \square x_{i}}{\left\{\boxtimes y \rightarrow x_{i}: i<n\right\}}
$$

Semantics of extension rules

Theorem: Let W be a parametric frame

- If W is $\langle C, n\rangle$-extensible, then $W \vDash \operatorname{Ext}_{C, n}^{P}$
- If $W \vDash \operatorname{Ext}_{C, n}^{P}$, then W is $\langle C, n\rangle$-extensible, provided W is descriptive or Kripke

Moreover: If L has fmp , then $L+\operatorname{Ext}_{C, n}^{P}$ is complete wrt locally finite $\langle C, n\rangle$-extensible Kripke frames

Theorem: If $L \supseteq$ K4 has fmp, TFAE:

- L is $\langle C, n\rangle$-extensible
- Ext $_{C, n}$ is L-admissible

Characterization of admissibility

Theorem: If L is $c l x$ logic, TFAE:
$-\Gamma r_{L} \Delta$

- 「 / Δ holds in all L-extensible parametric frames
- Γ / Δ holds in all locally finite L-extensible parametric Kripke frames
- Γ / Δ is derivable in $L+\left\{\mathrm{Ext}_{C, n}^{\mathrm{Par}}: L\right.$ is $\langle C, n\rangle$-extensible $\}$

NB: To pass from a locally finite L-extensible countermodel to a definable valuation, use projective formulas

Bases of admissible rules

Corollary: If L is clx, the rules $\mathrm{Ext}_{C, n}$ are a basis of L-admissible rules

Variation:

- Explicit single-conclusion bases
- If Par is finite:
- L has a finite basis $\Longleftrightarrow L$ has bounded branching
- L has explicit independent bases (mc or sc)
- If Par is infinite:
- No consistent logic has a finite basis
- Open problem: independent bases?

Smaller models

L-extensible frames are usually infinite
Let $\Sigma \subseteq$ Form finite, closed under subformulas
Finite models L-pseudoextensible wrt Σ :
Like L-extensible, but instead of tp's, have tight pseudopredecessors wrt Σ
\approx behave as tp as concerns satisfaction of Σ-formulas
Theorem: If L clx logic and $\Gamma, \Delta \subseteq \Sigma$, TFAE:

- $\Gamma \vdash_{L} \Delta$
- Γ / Δ holds in all L-pseudoextensible models wrt Σ
- 「 / Δ holds in all L-pseudoextensible models wrt Σ of size $2^{O(n)}$

Variants of clx logics

Tweak the definition to cover other kinds of logics:

- Logics with a single top cluster (extensions of K4.2)
- Top-restricted cluster-extensible (tclx) logics: extension conditions only for frames with a single top cluster
- Examples: joins of K4.2 with clx logics
- Superintuitionistic logics
- Behave much like their largest modal companions (Blok-Esakia isomorphism)
- The only (t)clx si logics are IPC, $\mathbf{T}_{n}, \mathrm{KC}, \mathrm{KC}+\mathrm{T}_{n}$ (NB: $\mathbf{T}_{1}=\mathrm{LC}, \mathrm{T}_{0}=\mathrm{CPC}$)

Problems and complexity classes

(1) Logics and admissibility

2 Transitive modal logics
(3) Toy model: logics of bounded depth
4. Projective formulas
(5) Admissibility in clx logics
(6) Problems and complexity classes
(7) Complexity of derivability

8 Complexity of admissibility

Main questions

For a fixed logic L, what is the computational complexity of:

- Given Γ, Δ, is Γ / Δ-admissible?
- Is a given ΓL-unifiable?

Here, Γ and Δ may be sets of formulas

- without parameters
- with parameters
- with $O(1)$ parameters

Recall: unifiability is a special case of inadmissibility
\Longrightarrow typically, admissibility and unifiability
captured by dual complexity classes Ideally:

- lower bounds for unifiability
- upper bounds for admissibility

Complexity classes

Common classes of languages:

- $P=$ deterministic polynomial time
- NP $=$ nondeterministic polynomial time
- $\operatorname{co} X=\left\{\Sigma^{*} \backslash L: L \in X\right\}$, e.g. coNP
- $\mathrm{P}^{X}=$ polynomial time with oracle from X, etc.
- polynomial hierarchy: $\Sigma_{0}^{p}=\Delta_{0}^{p}=\Pi_{0}^{p}=\mathrm{P}$,

$$
\Sigma_{k}^{p}=\operatorname{NP}^{\Sigma_{k-1}^{p}}, \quad \Delta_{k}^{p}=\mathrm{P}^{\Sigma_{k-1}^{p}}, \quad \Pi_{k}^{p}=\operatorname{coN} \mathrm{P}^{\Sigma_{k-1}^{p}}
$$

- PSPACE = polynomial space
- EXP $=$ deterministic exponential $\left(2^{2^{c}}\right)$ time
- NEXP = nondeterministic exponential time
- exponential hierarchy:

$$
\Sigma_{k}^{\exp }=\operatorname{NEXP}^{\Sigma_{k-1}^{p}}, \quad \Delta_{k}^{\exp }=\operatorname{EXP}^{\Sigma_{k-1}^{p}}, \quad \Pi_{k}^{\exp }=\operatorname{coNEXP}{ }_{k-1}^{\Sigma_{k}^{p}}
$$

Alternating Turing machines

alternating Turing machine (ATM):

- multiple transitions from a given configuration (\approx NTM)
- states labelled existential or universal
- acceptance defined inductively:
- configuration in an \exists state is accepting \Longleftrightarrow
\exists transition to an accepting configuration
- configuration in a \forall state is accepting \Longleftrightarrow \forall transitions lead to accepting configurations
- alternation: go from \exists state to \forall state or vice versa
- Σ_{k} - $\operatorname{TIME}(f(n))$: computable by ATM in time $f(n)$, start in \exists state, make $\leq k-1$ alternations
- $\Pi_{k}-\operatorname{TIME}(f(n)):$ start in \forall state
- Σ_{1} - TIME $=$ NTIME, Π_{1}-TIME $=$ coNTIME

Expressing classes with ATMs

- polynomial and exponential hierarchies:

$$
\begin{aligned}
\Sigma_{k}^{p} & =\Sigma_{k}-\operatorname{TIME}(\operatorname{poly}(n)) & \Pi_{k}^{p} & =\Pi_{k}-\operatorname{TIME}(\operatorname{poly}(n)) \\
\Sigma_{k}^{\exp } & =\Sigma_{k}-\operatorname{TIME}\left(2^{\operatorname{poly}(n)}\right) & \Pi_{k}^{\exp } & =\Pi_{k}-\operatorname{TIME}\left(2^{\operatorname{poly}(n)}\right)
\end{aligned}
$$

- PSPACE $=$ AP (alternating polynomial time)
- EXP $=$ APSPACE (alternating polynomial space)

Reductions and completeness

- Y (many-one) reducible to X if there is $f: \Sigma^{*} \rightarrow \Sigma^{*}$ s.t.

$$
w \in Y \Longleftrightarrow f(w) \in X
$$

f efficiently computable:

- polynomial-time
- logspace: in space $O(\log n)$, excluding input tape (read-only) and output tape (write-only)
- C a class: X is C-hard if every $Y \in C$ reduces to X
- $X C$-complete if $X \in C$ and C-hard

Examples:

- SAT is NP-complete, TAUT (ie, CPC) is coNP-complete
- QSAT is complete for AP $=$ PSPACE

Completeness in exponential hierarchy

Theorem: Fix $k \geq 1$. The set of true Σ_{k}^{2} sentences

$$
\exists X_{1} \subseteq \mathbf{2}^{n} \forall X_{2} \subseteq 2^{n} \ldots Q X_{k} \subseteq 2^{n} \bar{Q} t_{1}, \ldots, t_{m} \in \mathbf{2}^{n} \varphi
$$

is a $\sum_{k}^{\text {exp }}$-complete problem, where

- $2=\{0,1\}$
- $Q=\exists$ for k odd, \forall for k even
- $\bar{Q}=$ dual of Q
- n given in unary
- φ Boolean combination of atomic formulas $t_{\alpha} \in X_{j}, t_{\alpha}(i)$ ($i<n$ constant)

Complexity of derivability

1. Logics and admissibility
(2) Transitive modal logics
(3) Toy model: logics of bounded depth
2. Projective formulas
(5) Admissibility in clx logics
6) Problems and complexity classes
(7) Complexity of derivability

8 Complexity of admissibility

Derivability and tautologicity

Before admissibility, let's consider a baseline problem:

- Given Γ, Δ, is Γ / Δ L-derivable?

In transitive logics, this is equivalent to L-tautologicity:

- Given φ, is $\vdash_{L} \varphi$?

NB: Special case of L-admissibility, but also of L-unifiability with parameters:

$$
\varphi \in \operatorname{Form}(\operatorname{Par}, \varnothing) \Longrightarrow\left(\vdash_{L} \varphi \Longleftrightarrow \varphi \text { unifiable }\right)
$$

coNP cases

Lower bound: By reduction from CPC, L-derivability is coNP-hard for any consistent L

Upper bound: L-derivability is in coNP if:

- L has a polynomial-size model property
- finite L-frames are recognizable in P (or NP)

Corollary: L-derivability coNP-complete for:

- consistent linear (= width 1) clx logics
- consistent logics of bounded depth and width

PSPACE cases

Theorem [Ladner'77]
Derivability in $\mathrm{K}, \mathrm{T}, \mathrm{S} 4$ is PSPACE-complete
For any $\mathrm{K} \subseteq L \subseteq \mathrm{~S} 4$, it is PSPACE-hard
Upper bound:
\approx explore proof tree/countermodel one branch a time Can be adapted (bounded branching little tricky):
Theorem: Derivability in any (t)clx logic is in PSPACE
Lower bound:

- reduction from QSAT
- easily adapted to all logics with the disjunction property
- reference?
- superintuitionistic logics with DP: [Chagrov'85]

PSPACE lower bound

We give another generalization, using reduction from IPC
Theorem: Derivability is PSPACE-hard for all logics $L \supseteq$ K4 that are subframe-universal for trees

- subreduction: $\approx \mathrm{p}$-morphism from a subframe
- weak subreduction: ignore reflexivity
- L subframe-universal for trees if \forall finite tree T
\exists weak subreduction from an L-frame onto T
- cofinal subreduction: $\operatorname{dom}(f) \uparrow \subseteq \operatorname{dom}(f) \downarrow$ \Longrightarrow cofinal weak subreduction, cofinally subframe-universal for trees

Applications of the lower bound

Theorem: All logics $L \supseteq$ K4 with the disjunction property are cofinally subframe-universal for trees

Corollary:

- Derivability in $L \supseteq \mathrm{~K} 4$ with DP is PSPACE-hard
- Derivability in nonlinear clx logics is PSPACE-complete
- Derivability is also PSPACE-complete in nonlinear tclx logics: K4.2, S4.2, ...

Complexity of admissibility

1. Logics and admissibility
(2) Transitive modal logics
(3) Toy model: logics of bounded depth
2. Projective formulas
(5) Admissibility in clx logics
(6) Problems and complexity classes
(7) Complexity of derivability

8 Complexity of admissibility

Summary: clx logics

Completeness results for complexity of clx logics:

			unifiabil	y, $\not \chi_{L}$	
bran-	clust.	\vdash_{L}	param	ers:	examples
ching	size		no ${ }^{\dagger} \quad O(1)$	any	
0	$<\infty$	NP		\square_{2}^{p}	S5 \oplus Alt $_{\text {k }}$, CPC
	∞			coNEXP	S5, K4B
1	$<\infty$		PSPACE		GL.3, LC
	∞			coNEXP	S4.3, K4.3
≥ 2	$<\infty$	PSPACE	NEXP		GL, S4Grz, IPC
	∞			$\Sigma_{2}^{\text {exp }}$	K4, S4

\dagger The parameter-free case is for $\nleftarrow\llcorner$ only

Summary: tclx logics

Completeness results for complexity of tclx logics:

		\vdash_{L}	unifiability, $\nvdash L^{L}$ parameters:			examples	
$$							
		no ${ }^{\dagger}$	$O(1)$	any			
$<\infty$	$<\infty$		PSPACE	NEXP			GL.2, Grz.2, KC
	∞	$\Theta_{2}^{\text {exp }}$				S4.1.4 \oplus S4.2	
∞		$\Sigma_{2}^{\text {exp }}$				K4.2, S4.2	

\dagger The parameter-free case is for ${ }_{\nless}{ }_{\llcorner }$only
$N B$: branching ≥ 2 by definition

Summary: bounded depth and width

Complexity results for logics of bounded depth and width:

logic		$\begin{aligned} & \vdash_{L} \\ & (\dagger) \end{aligned}$	unif.	\nvdash_{L}		notes
width	cluster size			sing.-c.	mult.-c.	
			(unrestricted parameters)			
1	$<\infty$	NP		$\Pi_{2 d}^{p}$		depth d
	∞			coNE		
≥ 2	$<\infty$			NEX		
	∞		DEXP	$\mathrm{BH}_{4}^{\text {exp }}$	$E X P^{N P[\log n]}$	under certain conditions
			$\Theta_{2}^{\text {exp }}$			
			$\Sigma_{2}^{\text {exp }}$			

(\dagger) also the complexity of unifiability and $\hbar_{\llcorner }$with $O(1)$ parameters

Upper bounds

Semantic characterization:
pseudoextensible / pruned extensible models (size $2^{\operatorname{poly}(n)}$)
\Longrightarrow inadmissibility in (t)clx or bd-dp-wd logics is in $\Sigma_{2}^{\exp }$:

$$
\exists \text { model } \forall E \subseteq 2^{P} \ldots
$$

Optimization in certain cases:

- bounded cluster size:
$\forall E \subseteq 2^{P},|E| \leq k$ becomes a poly-size quantifier
- constant number of parameters: same reason
- width 1:
- the model is an upside-down tree of clusters
- an ATM can explore it while keeping only one branch

Lower bound conditions

Basic tenet: Hardness of L-unifiability stems from finite patterns that occur as subframes in L-frames

That is, study conditions of the form:
\exists an L-frame that subreduces to $F \Longrightarrow$-unifiability C-hard
Example conditions:

- L has unbounded depth:

L-frames weakly subreduce to arbitrary finite chains

- L has unbounded cluster size:

L-frames subreduce to arbitrary reflexive clusters

- L is nonlinear ($=$ width $\geq 2=$ branching ≥ 2): an L-frame subreduces to a 2 -prong fork

Lower bound technique

Reduce a C-complete problem to L-unifiability:

- PSPACE, $\sum_{k}^{p} / \Pi_{k}^{p}:$ QSAT, Σ_{k} / Π_{k}-SAT
- $\Sigma_{k}^{\text {exp }} / \Pi_{k}^{\text {exp }}:$ special $\Sigma_{k}^{2} / \Pi_{k}^{2}$-sentences as above

Encode quantifiers:

- \exists simulated by variables, \forall by parameters
- $t \in 2^{n}$: directly by n-tuple of atoms
- $\forall X \subseteq 2^{n}$: parameter assignments realized in a cluster
- $\exists X \subseteq 2^{n}$: single variable x
- use antichains to enforce consistency:
- $u \vDash \sigma(x)$ unaffected by a change of parameters in $v \nsupseteq u$

$\sum_{2}^{\exp }$ bounds

Lower bound:
If $\forall n$ an L-frame subreduces to a rooted frame containing

- an n-element cluster, and
- an incomparable point
\Longrightarrow L-unifiability is $\sum_{2}^{\text {exp }}$-hard

Upper bound:
$L(\mathrm{t}) \mathrm{clx}$ or bd-dp-wd logic \Longrightarrow L-inadmissibility is in $\Sigma_{2}^{\exp }$
Examples:
K4, S4, S4.1, S4.2, K4BB ${ }_{2}$, S4BB $_{2}$ BD $_{2}, \ldots$

NEXP bounds

Lower bound:
L nonlinear \Longrightarrow L-unifiability is NEXP-hard
$(O(1)$ parameters? next slide)

Upper bounds:

- $L(\mathrm{t}) \mathrm{clx}$ logic of bounded cluster size, or a tabular logic \Longrightarrow L-inadmissibility is in NEXP
- L (t) clx logic \Longrightarrow

L-inadmissibility with $O(1)$ parameters is in NEXP
Examples:
GL, K4Grz, S4Grz, S4Grz.2, IPC, KC, ...
(\pm bounded branching)

NEXP lower bounds w/ O(1) parameters

Need stronger hypothesis (cf. logics of bounded depth)
Theorem: The following problems are NEXP-hard

- L-unifiability with 2 parameters
- if L subframe-universal for trees
- L-unifiability with 1 parameter
- if L cofinally subframe-universal for trees (includes: logics with disjunction property)
- if L subframe-universal respecting reflexivity
- L-unifiability with 0 parameters
- if $\mathrm{K} 4 \subseteq L \subseteq \mathrm{~K} 4.2 \mathrm{GrzBB}_{2}$
- single-conclusion L-inadmissibility with 0 parameters
- if L has a certain weak extension property
- this includes: nonlinear clx logics

coNEXP bounds

Lower bound:
L unbounded cluster size
\Longrightarrow L-unifiability is coNEXP-hard

Upper bound:
L linear clx or bd-dp logic
\Longrightarrow L-inadmissibility is in coNEXP
Examples: S5, K4.3, S4.3, ...

PSPACE bounds

Lower bound:
L unbounded depth \Longrightarrow
L-unifiability with 2 parameters is PSPACE-hard
Corollary:
L-unifiability is PSPACE-hard
unless L linear tabular logic

Upper bound:
L linear clx logic of bounded cluster size \Longrightarrow L-admissibility is in PSPACE

Examples:
GL.3, K4Grz.3, S4Grz.3, LC, ...

Polynomial hierarchy

Recall: L-unifiability PSPACE-hard unless L linear tabular
Remaining case:
L linear tabular logic of depth $d \Longrightarrow$
L-unification and L-inadmissibility are $\Pi_{2 d}^{p}$-complete
Examples:
$\mathrm{CPC}, \mathrm{G}_{d+1}, \mathrm{~S} 5 \oplus \mathrm{Alt}_{k}, \mathrm{~K} 4 \oplus \square \perp, \ldots$
L unbounded depth \Longrightarrow PSPACE-hard with 2 parameters
Theorem:
Lbd-dp-wd logic \Longrightarrow
L-inadmissibility with $O(1)$ parameters is NP-complete

More exotic classes

Exponential version of Θ_{2}^{p} :

$$
\Theta_{2}^{\exp }=E X P^{N P[p o l y]}=E X P^{\| N P}=P^{N E X P}=P S P A C E^{N E X P}
$$

Exponential version of the Boolean hierarchy:

- $\mathrm{BH}^{\text {exp }}=$ closure of NEXP under Boolean operations
- Stratified into levels:
- $\mathrm{BH}_{1}^{\text {exp }}=\mathrm{NEXP}$
- $\mathrm{BH}_{k+1}^{\exp }=\left\{A \backslash B: A \in \operatorname{NEXP}, B \in \mathrm{BH}_{k}^{\exp }\right\}$
- Special case:

DEXP $=\mathrm{BH}_{2}^{\exp }=\{A \cap B: A \in$ NEXP, $B \in \mathrm{coNEXP}\}$
NEXP, $\operatorname{coNEXP} \subseteq \mathrm{BH}^{\exp } \subseteq \Theta_{2}^{\exp } \subseteq \Delta_{2}^{\exp }$

$\Theta_{2}^{\exp }$ bounds

Lower bound:
$\forall n \exists$ graph-connected L-frame of cluster size $\geq n$ and width ≥ 2
\Longrightarrow L-unifiability is $\Theta_{2}^{\text {exp }}$-hard
Upper bound:
L-admissibility is in $\Theta_{2}^{\text {exp }}$ if

- L is a tclx logic of bounded inner cluster size, or
- L is a bd-dp-wd logic, doesn't satisfy the $\Sigma_{2}^{\exp } L B$ condition

Example: S4.2 \oplus S4.1.4

$\mathrm{BH}^{\mathrm{exp}}$ bounds

The NEXP and coNEXP lower bounds imply:
Lower bound:
L nonlinear logic of unbounded cluster size
\Longrightarrow L-unifiability is DEXP-hard
Rare case where unifiability and inadmissibility (with parameters) have different complexity:
Upper bound:
L bd-dp-wd logic, doesn't satisfy the $\Theta_{2}^{\text {exp }} L B$ condition \Longrightarrow

- L-unifiability is in DEXP
- single-conclusion L-inadmissibility is in $\mathrm{BH}_{4}^{\exp }$
- multiple-conclusion L-inadmissibility is in EXP ${ }^{N P[\log n]}$

Full classification?

Known: complexity of unifiability for (t$) \mathrm{clx}$, bd-dp-wd logics
Could it be determined for all logics $L \supseteq \mathrm{~K} 4$?

- Hopeless:
already \vdash_{L} can be undecidable, arbitrary Turing degree
- The form of results that we've seen:
- Upper bounds: tame, nicely-behaved logics
- Lower bounds: logics allowing certain frame patterns \Longrightarrow downward-closed classes of logics
- Determine minimal complexity of unifiability among sublogics of L ?

Definition: Unifiability has hereditary hardness C below L if

- L^{\prime}-unifiability is C-hard for all $L^{\prime} \subseteq L$
- L^{\prime}-unifiability is in C for some $L^{\prime} \subseteq L$

Hereditary hardness

Theorem: Below any $L \supseteq \mathbf{K} 4$, one of the following applies:

logic L			hereditary hardness of unifiability	witness$L^{\prime} \subseteq L$
width	cluster size	extra condition		
1	$<\infty$	depth d	$\Pi_{2 d}^{p}$	$=L$
		depth ∞	PSPACE	K4.3BC ${ }_{k}$
	∞		coNEXP	K4.3
≥ 2	$<\infty$		NEXP	K4BC ${ }_{k}$
	∞	certain conditions (as before)	DEXP	$\mathrm{K} 4 \mathrm{BC}_{k} \cap \mathrm{~K}_{\mathrm{K}} .3 \mathrm{BIC}$ D4.3 $\cap \overline{\mathrm{D}}^{2} \mathrm{BC}_{k}$ $\mathrm{D} 4 \mathrm{BC}_{k} \cap \mathrm{D}_{\mathrm{L}} .3 \mathrm{BIC}_{k} \cap \overline{\mathrm{D}} 4.3$
			$\Theta_{2}^{\text {exp }}$	
			$\Sigma_{2}^{\exp }$	K4

($\overline{\mathrm{D}} 4=\mathbf{K} 4 \oplus \diamond \square \perp, \mathrm{BIC}_{k}=$ bounded inner cluster size)
Except for DEXP, also applies to inadmissibility

Thank you for attention!

References

- F. Baader, W. Snyder: Unification theory, in: Handbook of Automated Reasoning vol. I, Elsevier, 2001, 445-533
- S. Arora, B. Barak: Computational complexity: A modern approach, Cambridge Univ. Press, 2009
- A. V. Chagrov: On the complexity of propositional logics, in: Complexity problems in Mathematical Logic, Kalinin State Univ., 1985, 80-90, in Russian
- A. V. Chagrov, M. Zakharyaschev: Modal logic, Oxford Univ. Press, 1997
- S. Ghilardi: Best solving modal equations, Ann. Pure Appl. Log. 102 (2000), 183-198

References

- E. J.: Complexity of admissible rules, Arch. Math. Log. 46 (2007), 73-92
- E. J.: Rules with parameters in modal logic I, Ann. Pure Appl. Log. 166 (2015), 881-933
- E. J.: Rules with parameters in modal logic II, coming soon
- E. J.: Rules with parameters in modal logic III, planned
- R. E. Ladner: The computational complexity of provability in systems of modal propositional logic, SIAM J. Comput. 6 (1977), 467-480
- V. V. Rybakov: Admissibility of logical inference rules, Elsevier, 1997

